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ABSTRACT 

 
Non-elitist Multi-objective Evolutionary Algorithm does not 
guarantee that desirable solutions, once found, remain in the 
generational population until MOEA termination because of the 
EA’s stochastic nature. Elitist MOEA handles this drawback with 
elitism. However the implementation of elitism leaves the user 
with many undetermined parameters; choosing proper 
elite-preserving operators becomes a difficult decision. 
Furthermore, this strategy increases the space and time complexity. 
This paper presents a new MOEA: Steady Elimination 
Evolutionary Algorithm. Through the strategies of steady 
elimination, multi-parent crossover and swarm hill climbing, 
SEEA can preserve elites effectively and instinctively without 
increasing computational complexity, and can get good uniform 
solutions representing the Pareto Front. The simulation 
experiments show that SEEA has some advantages for solving 
Multi-Objective Problems.  
 

1. INTRODUCTION 
 

In recent years, researchers always classify MOEA into two 
categories: no-elitist MOEA and elitist MOEA[6]. Deb holds the 
view that elitist MOEAs outperform no-elitist MOEAs 
significantly [6][4]. But there are many questions not yet 
determined regarding the realization of elitism. Which solutions 
should be kept, and for how long, in the elite set? When and how 
are members of the elite set reinserted into the population? How 
should one choose an appropriate ∂ value [6]? And how should one 
choose good elitist elite-preserving operators? Furthermore elitism 
has an inevitable side effect, that the archive and elitist-preserving 
operators will increase the space and time complexity. 

In this study we present a new MOEA: the Steady Elimination 
Evolutionary Algorithm. By using the steady elimination approach 
and other strategies, MOEA can preserve elites instinctively, and 
get good uniform solutions representing the Pareto Front, without 
using archives or other elite-preserving operators, therefore it 
doesn’t require extra time and space complexity.  
  The paper is structured as follows: section 2 introduces the 
concept and definition of elitism. We then discuss its important 
function in MOEA. In section 3, we present SEEA and discuss its 
new features and advantages. In section 4, we illustrate the power 
of SEEA by some experiments and discuss its efficiency. 

Furthermore, we prove that SEEA realizes elitism instinctively. 
 

2. THE CONCEPT AND FEATURES OF ELITISM 
 

Recently several authors indicated that elitism could improve 
evolutionary multi-objective search significantly [1][4][5][6][10].  

There are various ways to incorporate elitism into MOEA. Most 
algorithms today make use of a second population of elite 
individuals. The Strength Pareto EA (SPEA), for example, stores 
all nondominated solutions separately from the ‘normal’ 
population. Individuals are chosen from the population and the 
nondominated set as recombination partners, while the latter get 
higher selection probabilities. 

Though there are great varieties in the implementation of elitism, 
we can summarize some important features as follows: First, they 
require preserving the best solutions in the population, an archive 
or sub-population. Second, they require consideration of several 
strategies, including the elitism strategy, or how the elitist 
population is updated; the re-insertion strategy, or how elite 
individuals take part in the production of offspring; and the control 
flow, or when archiving and re-insertion take place. Unfortunately, 
particular implementations leave the determination of many 
parameters to the decision makers. They also inevitably increase 
the space and time complexity. Nevertheless, the evidence shows 
that elitism is an important and indispensable factor in EMOO. 

According to Laumanns [10] and Deb [6], elitism means that 
‘elite’ individuals cannot be expelled from the active gene-pool of 
the population in favor of worse individuals. This concept can be 
formalized as follows: 
Definition 1(Elitism) Let Pt denote the population of a given 
evolutionary algorithm EA after t Ν∈ iterations(generations). Let 

)(xp t  denote the probability of individual x∈ Pt being selected 
as an operand for the variation operator in generation t. Then EA 
is said to be elitistic, if and only if for any preference relation �   
given by a decision problem the following condition holds: 

∀ t Ν∈ : ρ∈∃ x t* : 0)(1 >+ xpt  

with  ρ t*  =  { ρ tx ∈ : ρ tx ∈¬∃ ' : xx �
' }, 
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In this definition ρ t  refers to the set of all individuals produced  
so far and ρ t*  to all non-dominated individuals out of ρ t . 
 

3. SEEA 
 

We propose a new approach for Multi-objective Optimization: 
Steady Elimination Evolutionary Algorithm (SEEA) SEEA uses 
the steady elimination strategy: to generate only one new 
individual in each generation. If the new one is better than the 
worst of the current population, the former will supersede the latter. 
We use a multi-parent crossover operator and real-valued encoding 
without a mutation operator. 
 
3.1. The flow of SEEA 
The flow of the algorithm is as follows: 
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metric by using the non-domination principle.  
As far as implementation is concerned, we need to consider the 

computational complexity.   
We suppose that the size of population is N and the number of 

objects is M. We need M*N*(N-1) comparisons for ranking in 
each generation using equation 3.1. So the computational 
complexity is O(N^2). Suppose that the number of individuals 
created in one generation is K(usually K=N). Then on average, a 
new individual needs M*N*(N-1)/ K comparisons for ranking. But 
in SEEA, we generate only one new individual in each generation, 
so that K =1. The times of comparison for each individual will be 
M*N*(N-1) if we calculate ranks using equation 3.1 in every 
generation. It is clear SEEA will consume more time if we use the 
same way of ranking as traditional MOGA. 

We use dominate_list, an N*N dimensions matrix, to record the 
dominative relation of individuals. If individual j dominates 
individual i, then dominate_list[i,j]=1. At the beginning of SEEA 
we initialize dominate_list by equation 3.1. In the later iteration of 
the algorithm, we only update the row and column relevant to the 
newly updated individual. So we need at most 2N comparisons in 
each generation for ranking and the computational complexity 
reduces to O(N). 

Experiments show that these improvements enhance the 
efficiency of the algorithm effectively. It is well known that 
ranking and niching dominate the time performance of MOEA 
execution. Here we use a classic time-space tradeoff, significantly 
improving the time performance while increasing the space 
complexity to some extent, a tradeoff we consider to be profitable 
and reasonable. 

 
3.4. Pareto Niching 
Algorithm 1: 
Step1: t=0, generate an initial population Pt . 
Step2: Calculate rank and nichecount of the individuals

in Pt . 
Step3: Locate bestX and worstX by sorting Pt using

better. 
Step4: Select m individuals randomly from Pt and

create a new individual sonX  by multi-parent
crossover. Calculate the rank and nichecount of

sonX  
Step5: If better ( sonX , worstX ), then sonX  supersede

worstX . 
Step6: If a stopping criterion is satisfied then terminate,

else t=t+1 go to step2.  
etter 
ompare individuals using better rather than assigning fitness 
m in traditional EAs, so that better is the basic motivator of 
olution.   
e return value of better( 1x , 2x ) is Boolean. The flow of the 
ithm is as follows: 
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We use niches to preserve the diversity of the population in order 
to find a uniform distribution of vectors. Here we use phenotypic  
space[3]. We define the normalized distance between two 
solutions i and j in the same rank as follows: 
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  Where max
kf and min

kf are the maximum and minimum 
objective function values of the k-th objective respectively. 

)( i

kf and )( j
kf are the objective function values of i and j. For the 

solution i, d(i,j) is computed for each solution j having the same 
rank. The sharing function value is computed as follows:  
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Algorithm 2: 
Step1: If 1x  dominates 2x , return true, otherwise go

to step2. 
Step2: If 1x .rank< 2x .rank, return true ，

if 1x .rank> 2x .rank, return false, otherwise go
to step3。 

Step3: If 1x .nichecount < 2x .nichecount，return true,
otherwise return false。 
areto ranking 
e the technique proposed by Fonseca and Fleming (1998)[3] 
lculate Pareto rank. A solution x at generation t has a 
ponding objective vector ux . We let t

ur signify the number of 
s associated with the current population dominating ux ; x’s 
s then defined by: 

rank(x,t)= t
ur   (3.1) 

s ensures that all solutions with nondominated vectors 
e rank zero and that the maximum rank won’t be larger than 
 this means, we convert multiple objective values to a ranked 

 .,0 otherwise

shareσ is a maximum phenotypic distance allowed between any 
two individuals to become a member of a niche. Thereafter, the 
niche count of i is calculated by summing the sharing function 
values: 

∑
=

=
N

j
iji dShnc

1
)(       (3.4) 

Similarly to ranking, we also use niche_list to reduce the 
computational complexity of niching. 
 



3.5. Realization of multi-parent crossover 
Definition 2  
V= { }| 1∑ ==∈ M

i ii xaXDX is a subspace of D formed by m points 

xi ( i=1,2,…..,m). 
Where       D is the searching space 

xi D∈ , i=1,2,…..,m 

∑
=

=
m

i
ia

1
1 ,  - 0.5 ≤≤ ai 1.5,  1 ≤ i ≤ m 

  We realize multi-parent crossover by selecting one point 
randomly from V. 
 

4. NEW FEATURES OF SEEA 
 
4.1. Multi-parent crossover  
Guo Tao[7] has discussed the positive features of multi-parent 
crossover. His experiments show that: with a fixed population size, 
the larger m (the number of parents) is, the greater the probability 
of convergence to the optimum. Alternatively, the larger m is, the 
smaller the size of population required to retain the probability of 
convergence to the optimum. These characteristics of multi-parent 
crossing are also exhibited when we use it in SEEA to solve MOP. 
Note that the weight coefficient ai  ranges from – 0.5 to 1.5. This  
implies that V is a nonconvex space, which guarantees that the set 

V *  = V
t

τ

τ
t
≤

(t is the iterations ) can cover the whole search space 

D, when  t ∞→ . The experiments also show that the convergence  
speed of SEEA to the Pareto Front is increased when we accrete m 
properly. 

 
4.2. Steady elimination strategy 
We generate only one new individual and may eliminate at most 
one individual (the worst) in each generation. The selection 
pressure is lower than in most alternative algorithms. 

With MOEA, we want to find a uniform distribution of vectors 
representing (or approximating) Pareto Front in one simulation run. 
Some researchers propose Secondary Population [8][9], archive 
and elitism [4] to solve this problem, such as SPEA, which gets 
the best performance among the current algorithms. But these 
strategies will occupy extra space and time to maintain an archive, 
continually added to and periodically culled of solutions whose 
associated vectors are dominated. 

Our algorithm does not require an archive to preserve elites in 
SEEA, rather it can preserve elites automatically and effectively, 
without increasing the space and time complexity of the algorithm, 
because of its steady elimination strategy. We will discuss this 
issue further in a later section with some experimental results. 

 
4.3. Swarm hill climbing 
If we decrease the population size of Guo’s Algorithm[7] or SEEA 
to one, the algorithm reduces to hill-climbing.. It is a truism that 
hill-climbing algorithm generally converges to local optima, rather 
than finding the global optimum. However, here we use a 
population approach instead of seeking just one solution in each 
iteration. We call it swarm hill climbing; it has completely 

different properties from common hill climbing algorithms.  
Classical beam-based hill climbing fosters independent 

individuals, which probe good solutions in the searching space. If 
an individual reaches a local peak, it faces the same problem as 
single-individual hill climbing, with low probability of escaping 
the local peak. However, swarm hill climbing fosters a group of 
interacting individuals. All individuals climb the hills in parallel. 
They compete with each other (by better) and communicate with 
each other (by multi-parent crossover and better): an individual in 
a local optimum will be eliminated by a newly created individual, 
if it is poor enough compared with other individuals and the new 
one. By this means, each individual has some probability of 
jumping onto another hill if it has not reached the global optimum. 
Because of this, swarm hill climbing is not as subject to premature 
convergence to local optima as the deterministic classical 
algorithms. 

Guo[7] has discussed its effect on single objective optimizations, 
based on some successful experiments. In SEEA, we take the 
advantage of swarm hill climbing to solve multi-objective 
optimization problems. It shows good search abilities in MOP, as 
in SOP.   

 
4.4. New evaluation and selection methods: better 
To design the fitness assignment method for MOEA, one must pay 
attention to two aims:  

(1)Preference to nondominated solutions in a population 
(2)Maintenance of diversity among nondominated solutions [1]. 

This is an inherent two-objective problem in MOEA. There 
are many ways to deal with this task: 

MOGA[3] sorts solutions by rank and assigns fitness via linear 
or exponential interpolation. Then the assigned fitness values are 
divided by the niche count and scaled. This method transforms the 
two objectives (preference to nondominated solutions and 
maintenance of diversity) into one by summing. But it does not 
ensure that a solution in a poorer rank will always have a worse 
scaled fitness than every solution in a better rank. The reverse may 
happen particularly if there exist many crowded solutions with a 
better rank. The niche count for these solutions would be large and 
the resulting shared fitness may be small. If this happens, adequate 
selection pressure may not exist to all solutions in a better rank, 
thereby leading to a slow convergence or inability to find a good 
spread in the Pareto-optimal front. 

In order to avoid this drawback, NSGA use another method [2], 
In this method, no solution in the first front has a shared fitness 
worse than the assigned fitness of any solution in the second front, 
which ensures that the rank pressure has more priority than the 
niche pressure. 

In SEEA, we only need to sort the individuals in the population 
and compare sonX  with worstX . We can make this comparison 
directly without fitness assignment, in order to save the 
expenditure of extra time for this task. Therefore, in SEEA we 
design better to make the comparison rather than assign fitness to 
each individual. During the first step of better, we see if 1x  
dominates 2x . Obviously, if 1x dominates 2x , 1x .rank< 2x .rank. If 

1x does not dominate 2x , we compare their ranks directly in the 
second step. If their ranks are equal, we compare their niche count 
in the third step. By better we can get the same comparison results 
as the results we get by using the NSGA’s fitness assignment 



method. The two methods both make sure that the rank pressure 
has more priority than the niche pressure, while better compares 
the individuals directly, saving the time cost of fitness assignment.    

It is reasonable to give the rank pressure more priority. In the 
initial stage of optimization, we emphasize the extent the solutions 
approach the Pareto Front, rather than their uniformity. In the late 
stage of optimization, the solutions are near to Pareto Front, and 
the ranks of individuals are almost zero so that the rank pressure is 
rather small. In this stage, we mainly make the solution more 
uniform through niche pressure.  
    

5 EXPERIMENTS AND DISCUSSION 
 
5.1. Test functions 

1F  is suggested by Deb [6], who used it to compare the main 
current MOEAs. For all Pareto-optimal solutions, two objective 
functions are related as 2f =1/ 1f （0.1 ≤ 1f ≤ 1） , thereby 
constituting the trade-off among the Pareto-optimal solutions.  

Minimize  1f (x)= 1x  
Minimize  2f (x)=(1+ 2x )/ 1x  
Subject to  0.1 ≤ 1x ≤ 1, 0 ≤ 2x ≤ 5 

Function 2F , 3F  are proposed by Zitzler [4]. Each of the test 
functions defined below is structured in the same manner and 
consists itself of three functions f 1 ,g,h. 

Minimize   F(X)=( f 1 ( 1x ), f 2 ( 2x ))  
Subject to   

f 2
(X)=g( xx m,........,2 )h( f 1 ( 1x ),g( xx m,........,2 )) 

Where     X=( xx m,........,1 ) 
Function 2F : 

1f (x)       =  1x  
g( xx m,........,2 ) =  1+9*∑ = −m

i i mx2 )1/(  
h( f 1

,g)     =  1- gf /
1

 
Where m=30, and ix ∈ [0,1]. The Pareto optimal front is 
formed with g(x)=1. 

Function 3F : 

1f (x)       =  1x  
g( xx m,........,2 ) =  1+9*∑ = −m

i i mx2 )1/(  
h( f 1

,g) = 1- gf /
1

-( gf /1 )sin(10 π 1f ) 
Where m=30, and ix ∈ [0,1]. The Pareto optimal front is 
formed with g(x)=1.  

 
5.2. Simulation results 
To compare SEEA with other MOEAs, we use parameters 
corresponding to the references from which they are derived.  
   The concept of generation in SEEA is different from traditional 
MOEAs. Only one new individual is created in each generation in 
SEEA, therefore, it is more reasonable to regard the number of 
new individuals generated during the run as the standard for 
comparison, rather than number of generations. Traditional MOEA 
will generate 40 individuals in every generation, if its population 
size is 40. In Deb [6], the generation parameter is 500, 
independent of the algorithm. So 500*40=20000 individuals will 
be generated. This would be generated by SEEA in 20000 
generations (one individual one generation).  
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1F , 2F and 3F were run using the following parameters:  
Pop size   Generation Number shareσ

1F  40(from [6]) 9 20000(equal to 500*40) 0.038

2F

3F  
100(from [4]) 13 25000(equal to 250*100) 0.018

In Figure 1-3, the nondominated fronts achieved by SEEA of 
the simulation runs are compared to some other algorithms.  

According to 1F , SEEA outperforms all the nonelitist MOEAs 
listed by Deb [6] (the comparative data could not be printed in 
Figure 1, please refer to [6]), with respect to both distance to the 
Pareto-optimal front and distribution of the nondominated 
solutions. It also outperforms the elitist MOEAs with respect to 
uniformity.  

As Figure2 and Figure3 show, SEEA outperforms SOEA, 
NSGA and VEGA, and it is as good as, if not better than, SPEA, 
the elitist MOEA using archive and elitist-preserving operator.  
 
5.3. Analysis and conclusion   
It is widely accepted that elitism is an indispensable strategy in 
MOEAs[1][6].  
  In SEEA, we do not use a second population to preserving elites 
intentionally with elite-preserving operator. Nevertheless, we get 
solutions, which are as good as, if not better than, elitist MOEAs. 
We infer that the steady elimination character of SEEA that 
preserves the elites automatically and realizes elitism without the 
extra time and space complexity. 

Here we revise definition 1 to a stricter condition: 
∀ t Ν∈ : ρ∈∀ x t* : 0)(

1
>

+ xpt  
And we show that SEEA fulfills it. 
 
Conclusion1. SEEA realize elitism. 
Proof:   

In SEEA(Algorithm1), at ∀ t Ν∈ generation, we select m parents 

randomly from the current population Pt to generate multi-parent 

crossover. So it is easy to draw the conclusion that: 

∀ t Ν∈ : Ptx ∈∀ : 0)(
1

>
+ xpt  

So in order to prove SEEA realize elitism, we only need to 

prove that: 

∀ t Ν∈ : ρ∈∀ x t* :x ∈ Pt (based on definition 1 and our more 

strictly conditional revision ) 

The � in definition 1 is instantiated with better (Algorithm 

2), which incorporates the components of rank and niche, in 

SEEA. 

Suppose ∃ t Ν∈ : ρ∈∃ x t* : x ∉ Pt  and x was eliminated at 

t ' Ν∈ ( t ' t≤ ) generation. Then at t '  generation, there must 

have been created an individual x' : xx �
' . And x' was added 

into the population at t '  generation, which is to say that x ' Pt '

∈  

Since ρ t  = P
t

τ

τ
t
≤

 and t ' t≤ , so x ' ∈ ρ t  

So ∃ x ' ∈ ρ t : xx �
' , 

So ρ∉x t* , which conflicts with our above supposition. 

Thus, we can say that our previous supposition was wrong 

and it is true that  

∀ t Ν∈ : ρ∈∀ x t* :x ∈ Pt  

Thus, we can draw the conclusion that SEEA realizes elitism. 

□ 
 
Furthermore, current elitist MOEAs must consume time and 

space to realize elitism with elite-preserving operators, whereas, 
SEEA need not. Moreover, multi-parent crossover and swarm hill 
climbing strategy are incorporated in SEEA, both of which lead to 
improvements in its search ability. As a conclusion, the proposed 
Steady Elimination Evolutionary Algorithm shows some 
advantages in solving Multi-Objective Problems. 
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