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Abstract:  An algorithm for solving multi objective 

optimization problems is presented based on PSO 

through the improvement of the selection manner for 

global and individual extremum. The search for the 

Pareto Optimal Set of multi objective optimization 

problems is performed. Numerical simulations show 

the effectiveness of the proposed algorithm. 
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1 Introduction 

There are many multi objective optimization problems in 

production practice, engineering design, social production 

and economic development, such as production process 

control, design of complex software and hardware 

systems, analysis of social and economic benefits and so 

on. Therefore, it is of great importance to study the multi 

objective optimization problem. 

The multi objective optimization problem can be 

expressed as follows: 
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where 
mRx is the decision vector, 

nRy  the 

objective vector, ),,2,1( nixf i  the  objective 

functions, and 0xjg  the system constraints. 

In most cases, the objective functions may conflict 

with each other. This may cause some multi objective 

optimization problems not to have the unique best global 

solution. The solution can make all objective functions be 

the optimum at the same time. However, there exists a 

solution that can not be further optimized for one or 

several objective functions and cannot be further 

worsened for other objective functions. This solution is 

called Pareto Optimal. 

Definition 1:  Let x be a point in the search space, 

it is a Pareto Optimal iff there doesn't exist i (in the search 

space) which makes xfxf ii hold.

Definition 2: The set composed of all the Pareto 

Optimal is called Pareto Optimal Set, and is also called 

Acceptable Set or Effective Set. 

The objective vectors corresponding Pareto Optimal 

are called non-dominator objective vectors. All the 

non-dominator objective vectors make up Pareto Front of 

a multi objective problem. 

Because there is no unique global best solution in the 

multi objective problem, to find a solution for the multi 

objective problem is to find a set of solutions (Pareto 

Optimal Set) [1]. Traditional multi objective optimization 

is settled by turning the multi objective problem into 

single objective problem through weighted sum. However, 

this method requires a priori knowledge of the problem 

itself, so it can not solve real multi objective problems. 

Evolutionary Algorithm is a computer technique based on 

population, which can search for several solutions in the 

solution space and can improve the efficiency of working 

out solutions through the similarity of different solutions. 

Therefore, Evolutionary Algorithms are very suitable for 

solving multi objective optimization problems. Schaffer 

studied multi objective optimization problems using 

vector evaluated genetic algorithms in 1980’s [2]. In 

recent years many evolutionary algorithms used to solve 

multi objective optimization problems have been 

proposed and successfully applied to multi objective 

optimization problems [3]. 

Particle Swarm Optimization (PSO) is an

optimization algorithm proposed by Kennedy and 

Eberhart in 1995 [4, 5]. It is easy to be understood and 

realized and has been applied in many optimization 

problems [6-9]. The PSO is more effective than 

traditional algorithms in most cases. The application of  

PSO in the  multi objective optimization problems could
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be very promising. This paper proposes a PSO method 

applied to solving multi objective optimization problems. 

Satisfactory results through numerical experiments are 

obtained. 

2 Particle Swarm Optimization

PSO originated from the research of food hunting 

behaviors of birds. Researchers found that in the course 

of flight flocks of birds would always suddenly change 

direction, scatter and gather. Their behaviors are 

unpredictable but always consistent as a whole, with 

individuals keeping the most suitable distance. Through 

the research of the behaviors of similar biological 

communities, it is found that there exists a social 

information sharing mechanism in biological 

communities. This mechanism provides an advantage for 

the evolution of biological communities, and provides the 

basis for the formation of PSO. 

Every swarm of PSO is a solution in the solution 

space. It adjusts its flight according to its own and its 

companion’s flying experience. The best position in the 

course of flight of each swarm is the best solution that is 

found by the swarm. The best position of the whole flock 

is the best solution, which is found by the flock. The 

former is called pBest, and the latter is called gBest.

Every swarm continuously updates itself through the 

above mentioned best solution. Thus a new generation of 

community comes into being. In the practical operation, 

the fitness function, which is determined by the 

optimization problem, assesses the extent to which the 

swarm is good or bad.

Obviously, each swarm of PSO can be considered as 

a point in the solution space. If the scale of swarm is N,

then the position of the i-th Ni ,2,1 particle is 

expressed as iX . The “best” position passed by the 

particle is expressed as ipBest . The speed is expressed 

with iV . The index of the position of the “best” particle of 

the swarm is expressed with g. Therefore, swarm i will 

update its own speed and position according to the 

following equations [4, 5, 9]: 
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where c1 and c2 are two positive constants, rand() and 

Rand() are two random numbers within the range [0,1], 

and w is the inertia weight. The equations consist of three 

parts. The first part is the former speed of the swarm, 

which shows the present state of the swarm; the second 

part is the cognition modal, which expresses the thought 

of the swarm itself; the third part is the social modal. The 

three parts together determine the space searching ability. 

The first part has the ability to balance the whole and 

search a local part. The second part causes the swarm to 

have a strong ability to search the whole and avoid local 

minimum. The third part reflects the information sharing 

among the swarms. Under the influence of the three parts, 

the swarm can reach an effective and best position.

In addition, the swarm is limited by maxV  when it is 

adjusting its own position according to the speed. The 

speed iV  is set to be maxV  when iV  exceeds maxV .

3 Multi Objective PSO 

3.1 Introduction of the algorithms

The successful application of PSO in many single 

objective optimization problems reflects the effectiveness 

of PSO. However, PSO can not be immediately applied to 

multi objective optimization problems, because there are 

essential distinctions between multiple and single 

objective optimization problems. First, the former is the 

set of one group or several groups of solutions, while the 

latter is only single solution or a group of series of 

solutions. In addition, the successful application of 

genetic algorithms in multi objective optimization 

problems and the similarity between PSO and genetic 

algorithms reflects that PSO is likely a method to deal 

with multi objective optimization problems. However, 

there is a great distinction between PSO and genetic 

algorithms. In genetic algorithms, chromosomes share the 

information, which causes the whole community moves 

gradually into a better area, while in PSO the information 

is sent out by the best particle which is followed by other 

individuals to quickly converge to a point. Therefore, it 

may easily cause the swarms to converge to the local area 

of Pareto Front if the PSO is applied directly to multi 

objective optimization problems.  

In view of the above-mentioned reasons, this paper 

proposes the PSO assessed and chosen by the best 

solution and applied it to the search of Pareto Optimal Set 

Fig. 1. Objective function space 



in multi objective optimization problems. First, the 

algorithm initializes a particle swarm in the dominant

vectors space. Then, the PSO directs the flight of swarm 

in the dominant vectors space together with each 

objective function in multi objective optimization 

problems, which causes the swarm to fall into the Pareto 

Optimal Set. Reflected in the space of objective function, 

the swarm will fall into Pareto Front. As illustrated in 

Figure 1, it is the situation of the space of objective 

function when minimize 1 xf  and xf 2 . If there is

only one objective function 1 xf or xf 2 , the 

objective vector A would change in the direction of v1 or 

v2. However, in the algorithm both objective functions 

1 xf and xf 2  are in the dominant vector space and 

direct the change of A. Therefore, the possible change of 

the vector A is neither in the direction of v1 nor in the 

direction of v2. The vector A changes in a certain direction 

between v1 and v2 when 1 xf and xf 2  don’t 

increase at the same time, and finally reaches the Pareto 

Front. The algorithm is performed as follows: First, find 

out the global best solution gBest[i] Ni ,2,1

and the best individual solution pBest[i,j] 

Nj ,2,1  in each swarm using each objective 

function in the multi objective optimization problems. 

The variables corresponding to each gBest[i] in the 

dominant vector space make up an area called quasi- 

solution area. When the speed of each swarm is updated, 

the “average” of each gBest[i] is used as the best global 

solution gBest. Each particle’s pBest[i,j] is determined 

through judging the dispersed degree of vectors pBest[i,j ] 

and gBest[i] to choose the “average” of the pBest[i,j] or

choose randomly in the pBest[i,j].  In addition, when the 

position of each particle is updated, it should be decided 

whether the position of each particle is within the quasi- 

solution area. If it is then remain the original value, 

otherwise update the current value.  

3.2 Analysis of the algorithm 

In the PSO the behavior of each swarm is decided mainly 

by gBest and pBest, so the method proposed in this paper 

makes the behavior quite different when each swarm 

moves to the solution. That is to say, each swarm moves 

to different solutions in the area of solutions. Thus, the 

whole group would be scattered finally into the Pareto 

Optimal Set, which avoids the whole group scattering into 

the local area of the Pareto Optimal Set. It is important 

that the assessment and selection of gBest reflects the 

restrictions among each objective function while avoiding 

all individuals falling into the best position of a certain 

objective function. The selection method of pBest

especially strengthens this conduct. The renewal method 

of the selection of the swarms not only assures the 

swarms gather at the best solution as possible as they 

could, but also causes each swarm to have enough search 

ability with freedom, thus avoiding local area. 

Figure 2 shows the situation of the dominant vector

space after a certain cycle when minimizing 

1 xf and xf 2 . X1 and X2 are the best solutions

gBest[1] and gBest[2] to the objective functions xf1

and xf 2 , respectively. Corresponding to X1 and X2

the objective vectors in the space of objective functions 

are B1 and B2. (Refer to Figure 1). According to the 

algorithm gBest is obtained through the assessment and 

the selection of gBest[1] and gBest[2]. Its corresponding 

solution must be X between X1 and X2 (Refer to Figure 2). 

C is corresponding to the objective vector of X in the 

space of objective functions. Obviously, C is much nearer 

to the Pareto Front than B1 and B2. This also illustrates 

that using X(gBest) is better than using gBest[1] or 

gBest[2]. The best solution gBest can be obtained by 

using the following equation: 

221 gBest
n

i
gBest

n

in
gBest

where i is the i-th iteration and n is the total iteration 

times. Eq. (2) causes the value of gBest to change 

gradually into gBest[2] from gBest[1] during the iteration. 

In each iteration, Eq. (2) causes gBest[2] and gBest[1] to 

have influence on gBest with different extent. Therefore, 

Eq. (2) not only reflects the mutual restriction of the two 

objective functions, but also results in the solution 

approaching the Pareto Front.  

Compared with the standard PSO, this paper has 

made some improvement on the best global solution and 

the best individual solution of particles. 

3.3 The execution of the algorithm 

The execution of the proposed algorithm is introduced 

using a two-objective optimization problem. Let’s 

consider the minimization of xf1  and xf2 .

(1) Initialize the particle swarm: Designate the 

Fig. 2. Dominant vector space 



population size N, generate speed iV  and position iX of

each particle randomly. 

(2) Evaluate the fitness of each particle: Obtain 

Fitness1[ i ] and Fitness2[ i ] by using the two objective 

functions xf1  and xf2 .

(3) Calculate the best individual solutions pBest1[ i ] 

and pBest2[ i ]. 

(4) Calculate the best global solutions gBest[1] and 

gBest[2]. 

(5) Calculate the “average” of the two best global 

solutions gBest and their distances dgBest

(a) Evaluate gBest from gBest[1] and gBest[2]. 

(b) Evaluate the distance dgBest between 

gBest[1] and gBest[2]. 

(6) Calculate the distance dpBest[i] between 

pBest[1,i] and pBest[2,i]  

(7) Calculate the best individual solution pBest[i], 

which is used to update the speed v[i] and position x[i] of 

each particle: 

If (dpBest [i]< dgBest) 

Choose pBest[i] randomly between pBest[1,i] 

and pBest[2,i], 

Else

Evaluate pBest[i] using Eq. (2). 

(8) Update the speed v[i] of each particle using 

gBest and pBest[i]

(9) Judge whether the position x[i] is in the quasi- 

solution area. If it is then remain the original value, 

otherwise perform the update.  

(10) If the termination condition is achieved then 

stop, otherwise go to step (2)

4 Numerical Simulations 

Four test functions are used here to perform the numerical 

experiments. Test function 1 was proposed by Schaffer in 

reference [2], which is used to test the effectiveness of 

algorithms in most multi objective optimization problems. 

Test functions 2- 4 were used in references [10] and [11]. 

The parameters of the PSO are that: learning rate c1 = c2

=0.5, inertia weight is taken from 0.8 to 0.4 with a linear 

decreasing rate. The maximum velocity maxV  is taken as 

the dynamic range of the particle in each iteration.  

The test functions and the simulation results are 

listed as follows. 

(1) Test function 1 
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The Pareto curve is shown in Fig. 3. In the 

simulation, 100 particles and 100 iterations are used and 

100 non-dominated solutions are obtained. 

(2) Test function 2 
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The Pareto curve is shown in Fig. 4. In the 

simulation, 100 particles and 100 iterations are used and 

100 non-dominated solutions are obtained. 

(3) Test function 3 
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Fig. 3. Pareto curve of test function 1. 

Fig. 4. Pareto curve of test function 2. 



The Pareto curve is shown in Fig. 5. In the 

simulation, 100 particles and 100 iterations are used and 

90 non-dominated solutions are obtained. 

(4) Test function 4 
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The Pareto curve is shown in Fig. 6. In the 

simulation, 200 particles and 200 iterations are used and 

130 non-dominated solutions are obtained. 

In the objective functions space, the Pareto Front is 

the boundary of the fitness area, that is, the availability 

interface. As for the minimum two-dimensional cases in 

the experiment, the availability interface should be the 

left boundary on the bottom of fitness. From Figs. 3-6 it 

can be seen that all the test functions provide the exact 

availability interface. As for the test functions 1 and 2 

(Refer to Figs. 3 and 4), the complete Pareto curve is 

obtained and the objective vectors distribute correctly and 

uniformly in the availability interface. For test functions 3 

and 4, especially, for function 4, the optimization problem 

is difficult. The Pareto curve obtained using the proposed 

algorithm is comparatively correct, and the objective 

vector distributes evenly. From Figs. 5 and 6 it can be 

seen that although some individuals diverge a little from 

the availability interface, the results provide valuable 

references to the practical decision-maker in multi 

objective optimization problems. Numerical simulations 

show that the proposed algorithm is very effective to deal 

with the multi objective optimization problems. 

The comparison between the test results obtained in 

this paper and those from references [10] and [11] shows 

the effectiveness of the proposed algorithm. Lis and 

Eiben proposed an algorithm for solving multi objective 

optimization problems using multi-sexual genetic 

algorithm and presented test results [10]. Deb and Thiele 

analysed and compared some multi objective 

evolutionary algorithms, and presented the test results 

[11]. The results of reference [11] show that the SPEA 

(Strength Pareto Evolutionary Algorithm ) is the best 

method among the examined algorithms. Our simulations 

show that the test results obtained in this paper are as 

good as those by using the SPEA. Note that the choice of 

the population size in [10] and [11] influences the 

effectiveness of the algorithms strongly, i.e., it needs 

enough population size to enable the iterations to 

converge towards the Pareto front in references [10] and 

[11]. Whereas, it is not the case in the proposed algorithm. 

Only a small population size is needed to obtain the 

desired results. In addition, the proposed algorithm can be 

understood and performed easily because there is no 

operations such as "crossover" and "mutation" used in 

other evolutionary algorithms solving multi-objection 

problems.  

5 Conclusions

Compared with the standard PSO, the proposed 

algorithm to handle multi objective optimization 

problems has different selection manner for the best 

global solution and best individual solution. Numerical 

experiments indicate the effectiveness of the algorithm. 

The comparison with the results of references [10] and 

[11] shows that the proposed algorithm possesses good 

performance. The correct form of Pareto curve for the 

comparatively difficult problem can also be obtained and 

most individuals can fall into the Pareto Optimal Set by 

using the proposed algorithm. 

Fig. 5. Pareto curve of test function 3. 

Fig. 6. Pareto curve of test function 4. 
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