Particle Evolutionary Swarm for Design
Reliability Optimization

Angel E. Mufioz Zavala, Enrique R. Villa Diharce

and Arturo Herndndez Aguirre

Center for Research in Mathematics (CIMAT)
Department of Computer Science
A P. 402, Guanajuato, Gto. CP 36000, México
aemz,villadi,artha@cimat.mx

Abstract. This papers proposes an enhanced Particle Swarm Optimiza-
tion algorithm with multi-objective optimization concepts to handle con-
straints, and operators to keep diversity and exploration. Our approach,
PESDRO, is found robust at solving redundancy and reliability allo-
cation problems with two objective functions: reliability and cost. The
approach uses redundancy of components, diversity of suppliers, and in-
corporates a new concept called Distribution Optimization. The goal is
the optimal design for reliability of coherent systems. The new technique
is compared against algorithms representative of the state-of-the-art in
the area by using a well-known benchmark. The experiments indicate
that the proposed approach matches and often outperforms such meth-
ods.

1 Introduction

The reliability of any device is very important for manufacturers and users.
Larger reliability of the final product is desired but, the consequent rise in pro-
duction cost has negative effects on the user’s budget. Therefore, the design
reliability optimization problem is phrased as reliability improvement at a mini-
mum cost. The common sense perception of reliability is the absence of failures.
Therefore, reliability is sometimes referred to as “quality in time dimension”,
because is determined by the failures that may or may not occur to the prod-
uct during its life span. The design reliability problem is hard and challenging,
mainly due to the interaction of many subsystems whose conflicting local goals
must contribute to the overall performance. New product design involves the
specification of performance requirements, the evaluation and selection of com-
ponents that perform some defined function, and the determination of the system
level architecture.

The problems of interest to us are the redundancy and reliability allocation
problems. There are two conflicting goals in them: reliability, and cost. The

allocation problem is characterized by a large combinatorial search space, ruled
by multiple design constraints.

Several optimization approaches have previously been used to solve the re-
liability allocation problem [1]. We introduce a new approach based upon the
Particle Swarm Optimization (PSO) paradigm which was originally proposed by
Kennedy and Eberhart [2]. Our approach, based on multi-objective optimization
concepts (treats constraints as objective functions), includes: a selection criteria
based on feasibility rules; a local-best PSO with ring topology organization; and
two perturbation operators aimed to keep diversity.

The remainder of this paper is organized as follows. In Section 2, we introduce
the problem of interest. Section 3 introduces our proposed approach. In Section
4, we describe a benchmark of 3 test functions. Section 5 provided a comparison
of results with respect to techniques representative of the state-of-the-art in the
area. Finally, our conclusion and future work are provided in Section 6.

2 System Reliability Optimization

As noted before, the redundancy and allocation problem deals with the opti-
mization of reliability and cost. Frequently, this problem is described as optimal
reliability design, subject to cost and weight constraints. Thus, cost and weight
constraints are also optimized during the process. The optimization criterion
could be posed in two different forms:

— Maximization of system reliability, subject to cost and weight constraints.
— Minimization of system cost, subject to reliability and weight constraints.

The reliability of a product at time ¢, R(¢), is the probability that it works
like foresaw, during the time interval (0, t]; under several operational conditions
and environment. The distribution of the time to failure of a product, determines
its R(t) reliability at time .

R(t) = 1-F() = P(T >1t) t>0 (1)

where T is the time to failure and F'(t) is the cumulative distribution function.
F(t) thus denotes the probability that the unit fails within the time interval (0, ¢].

The reliability of a product with several components is calculated using its
structure function. Figure 1 shows the three kind of structures used to model
the system’s components of this paper.

Each system has its own structure function. The general structure functions
for series and parallel structures are shown in Equations 2 and 3, where n is
the number of components. The Equation 4 presents the structure function of a
k-out-of-n system with n identical components, where k is the minimum number
of components required for a system to work.

Series Structure

@ O ° 1 3 O
[v] \—-—-J
Parallel Structure K-out-of-N Structure
Fig. 1. Structures to model system components
— Series
n
Rs=]]Ri (2)
i=1
— Parallel
Rs=1-[](1-Ry) (3)
i=1
— K-out-of-N
n
n . .
Rs =" (i) ® - R (4)

The diversity of structures, resource constraints, and options for reliability
improvement has led to the construction and analysis of several optimization
models. We are interested in two general cases: redundancy allocation problem
and reliability allocation problem. For the first case, there is a set of discrete
components to choose from, whose characteristics are known (reliability or dis-
tribution function, cost, weight, etc.). The objectives of this combinatorial prob-
lem are the selection of components to use, and the corresponding redundancy
levels. The redundancy allocation problem has been shown NP-hard by Chern
[3]. For the second case, the component reliability or a vector of distribution pa-
rameters is treated as the design variables, and component’s cost is a predefined
increasing function of the component reliability.

As noted, our design optimization problem may appear in two forms:

P1
Find R which maximize R, (5)

subject to:

Y i< ®)

iw,- <w)

P2
Find R which minimize C§ (8)
subject to:
Rs>r)
n
Z Wi <w (10)
i=1

where R is the reliability vector of each component, R = (R, Rs, ..., R,),
C; and W; are the cost and the weight of the ith component, n is the number of
components, and ¢, w,r are constants: ¢ >0, w > 0,and 0 <r <1.

There are several assumptions we must consider to solve the redundancy -
reliability allocation problem:

— The state of the components and the system have only two options: good or
bad.

— Failures of components are independent events.

— Failed components do not damage the system.

— Failed components are not repaired.

The component’s reliability or distribution function is known.

All redundancy and reliability allocation problems meeting these assumptions
are denominated coherent systems. A system of components is said to be coherent
if all its components are relevant and the state of the system is nondecreasing in
each argument. One might get the impression that all systems of interest must
be coherent, but this is not the case.

A component i is irrelevant if for all combinations of the state components,
the state of the ith component does not affect the state of the system.

Here we will assume that a system will not run worse than before when we
replace a component in failed state with one that is operating correctly. This
is the same as requiring that the state of the system is nondecreasing in each
argument.

3 The PESDRO Algorithm

A solution algorithm for this problem is based on PSO search. The PSO al-
gorithm is a population-based search algorithm based on the simulation of the
social behavior of birds within a flock. In PSO, individuals, referred to as par-
ticles, are “flown” through a hyperdimensional search space. PSO is a kind of

symbiotic cooperative algorithm, because the changes to the position of parti-
cles within the search space are based on the social-psychological tendency of
individuals to emulate the success of other individuals.

The feature that drives PSO is social interaction. Individuals (particles)
within the swarm learn from each other, and based on this shared knowledge
tend to become more similar to their “better” neighbors. A social structure in
PSO is determined through the formation of neighborhoods. These neighbor-
hoods are determined through labels attached to every particle in the flock (so
it is not a topological concept). Thus, the social interaction is modeled by spread-
ing the influence of a “global best” all over the flock as well as neighborhoods
are influenced by the best neighbor and their own past experience.

Figure 2 shows some neighborhood structures that have been proposed and
studied [4]. Our approach, PESDRO, adopts the ring topology. In the ring
organization, each particle communicates with its n immediate neighbors. For
instance, when n = 2, a particle communicates with its immediately adjacent
neighbors as illustrated in Figure 2(b). The neighborhood is determined through
an index label assigned to all individuals. This version of the PSO algorithm is
referred to as lbest (LocalBest). It should be clear that the ring neighborhood
structure properly represents the LocalBest organization. It has the advantage
that a larger area of the search space is traversed, favoring search space explo-
ration (although convergence has been reported slower) [5,6].

&
2w s

(a) Star Neighborhood Structure (b) Ring Neighborhood Structure

Focal particle

{c) Wheel Neighborhood Structure

Fig. 2. Neighborhood structures for PSO [4]

PSO-LocalBest has been reported to excel over other topologies when the
maximum velocity is restricted. PESDRQO’s results with and without restricted

velocity reached similar conclusions noted by Franken and Engelbretch [7], thus,
PESDRO algorithm incorporates this feature. Figure 3 shows the standard PSO
algorithm adopted for our approach, where X and Xy are the limits of the
search space, and n is the population size. The pseudo-code of LocalBest func-
tion is shown in Figure 4.

Po = Rand(XL, XU)

Fy = Fitness (Py)

PBesto= Py

F Besto= Fy

Do While ijMaxGenerations
LBest; = LocalBest (PBest;, FBest;)
S; = Speed (S;, P;, PBest;, LBest;)
Py =PFP+S;
F;+1 = Fitness (Pt)
Fork=0Ton

< PBestiti1[k], FBestiy1|k] > = Best (FBest;[k], Fi11[k])

End For

End Do

Fig. 3. Pseudo-code of PSO algorithm with local best

Constraint handling is embedded into the selection operator, and described
by “feasibility and dominance” rules. These rules are: 1) given two feasible par-
ticles, pick the non-dominated one; 2) if both particles are infeasible, pick the
particle with the lowest sum of constraint violation, and 3), given a pair of
feasible and infeasible particles, the feasible particle wins.

For k=0Ton
LBest;[k] = Best(FBest;[k — 1], FBest;[k + 1])
End For

Fig. 4. Pseudo-code of LocalBest (P Best;,F Best;)

The speed vector drives the optimization process and reflects the socially ex-
changed information. Figure 5 shows the pseudo-code of Speed function, where
¢l = 0.1, 2 = 1, and w is the inertia weight. The inertia weight controls the
influence of previous velocities on the new velocity.

For k=0Ton
For j =0Tod
rl =cl *U(0, 1)
r2=c2*U(0, 1)
w = U(0.5, 1)
11 * (PBestifk, j] - Pk, 7)) +
r2 * (LBest;[k, j] - Pbest;[k, j])
End For
End For

Fig. 5. Pseudo-code of Speed(S;, P;, PBest;, LBest;)

3.1 Perturbation operators

PESDRO algorithm makes use of two perturbation operators to keep diversity
and exploration. PESDRO has three stages; in first stage the standard PSO
algorithm [6]is performed, then the perturbations are applied in the next two
stages.

The main algorithm of PESDRO is shown in Figure 6.

The goal of the second stage is to add a perturbation in a way similar to the
so called “reproduction operator” found in differential evolution algorithm. This
perturbation, called C-Perturbation, is applied all over the flock to yield a set of
temporal particles Temp. Each member of the Temp set is compared with the
corresponding (father) member of PBest;11, so the perturbed version replaces
the father if it has a better fitness value. Figure 7 shows the pseudo-code of the
C-Perturbation operator.

In the third stage every vector is perturbed again so a particle could be de-
viated from its current direction as responding to external, maybe more promis-
sory, stimuli. This perturbation is performed with some probability on each di-
mension of the particle vector, and can be explained as the addition of random
values to each particle component. The perturbation, called M-Perturbation is
applied to every particle in the current population to yield a set of temporal
particles Temp. Again, as for C-Perturbation, each member of Temp is com-
pared with its corresponding (father) member of the current population, and
the better one wins. Figure 8 shows the pseudo-code of the M-Perturbation
operator. The perturbation is performed with probability p = 1/d, where d is
the dimension of the decision variable vector.

These perturbations, in differential evolution style, have the advantage of
keeping the self-organization potential of the flock as no separate probability
distribution needs to be computed [8]. Zhang and Xie also try to keep the self-
organization potential of the flock by applying mutations (but only) to the par-
ticle best (in their DEPSO system) [9]. In PESDRO, the self-organization is not
broken as the link between father and perturbed version is not lost. Thus, the

Py = Rand(Xz, Xv)
Fy = Fitness (Py)
PBestoz P()
Do While ijMaxGenerations
LBest; = LocalBest (PBest;, F'Best;)
Si; = Speed (Si, P;, PBest;, LBest;)
Pyi=P +S;
Fq;+1 = Fitness (P7;+1)
For k=0 Ton
< PBestit1[k], FBestit1|k] > = Best (FBesti[k], Fi+1[k])
End For
Temp = C — Perturbation (P;1;)
FTemp = Fitness (Temp)
Fork=0Ton
< PBest;t1|k], FBestiti1]k] > = Best (PBest;t+1[k] , FTemp[k])
End For
Temp = M — Perturbation (P;4;)
FTemp = Fitness (Temp)
Fork=0Ton
< PBestit1lk], FBesti+1]k] > = Best (PBestiti1]k] , FTemp[k])
End For
P, =P
End Do

Fig. 6. Main algorithm of PESDRO

perturbation can be applied to the entire flock. Note that these perturbations
are suitable for real-valued function optimization.

3.2 Important aspects of PESDRO

Particle Evolutionary Swarm for Design Reliability Optimization (PESDRO) is
an implementation of PSO to solve the redundancy and reliability allocation
problem. We propose a new method that offers a variety of options to optimize
each component of a system. Several approaches representatives of the state-
of-the-art to solve the redundancy and reliability allocation problem, seek the
optimum by applying only one approach, either redundancy or reliability, to all
system’s components. In this paper, we propose a combined approach for the op-
timization of each component, either by redundancy or by reliability allocation,
but yielding a system with optimum reliability and costs.

Redundancy and diversity techniques are used in redundancy allocation prob-
lem.

— Redundancy: It is a technique that replaces one component by a subsystem
formed by N equal components with a parallel structure. Subsystem’s re-
liability is increased by each component allocated in parallel. Is important

For k=0Ton
For j =0Tod
r=U(0, 1)
pl = Random(n)
p2 = Random(n)
p3 = Random(n)
Templk, j] = Piya[pl, j] + v * (Pita[p2, j] - Piya[p3, 5])
End For
End For

Fig. 7. Pseudo-code of C — Perturbation(P;;)

For k=0Ton
For j =0Tod
r=U(0, 1)
If r <1/d Then
Templk, j] = Rand(LI, LS)
Else
Temp[ka .]] = P¢+1[k7]]
End For
End For

Fig. 8. Pseudo-code of M — Perturbation(P;;)

to mention that there is only one supplier for the component, therefore, a
subsystem is conformed by n components with same reliability, cost and
weight.

— Diversity: One component has several suppliers but it is not limited to choose
only one. Instead, it is free to build a subsystem of N components with
parallel structure, whose components come from different suppliers.

Reliability allocation problem could be solved by using the technique pro-
posed in this paper, called distribution optimization.

— Distribution Optimization: The goal is to increase the component’s reliability
until a expected or required value is met. Component’s cost is a predefined
increasing function of the component reliability.

9(Ri) = a[AR(1)] (11)
AR;(t) = RFi(t) — RI;(t) (12)
When the reliability function is independent of the time, a constant reliability

value is used as the initial reliability RI;(t); and the final reliability RF;(t)
is used to improve the reliability component until its desired value.

But, if the reliability function of the component is dependent of the time,
then when a final reliability value RF;(t) is reached, we must find the optimal
distribution parameters such that the distribution yields that value. We try
to find the set of distribution parameters that minimize the distance with
respect to the original distribution parameters, and yields a final reliability
value RF;(t).

For instance, in Figure 9, an initial reliability value is at Weibull(aw = 70, 8 =
2) that yields a reliability equal to RI(50) = 0.60, but the new parameters
a, f must be determined for the yielded reliability curve RF(50) = 0.77.
There are two main cases that may occur. In the first case, the distribution
function has only one parameter, then the relation is one-one between the re-
liability function and its parameter; also there is one and only one parameter
value that yields the desire reliability at time ¢ = 50.

o=
S
RF{50)=0.77
o |
=33
L
ee]
o
Ve
= s -~
RI(50) l].ﬁl](‘ -
2- “---———- -
(70,2)
=
w
T T T T T
1 2 3 4)

Fig. 9. Finding optimal distribution parameters.

In the second case, the number of distribution parameters is at least two,
p > 2, then there are an infinity distribution parameters set that yields the
same reliability value. For this case, we can find the new distribution pa-
rameters set that has the minimum distance with respect to the original dis-
tribution parameters, and even standardize the distance of each parameter.
Also, we can change only one parameter and set the other p — 1 distribution
parameters, then the first case appears.

Starting off from the mentioned techniques, a design optimization tool could
be created to simultaneously solve both redundancy and reliability allocation
problems. In PESDRO, we assign a sub-population to each component.

4 Experiments

PESDRO was evaluated using three well-known problems, the first two problems
are of type P1, and the third one is type P2. The results are contrasted against
a Genetic Algorithm, an Ant Colony System, and Tabu Search. The problems
are explained next.

1. Test case 1: The first test problem was originally proposed by Fyffe, Hines
and Lee in 1968 [10] and modified by Nakagawa and Miyazaki in 1981 [11].
Fyffe, Hines and Lee specified a system with 14 subsystems. For each sub-
system, there are three or four component options. Component cost, weight
and reliability are provided in Table 1. The objective is to maximize system
reliability given constraints limits of 130 units of system cost, 170 units of
system weight. The maximum number of components within a subsystem
has been defined to be six (Nmes,i = 6). Results are show in Table 4 and the
analysis is presented in Section 5.1.

S1 Ss S3 Sa
i| Rin Cin Wi| Riz Ci2 Wizl Riz Cis Wiz| R Cia Wiy
1| 090 $1 3 0.93 $1 4 0.91 $2 2 0.95 $2 5
2| 0.95 $2 8 0.94 $1 10| 0.93 $1 9
3| 0.85 $2 7 0.90 $3 5 0.87 $1 6 0.92 %4 4
4| 0.83 $3 5 0.87 $4 6 0.85 $5 4
5| 094 $2 4 0.93 $2 3 0.95 $3 5
6| 0.99 $3 5 0.98 $3 4 0.97 $2 5 0.96 $2 4
71 091 $4 7 0.92 %4 8 0.94 $5 9
8| 0.81 $3 4 0.90 $5 7 091 $6 6
9| 0.97 $2 8 0.99 $3 9 0.96 $4 7 0.91 $3 8
10| 0.83 $4 6 0.85 $4 5 0.90 $5 6
11| 0.94 $3 5 0.95 $4 6 0.96 $5 6
12| 0.79 $2 4 0.82 $3 5 0.85 $4 6 0.90 $5 7
13| 0.98 $2 5 0.99 $3 5 0.97 $2 6
14| 0.90 $4 6 0.92 $4 7 0.95 $5 6 0.99 $6 9

Table 1. Component’s data for Test case 1

2. Test case 2: Coit and Liu in 2000 [12] proposed a system made of 14 k-
out-of-n subsystems with k; € {1,2,3}. The problem is a modified version
of the original problem proposed by Fyffe, Hines and Lee [10] and modified

by Nakagawa and Miyazaki [11]. For each subsystem, there are three or four
component options. Component cost, weight and exponential distribution
parameter ();;) are given in Table 2. The objective is to maximize system
reliability at a time of 100 hours given constraints limits of 130 units of sys-
tem cost, 170 units of system weight. The maximum number of components
within a subsystem has been defined to be six (npmqz,; = 6). Results are show
in Table 5 and the analysis is presented in Section 5.2.

S1 Sa Ss Sa
ilki| A Cix Wir| a2 Cia Wia | Aig Ciz Wiz| s Cia W;
1[1]0.001054 $1 3] 0.000726 $1 4 10.000943 $2 210.000513 $2 5
2(2]0.000513 $2 8(0.000619 $1 10| 0.000726 $1 9
3|1]0.001625 $2 7| 0.001054 $3 5 [0.001393 $1 60.000834 $4 4
4(2]0.001863 $3 5| 0.001393 $4 6 [0.001625 $5 4
5(1(0.000619 $2 4| 0.000726 $2 3 |0.000513 $3 5
6 |2]0.000101 $3 5| 0.000202 $3 4 10.000305 $2 510.000408 $2 4
711]0.000943 $4 7| 0.000834 $4 8 [0.000619 $5 9
8(2]0.002107 $3 4| 0.001054 $5 7 10.000943 $6 6
9 (3]0.000305 $2 8| 0.000101 $3 9 [0.000408 $4 710.000943 $3 8
10| 3 (0.001863 $4 6| 0.001625 $4 5 [0.001054 $5 6
11| 3| 0.000619 $3 5| 0.000513 $4 6 |0.000408 $5 6
12|1{0.002357 $2 4] 0.001985 $3 5 [0.001625 $4 60.001054 $5 7
13| 2 {0.000202 $2 5| 0.000101 $3 5 1 0.000305 $2 6
14| 3 (0.001054 $4 6| 0.000834 $4 7 10.000513 $5 60.000101 $6 9

Table 2. Component’s data for Test case 2

3. Test case 3: Coit and Smith in 1996 [13] proposed a system made of 2
k-out-of-n subsystems with k; = 4 and ky = 2. For each subsystem, there
are ten component options. Component cost, weight and reliability are given
in Table 3. The objective is to minimize system cost given constraints limits
of 650 units of system weight and 0.975 units of system reliability. The
maximum number of components within a subsystem has been defined to be
eight (Nmaz,i = 8). Results are show in Table 6 and the analysis is presented
in section 5.3.

5 Comparison of Results

Because of the stochastic nature of PESDRO, 30 trials with 100 particles were
performed. The best solution of each run is stored and later used to compute
the statistics. PESDRO was compared to other algorithms used to solve the
experiments explained in Section 4 (information regarding experiment conditions
of other authors are not available as to perform an exact comparison).

5.1 Test case 1

For this test, 30 runs with 3333 generations each were performed. Table 4
presents the corresponding results from the Ant Colony System of Liang and

i 1(k1=4) 2 (k2=2)

Ri; Ciy Wi Ryy Co Whay
S1| 0.981 $95 52| 0.931 $137 83
S2| 0.933 $86 94| 0.917 $132 96
S3| 0.730 $80 32| 0.885 $127 94
S4| 0.720 $75 92| 0.857 $122 93
S5| 0.708 $61 41| 0.836 $100 95
S6| 0.699 $45 33|0.811 $59 63
S7| 0.655 $40 98 |0.612 $54 65
S8| 0.622 $36 96 |0.432 341 49
S9| 0.604 $31 83|0.389 $36 33
S10| 0.352 $26 66 |0.339 $30 51

Table 3. Component’s data for Test case 3

Smith (1999) [14], where 10 runs of the algorithm were performed. Also shown
are the results of the TSRAP algorithm of Kulture-Konak, Smith and Coit (2003)
[15] (10 trials of the algorithm were performed).

Reliability|AS 10 runs|TSRAP 10 runs|PESDRO 30 runs
Maximum| 0.963510 0.970760 0.966950

Minimum | 0.959090 0.952045
Average | 0.962160 - 0.960001
Std. Dev. | 0.001790 0.000490 0.003677

Table 4. Test case 1: A comparison of AS [14], TSRAP [15] and PESDRO

5.2 Test case 2

For this test problem, 30 runs with 3333 generations each were performed . Table
5 presents the corresponding results from TSRAP of Kulture-Konak, Smith and
Coit (2003) [15] (10 trials of the algorithm were performed).

Reliability| TSRAP 10 runs| PESDRO 30 runs
Maximum 0.413450 0.403942
Minimum - 0.341003
Average - 0.370370
Std. Dev. 0.002625 0.015551

Table 5. Test case 2: A comparison of TSRAP [15] and PESDRO

5.3 Test case 3

For this last problem, 30 runs with 1666 generations each were performed. Table
6 presents the corresponding results from TSRAP algorithm of Kulture-Konak,
Smith and Coit (2003) [15], where 20 trials of the algorithm were performed.
Also shown are the results of the Genetic Algorithm of Coit and Smith (1996)
[13](20 trials of the algorithm were performed).

Cost |GA 20 runs|TSRAP 20 runs|PESDRO 30 runs
Minimum| $727.00 $727.00 $727.00
Maximum - - $728.00

Average | $727.25 $727.80 $727.27
Std. Dev. - - 0.449776

Table 6. Test 3: A comparison of the GA [13], TSRAP [15] and PESDRO

The results of PESDRO in the first two test problems are close to the
TSRAP’s results. For the last test problem, the results of PESDRO are competi-
tive with the results of the TSRAP and the GA. PESDRO algorithm has a good
performance because it works in two steps. First, PESDRO quickly finds feasible
solutions by means of the perturbation operators (coarse search). At the same
time, those operators help the algorithm to avoid stagnation at local optima.
When a feasible solution is near the optimal, the search is mainly driven by the
standard PSO operators, thus performing a fine search.

6 Conclusions and Future Work

In this paper a PSO approach was described and applied to the optimal design
of redundancy and reliability allocation problems. PESDRO was demonstrated
in three test problems with competitive results. A new technique is propose to
solve reliability allocation problem. There are many applications for Distribution
Optimization in system reliability optimization [16]. PESDRO provided results
competitive with TSRAP in all problems, it is better than Ant System in Test
problem 1, and in the average is better than TSRAP in problem 3. The proposed
system can deal with 4 different probability distributions, and any combination
of parallel, series, and K-out-of-N subsystems. This ability makes the system
applicable to a broad kind of problems; this feature is not found in the other
reviewed approaches: TSRAP, AS, or GA. Thus, the trade-off between general-
ization and specialization must be considered before any analysis of the results.

References

10.

11.

12.

13.

14.

15.

16.

. Kuo,W., Prasad,R.: An Annotated Overview of System Reliability Optimization.

IEEE Transactions on Reliability, Vol. 49(2) (June 2000) 176-187.

. Kennedy,J., Eberhart,R.: Particle Swarm Optimization. Proceedings of the IEEE

International Conference On Neural Networks, Vol. 4 (1995) 1942-1948.
Chern,M.: On the Computational Complexity of Reliability Redundancy Alloca-
tion in a Series System. Operations Research Letters, Vol. 11 (1992) 309-315.
Kennedy,J.: Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. IEEE Congress on Evolutionary Computation, Vol.
3 (1999) 1931-1938.

Eberhart,R., Dobbins,R., Simpson,P.: Computational Intelligence PC Tools. Aca-
demic Press, (1996).

Kennedy,J., Eberhart,R.: The Particle Swarm: Social Adaptation in Information-
Processing Systems. New Ideas in Optimization, McGraw-Hill (1999) 379-387.
Franken, N. and Andries P. Engelbrecht. Comparing PSO structures to learn the
game of checkers from zero knowledge. In Proceedings of the Congress on Evolu-
tionary Computation 2008 (CEC’2003), Canberra, Australia, (2003) Vol. 1, pages
234-241

Storn, R. Sytem Design by Constraint Adaptation and Differential Evolution. IEEE
Trans. on Evolutionary Computation, 1999, Vol. 3, No. 1, pp. 22 - 34

Zhang, W J., Xie XF. DEPSO: Hybrid Particle Swarm with Differential Evolution
Operator. In Proceedings of IEEE International Conference on Systems, Man and
Cybernetics, Washington D.C., USA, (2003) 3816-3821

Fyffe,D., Hines,W., Lee,N.: System reliability allocation and a computational al-
gorithm. IEEE Transactions on Reliability, Vol. 17 (1968) 74-79.

Nakagawa,Y., Miyazaki,S.: Surrogate Constraints Algorithm for Reliability Opti-
mization Problems with Two Constraints. IEEE Transactions on Reliability, Vol.
30 (1981) 175-180.

Coit,D., Liu,J.: System Reliability Optimization with k-out-of-n Subsystems. In-
ternational Journal of Reliability, Quality and Safety Engineering, Vol. 7(2) (2000)
129-143.

Coit,D., Smith,A.: Reliability Optimization of Series - Parallel Systems Using a
Genetic Algorithm. IEEE Transactions on Reliability, Vol. 45(2) (1996) 254-260.
Liang,Y., Smith,A.: An Ant System Approach to Redundancy Allocation. Proceed-
ing of the 1999 Congress on Ewvolutionary Computation, IEEE, Piscataway,N.y.,
(1999) 1478-1482.

Kulturel-Konak,S., Smith,A., Coit,D.: Efficiently Solving the Redundancy Alloca-
tion Problem Using Tabu Search. IIE Transactions, Vol. 35 (2003) 515-526.
Angel E. Muiioz Zavala. Optimal Design for Reliability. Master Thesis in Computer
Science and Industrial Mathematics, Center for Research in Mathematics, 2004

