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Abstract:  An algorithm for solving multi objective 


optimization problems is presented based on PSO 


through the improvement of the selection manner for 


global and individual extremum. The search for the 


Pareto Optimal Set of multi objective optimization 


problems is performed. Numerical simulations show 


the effectiveness of the proposed algorithm. 
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1 Introduction 


There are many multi objective optimization problems in 


production practice, engineering design, social production 


and economic development, such as production process 


control, design of complex software and hardware 


systems, analysis of social and economic benefits and so 


on. Therefore, it is of great importance to study the multi 


objective optimization problem. 


The multi objective optimization problem can be 


expressed as follows: 
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where 
mRx is the decision vector, 


nRy  the 


objective vector, ),,2,1( nixf i  the  objective 


functions, and 0xjg  the system constraints. 


In most cases, the objective functions may conflict 


with each other. This may cause some multi objective 


optimization problems not to have the unique best global 


solution. The solution can make all objective functions be 


the optimum at the same time. However, there exists a 


solution that can not be further optimized for one or 


several objective functions and cannot be further 


worsened for other objective functions. This solution is 


called Pareto Optimal. 


Definition 1:  Let x be a point in the search space, 


it is a Pareto Optimal iff there doesn't exist i (in the search 


space) which makes xfxf ii hold.


Definition 2: The set composed of all the Pareto 


Optimal is called Pareto Optimal Set, and is also called 


Acceptable Set or Effective Set. 


The objective vectors corresponding Pareto Optimal 


are called non-dominator objective vectors. All the 


non-dominator objective vectors make up Pareto Front of 


a multi objective problem. 


Because there is no unique global best solution in the 


multi objective problem, to find a solution for the multi 


objective problem is to find a set of solutions (Pareto 


Optimal Set) [1]. Traditional multi objective optimization 


is settled by turning the multi objective problem into 


single objective problem through weighted sum. However, 


this method requires a priori knowledge of the problem 


itself, so it can not solve real multi objective problems. 


Evolutionary Algorithm is a computer technique based on 


population, which can search for several solutions in the 


solution space and can improve the efficiency of working 


out solutions through the similarity of different solutions. 


Therefore, Evolutionary Algorithms are very suitable for 


solving multi objective optimization problems. Schaffer 


studied multi objective optimization problems using 


vector evaluated genetic algorithms in 1980’s [2]. In 


recent years many evolutionary algorithms used to solve 


multi objective optimization problems have been 


proposed and successfully applied to multi objective 


optimization problems [3]. 


Particle Swarm Optimization (PSO) is an


optimization algorithm proposed by Kennedy and 


Eberhart in 1995 [4, 5]. It is easy to be understood and 


realized and has been applied in many optimization 


problems [6-9]. The PSO is more effective than 


traditional algorithms in most cases. The application of  


PSO in the  multi objective optimization problems could
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be very promising. This paper proposes a PSO method 


applied to solving multi objective optimization problems. 


Satisfactory results through numerical experiments are 


obtained. 


2 Particle Swarm Optimization


PSO originated from the research of food hunting 


behaviors of birds. Researchers found that in the course 


of flight flocks of birds would always suddenly change 


direction, scatter and gather. Their behaviors are 


unpredictable but always consistent as a whole, with 


individuals keeping the most suitable distance. Through 


the research of the behaviors of similar biological 


communities, it is found that there exists a social 


information sharing mechanism in biological 


communities. This mechanism provides an advantage for 


the evolution of biological communities, and provides the 


basis for the formation of PSO. 


Every swarm of PSO is a solution in the solution 


space. It adjusts its flight according to its own and its 


companion’s flying experience. The best position in the 


course of flight of each swarm is the best solution that is 


found by the swarm. The best position of the whole flock 


is the best solution, which is found by the flock. The 


former is called pBest, and the latter is called gBest.


Every swarm continuously updates itself through the 


above mentioned best solution. Thus a new generation of 


community comes into being. In the practical operation, 


the fitness function, which is determined by the 


optimization problem, assesses the extent to which the 


swarm is good or bad.


Obviously, each swarm of PSO can be considered as 


a point in the solution space. If the scale of swarm is N,


then the position of the i-th Ni ,2,1 particle is 


expressed as iX . The “best” position passed by the 


particle is expressed as ipBest . The speed is expressed 


with iV . The index of the position of the “best” particle of 


the swarm is expressed with g. Therefore, swarm i will 


update its own speed and position according to the 


following equations [4, 5, 9]: 
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where c1 and c2 are two positive constants, rand() and 


Rand() are two random numbers within the range [0,1], 


and w is the inertia weight. The equations consist of three 


parts. The first part is the former speed of the swarm, 


which shows the present state of the swarm; the second 


part is the cognition modal, which expresses the thought 


of the swarm itself; the third part is the social modal. The 


three parts together determine the space searching ability. 


The first part has the ability to balance the whole and 


search a local part. The second part causes the swarm to 


have a strong ability to search the whole and avoid local 


minimum. The third part reflects the information sharing 


among the swarms. Under the influence of the three parts, 


the swarm can reach an effective and best position.


In addition, the swarm is limited by maxV  when it is 


adjusting its own position according to the speed. The 


speed iV  is set to be maxV  when iV  exceeds maxV .


3 Multi Objective PSO 


3.1 Introduction of the algorithms


The successful application of PSO in many single 


objective optimization problems reflects the effectiveness 


of PSO. However, PSO can not be immediately applied to 


multi objective optimization problems, because there are 


essential distinctions between multiple and single 


objective optimization problems. First, the former is the 


set of one group or several groups of solutions, while the 


latter is only single solution or a group of series of 


solutions. In addition, the successful application of 


genetic algorithms in multi objective optimization 


problems and the similarity between PSO and genetic 


algorithms reflects that PSO is likely a method to deal 


with multi objective optimization problems. However, 


there is a great distinction between PSO and genetic 


algorithms. In genetic algorithms, chromosomes share the 


information, which causes the whole community moves 


gradually into a better area, while in PSO the information 


is sent out by the best particle which is followed by other 


individuals to quickly converge to a point. Therefore, it 


may easily cause the swarms to converge to the local area 


of Pareto Front if the PSO is applied directly to multi 


objective optimization problems.  


In view of the above-mentioned reasons, this paper 


proposes the PSO assessed and chosen by the best 


solution and applied it to the search of Pareto Optimal Set 


Fig. 1. Objective function space 







in multi objective optimization problems. First, the 


algorithm initializes a particle swarm in the dominant


vectors space. Then, the PSO directs the flight of swarm 


in the dominant vectors space together with each 


objective function in multi objective optimization 


problems, which causes the swarm to fall into the Pareto 


Optimal Set. Reflected in the space of objective function, 


the swarm will fall into Pareto Front. As illustrated in 


Figure 1, it is the situation of the space of objective 


function when minimize 1 xf  and xf 2 . If there is


only one objective function 1 xf or xf 2 , the 


objective vector A would change in the direction of v1 or 


v2. However, in the algorithm both objective functions 


1 xf and xf 2  are in the dominant vector space and 


direct the change of A. Therefore, the possible change of 


the vector A is neither in the direction of v1 nor in the 


direction of v2. The vector A changes in a certain direction 


between v1 and v2 when 1 xf and xf 2  don’t 


increase at the same time, and finally reaches the Pareto 


Front. The algorithm is performed as follows: First, find 


out the global best solution gBest[i] Ni ,2,1


and the best individual solution pBest[i,j] 


Nj ,2,1  in each swarm using each objective 


function in the multi objective optimization problems. 


The variables corresponding to each gBest[i] in the 


dominant vector space make up an area called quasi- 


solution area. When the speed of each swarm is updated, 


the “average” of each gBest[i] is used as the best global 


solution gBest. Each particle’s pBest[i,j] is determined 


through judging the dispersed degree of vectors pBest[i,j ] 


and gBest[i] to choose the “average” of the pBest[i,j] or


choose randomly in the pBest[i,j].  In addition, when the 


position of each particle is updated, it should be decided 


whether the position of each particle is within the quasi- 


solution area. If it is then remain the original value, 


otherwise update the current value.  


3.2 Analysis of the algorithm 


In the PSO the behavior of each swarm is decided mainly 


by gBest and pBest, so the method proposed in this paper 


makes the behavior quite different when each swarm 


moves to the solution. That is to say, each swarm moves 


to different solutions in the area of solutions. Thus, the 


whole group would be scattered finally into the Pareto 


Optimal Set, which avoids the whole group scattering into 


the local area of the Pareto Optimal Set. It is important 


that the assessment and selection of gBest reflects the 


restrictions among each objective function while avoiding 


all individuals falling into the best position of a certain 


objective function. The selection method of pBest


especially strengthens this conduct. The renewal method 


of the selection of the swarms not only assures the 


swarms gather at the best solution as possible as they 


could, but also causes each swarm to have enough search 


ability with freedom, thus avoiding local area. 


Figure 2 shows the situation of the dominant vector


space after a certain cycle when minimizing 


1 xf and xf 2 . X1 and X2 are the best solutions


gBest[1] and gBest[2] to the objective functions xf1


and xf 2 , respectively. Corresponding to X1 and X2


the objective vectors in the space of objective functions 


are B1 and B2. (Refer to Figure 1). According to the 


algorithm gBest is obtained through the assessment and 


the selection of gBest[1] and gBest[2]. Its corresponding 


solution must be X between X1 and X2 (Refer to Figure 2). 


C is corresponding to the objective vector of X in the 


space of objective functions. Obviously, C is much nearer 


to the Pareto Front than B1 and B2. This also illustrates 


that using X(gBest) is better than using gBest[1] or 


gBest[2]. The best solution gBest can be obtained by 


using the following equation: 
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where i is the i-th iteration and n is the total iteration 


times. Eq. (2) causes the value of gBest to change 


gradually into gBest[2] from gBest[1] during the iteration. 


In each iteration, Eq. (2) causes gBest[2] and gBest[1] to 


have influence on gBest with different extent. Therefore, 


Eq. (2) not only reflects the mutual restriction of the two 


objective functions, but also results in the solution 


approaching the Pareto Front.  


Compared with the standard PSO, this paper has 


made some improvement on the best global solution and 


the best individual solution of particles. 


3.3 The execution of the algorithm 


The execution of the proposed algorithm is introduced 


using a two-objective optimization problem. Let’s 


consider the minimization of xf1  and xf2 .


(1) Initialize the particle swarm: Designate the 


Fig. 2. Dominant vector space 







population size N, generate speed iV  and position iX of


each particle randomly. 


(2) Evaluate the fitness of each particle: Obtain 


Fitness1[ i ] and Fitness2[ i ] by using the two objective 


functions xf1  and xf2 .


(3) Calculate the best individual solutions pBest1[ i ] 


and pBest2[ i ]. 


(4) Calculate the best global solutions gBest[1] and 


gBest[2]. 


(5) Calculate the “average” of the two best global 


solutions gBest and their distances dgBest


(a) Evaluate gBest from gBest[1] and gBest[2]. 


(b) Evaluate the distance dgBest between 


gBest[1] and gBest[2]. 


(6) Calculate the distance dpBest[i] between 


pBest[1,i] and pBest[2,i]  


(7) Calculate the best individual solution pBest[i], 


which is used to update the speed v[i] and position x[i] of 


each particle: 


If (dpBest [i]< dgBest) 


Choose pBest[i] randomly between pBest[1,i] 


and pBest[2,i], 


Else


Evaluate pBest[i] using Eq. (2). 


(8) Update the speed v[i] of each particle using 


gBest and pBest[i]


(9) Judge whether the position x[i] is in the quasi- 


solution area. If it is then remain the original value, 


otherwise perform the update.  


(10) If the termination condition is achieved then 


stop, otherwise go to step (2)


4 Numerical Simulations 


Four test functions are used here to perform the numerical 


experiments. Test function 1 was proposed by Schaffer in 


reference [2], which is used to test the effectiveness of 


algorithms in most multi objective optimization problems. 


Test functions 2- 4 were used in references [10] and [11]. 


The parameters of the PSO are that: learning rate c1 = c2


=0.5, inertia weight is taken from 0.8 to 0.4 with a linear 


decreasing rate. The maximum velocity maxV  is taken as 


the dynamic range of the particle in each iteration.  


The test functions and the simulation results are 


listed as follows. 


(1) Test function 1 
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The Pareto curve is shown in Fig. 3. In the 


simulation, 100 particles and 100 iterations are used and 


100 non-dominated solutions are obtained. 


(2) Test function 2 
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The Pareto curve is shown in Fig. 4. In the 


simulation, 100 particles and 100 iterations are used and 


100 non-dominated solutions are obtained. 


(3) Test function 3 
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Fig. 3. Pareto curve of test function 1. 


Fig. 4. Pareto curve of test function 2. 







The Pareto curve is shown in Fig. 5. In the 


simulation, 100 particles and 100 iterations are used and 


90 non-dominated solutions are obtained. 


(4) Test function 4 
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The Pareto curve is shown in Fig. 6. In the 


simulation, 200 particles and 200 iterations are used and 


130 non-dominated solutions are obtained. 


In the objective functions space, the Pareto Front is 


the boundary of the fitness area, that is, the availability 


interface. As for the minimum two-dimensional cases in 


the experiment, the availability interface should be the 


left boundary on the bottom of fitness. From Figs. 3-6 it 


can be seen that all the test functions provide the exact 


availability interface. As for the test functions 1 and 2 


(Refer to Figs. 3 and 4), the complete Pareto curve is 


obtained and the objective vectors distribute correctly and 


uniformly in the availability interface. For test functions 3 


and 4, especially, for function 4, the optimization problem 


is difficult. The Pareto curve obtained using the proposed 


algorithm is comparatively correct, and the objective 


vector distributes evenly. From Figs. 5 and 6 it can be 


seen that although some individuals diverge a little from 


the availability interface, the results provide valuable 


references to the practical decision-maker in multi 


objective optimization problems. Numerical simulations 


show that the proposed algorithm is very effective to deal 


with the multi objective optimization problems. 


The comparison between the test results obtained in 


this paper and those from references [10] and [11] shows 


the effectiveness of the proposed algorithm. Lis and 


Eiben proposed an algorithm for solving multi objective 


optimization problems using multi-sexual genetic 


algorithm and presented test results [10]. Deb and Thiele 


analysed and compared some multi objective 


evolutionary algorithms, and presented the test results 


[11]. The results of reference [11] show that the SPEA 


(Strength Pareto Evolutionary Algorithm ) is the best 


method among the examined algorithms. Our simulations 


show that the test results obtained in this paper are as 


good as those by using the SPEA. Note that the choice of 


the population size in [10] and [11] influences the 


effectiveness of the algorithms strongly, i.e., it needs 


enough population size to enable the iterations to 


converge towards the Pareto front in references [10] and 


[11]. Whereas, it is not the case in the proposed algorithm. 


Only a small population size is needed to obtain the 


desired results. In addition, the proposed algorithm can be 


understood and performed easily because there is no 


operations such as "crossover" and "mutation" used in 


other evolutionary algorithms solving multi-objection 


problems.  


5 Conclusions


Compared with the standard PSO, the proposed 


algorithm to handle multi objective optimization 


problems has different selection manner for the best 


global solution and best individual solution. Numerical 


experiments indicate the effectiveness of the algorithm. 


The comparison with the results of references [10] and 


[11] shows that the proposed algorithm possesses good 


performance. The correct form of Pareto curve for the 


comparatively difficult problem can also be obtained and 


most individuals can fall into the Pareto Optimal Set by 


using the proposed algorithm. 


Fig. 5. Pareto curve of test function 3. 


Fig. 6. Pareto curve of test function 4. 
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