
SEEA FOR MULTI-OBJECTIVE OPTIMIZATION:
REINFORCING ELITIST MOEA THROUGH MULTI-PARENT CROSSOVER, STEADY

ELIMINATION AND SWARM HILL CLIMBING

Yan Zhenyu 1 , Kang Lishan 1 , Bob McKay 2 , Fu Penghui 1
1 State Key Laboratory of Software Engineering Wuhan University, Wuhan 430072, P. R. CHINA
2 School of Computer Science, UC, UNSW Australian Defence Force Academy Northcott Drive,

Canberra, ACT 2600 AUSTRALIA
zyyan@whu.edu.cn

ABSTRACT

Non-elitist Multi-objective Evolutionary Algorithm does not
guarantee that desirable solutions, once found, remain in the
generational population until MOEA termination because of the
EA’s stochastic nature. Elitist MOEA handles this drawback with
elitism. However the implementation of elitism leaves the user
with many undetermined parameters; choosing proper
elite-preserving operators becomes a difficult decision.
Furthermore, this strategy increases the space and time complexity.
This paper presents a new MOEA: Steady Elimination
Evolutionary Algorithm. Through the strategies of steady
elimination, multi-parent crossover and swarm hill climbing,
SEEA can preserve elites effectively and instinctively without
increasing computational complexity, and can get good uniform
solutions representing the Pareto Front. The simulation
experiments show that SEEA has some advantages for solving
Multi-Objective Problems.

1. INTRODUCTION

In recent years, researchers always classify MOEA into two
categories: no-elitist MOEA and elitist MOEA[6]. Deb holds the
view that elitist MOEAs outperform no-elitist MOEAs
significantly [6][4]. But there are many questions not yet
determined regarding the realization of elitism. Which solutions
should be kept, and for how long, in the elite set? When and how
are members of the elite set reinserted into the population? How
should one choose an appropriate ∂ value [6]? And how should one
choose good elitist elite-preserving operators? Furthermore elitism
has an inevitable side effect, that the archive and elitist-preserving
operators will increase the space and time complexity.

In this study we present a new MOEA: the Steady Elimination
Evolutionary Algorithm. By using the steady elimination approach
and other strategies, MOEA can preserve elites instinctively, and
get good uniform solutions representing the Pareto Front, without
using archives or other elite-preserving operators, therefore it
doesn’t require extra time and space complexity.
 The paper is structured as follows: section 2 introduces the
concept and definition of elitism. We then discuss its important
function in MOEA. In section 3, we present SEEA and discuss its
new features and advantages. In section 4, we illustrate the power
of SEEA by some experiments and discuss its efficiency.

Furthermore, we prove that SEEA realizes elitism instinctively.

2. THE CONCEPT AND FEATURES OF ELITISM

Recently several authors indicated that elitism could improve
evolutionary multi-objective search significantly [1][4][5][6][10].

There are various ways to incorporate elitism into MOEA. Most
algorithms today make use of a second population of elite
individuals. The Strength Pareto EA (SPEA), for example, stores
all nondominated solutions separately from the ‘normal’
population. Individuals are chosen from the population and the
nondominated set as recombination partners, while the latter get
higher selection probabilities.

Though there are great varieties in the implementation of elitism,
we can summarize some important features as follows: First, they
require preserving the best solutions in the population, an archive
or sub-population. Second, they require consideration of several
strategies, including the elitism strategy, or how the elitist
population is updated; the re-insertion strategy, or how elite
individuals take part in the production of offspring; and the control
flow, or when archiving and re-insertion take place. Unfortunately,
particular implementations leave the determination of many
parameters to the decision makers. They also inevitably increase
the space and time complexity. Nevertheless, the evidence shows
that elitism is an important and indispensable factor in EMOO.

According to Laumanns [10] and Deb [6], elitism means that
‘elite’ individuals cannot be expelled from the active gene-pool of
the population in favor of worse individuals. This concept can be
formalized as follows:
Definition 1(Elitism) Let Pt denote the population of a given
evolutionary algorithm EA after t Ν∈ iterations(generations). Let

)(xp t denote the probability of individual x∈ Pt being selected
as an operand for the variation operator in generation t. Then EA
is said to be elitistic, if and only if for any preference relation �
given by a decision problem the following condition holds:

∀ t Ν∈ : ρ∈∃ x t* : 0)(1 >+ xpt

with ρ t* = { ρ tx ∈ : ρ tx ∈¬∃ ' : xx �
' },

 ρ t = P
t

τ

τ
�
≤

In this definition ρ t refers to the set of all individuals produced
so far and ρ t* to all non-dominated individuals out of ρ t .

3. SEEA

We propose a new approach for Multi-objective Optimization:
Steady Elimination Evolutionary Algorithm (SEEA) SEEA uses
the steady elimination strategy: to generate only one new
individual in each generation. If the new one is better than the
worst of the current population, the former will supersede the latter.
We use a multi-parent crossover operator and real-valued encoding
without a mutation operator.

3.1. The flow of SEEA
The flow of the algorithm is as follows:

3.2. B
We c
to the
the ev

Th
algor

3.3. P
We u
to ca
corre
vecto
rank

Th
receiv
N. By

metric by using the non-domination principle.
As far as implementation is concerned, we need to consider the

computational complexity.
We suppose that the size of population is N and the number of

objects is M. We need M*N*(N-1) comparisons for ranking in
each generation using equation 3.1. So the computational
complexity is O(N^2). Suppose that the number of individuals
created in one generation is K(usually K=N). Then on average, a
new individual needs M*N*(N-1)/ K comparisons for ranking. But
in SEEA, we generate only one new individual in each generation,
so that K =1. The times of comparison for each individual will be
M*N*(N-1) if we calculate ranks using equation 3.1 in every
generation. It is clear SEEA will consume more time if we use the
same way of ranking as traditional MOGA.

We use dominate_list, an N*N dimensions matrix, to record the
dominative relation of individuals. If individual j dominates
individual i, then dominate_list[i,j]=1. At the beginning of SEEA
we initialize dominate_list by equation 3.1. In the later iteration of
the algorithm, we only update the row and column relevant to the
newly updated individual. So we need at most 2N comparisons in
each generation for ranking and the computational complexity
reduces to O(N).

Experiments show that these improvements enhance the
efficiency of the algorithm effectively. It is well known that
ranking and niching dominate the time performance of MOEA
execution. Here we use a classic time-space tradeoff, significantly
improving the time performance while increasing the space
complexity to some extent, a tradeoff we consider to be profitable
and reasonable.

3.4. Pareto Niching
Algorithm 1:
Step1: t=0, generate an initial population Pt .
Step2: Calculate rank and nichecount of the individuals

in Pt .
Step3: Locate bestX and worstX by sorting Pt using

better.
Step4: Select m individuals randomly from Pt and

create a new individual sonX by multi-parent
crossover. Calculate the rank and nichecount of

sonX
Step5: If better (sonX , worstX), then sonX supersede

worstX .
Step6: If a stopping criterion is satisfied then terminate,

else t=t+1 go to step2.
etter
ompare individuals using better rather than assigning fitness
m in traditional EAs, so that better is the basic motivator of
olution.
e return value of better(1x , 2x) is Boolean. The flow of the
ithm is as follows:

s

s
r
i

i

We use niches to preserve the diversity of the population in order
to find a uniform distribution of vectors. Here we use phenotypic
space[3]. We define the normalized distance between two
solutions i and j in the same rank as follows:

2
1

1
2minmax

2)(

)(
)(

),(
)(













−
= ∑

=

−M

k kk

j
kk

ff
ffjid

i

 (3.2)

 Where max
kf and min

kf are the maximum and minimum
objective function values of the k-th objective respectively.

)(i

kf and)(j
kf are the objective function values of i and j. For the

solution i, d(i,j) is computed for each solution j having the same
rank. The sharing function value is computed as follows:






 ≤−
=

;,)(1
)(

difd
dSh share

share

σ
σ

α

 (3.3)
Algorithm 2:
Step1: If 1x dominates 2x , return true, otherwise go

to step2.
Step2: If 1x .rank< 2x .rank, return true ，

if 1x .rank> 2x .rank, return false, otherwise go
to step3。

Step3: If 1x .nichecount < 2x .nichecount，return true,
otherwise return false。
areto ranking
e the technique proposed by Fonseca and Fleming (1998)[3]
lculate Pareto rank. A solution x at generation t has a
ponding objective vector ux . We let t

ur signify the number of
s associated with the current population dominating ux ; x’s
s then defined by:

rank(x,t)= t
ur (3.1)

s ensures that all solutions with nondominated vectors
e rank zero and that the maximum rank won’t be larger than
 this means, we convert multiple objective values to a ranked

 .,0 otherwise

shareσ is a maximum phenotypic distance allowed between any
two individuals to become a member of a niche. Thereafter, the
niche count of i is calculated by summing the sharing function
values:

∑
=

=
N

j
iji dShnc

1
)((3.4)

Similarly to ranking, we also use niche_list to reduce the
computational complexity of niching.

3.5. Realization of multi-parent crossover
Definition 2
V= { }| 1∑ ==∈ M

i ii xaXDX is a subspace of D formed by m points

xi (i=1,2,…..,m).
Where D is the searching space

xi D∈ , i=1,2,…..,m

∑
=

=
m

i
ia

1
1 , - 0.5 ≤≤ ai 1.5, 1 ≤ i ≤ m

 We realize multi-parent crossover by selecting one point
randomly from V.

4. NEW FEATURES OF SEEA

4.1. Multi-parent crossover
Guo Tao[7] has discussed the positive features of multi-parent
crossover. His experiments show that: with a fixed population size,
the larger m (the number of parents) is, the greater the probability
of convergence to the optimum. Alternatively, the larger m is, the
smaller the size of population required to retain the probability of
convergence to the optimum. These characteristics of multi-parent
crossing are also exhibited when we use it in SEEA to solve MOP.
Note that the weight coefficient ai ranges from – 0.5 to 1.5. This
implies that V is a nonconvex space, which guarantees that the set

V * = V
t

τ

τ
t
≤

(t is the iterations) can cover the whole search space

D, when t ∞→ . The experiments also show that the convergence
speed of SEEA to the Pareto Front is increased when we accrete m
properly.

4.2. Steady elimination strategy
We generate only one new individual and may eliminate at most
one individual (the worst) in each generation. The selection
pressure is lower than in most alternative algorithms.

With MOEA, we want to find a uniform distribution of vectors
representing (or approximating) Pareto Front in one simulation run.
Some researchers propose Secondary Population [8][9], archive
and elitism [4] to solve this problem, such as SPEA, which gets
the best performance among the current algorithms. But these
strategies will occupy extra space and time to maintain an archive,
continually added to and periodically culled of solutions whose
associated vectors are dominated.

Our algorithm does not require an archive to preserve elites in
SEEA, rather it can preserve elites automatically and effectively,
without increasing the space and time complexity of the algorithm,
because of its steady elimination strategy. We will discuss this
issue further in a later section with some experimental results.

4.3. Swarm hill climbing
If we decrease the population size of Guo’s Algorithm[7] or SEEA
to one, the algorithm reduces to hill-climbing.. It is a truism that
hill-climbing algorithm generally converges to local optima, rather
than finding the global optimum. However, here we use a
population approach instead of seeking just one solution in each
iteration. We call it swarm hill climbing; it has completely

different properties from common hill climbing algorithms.
Classical beam-based hill climbing fosters independent

individuals, which probe good solutions in the searching space. If
an individual reaches a local peak, it faces the same problem as
single-individual hill climbing, with low probability of escaping
the local peak. However, swarm hill climbing fosters a group of
interacting individuals. All individuals climb the hills in parallel.
They compete with each other (by better) and communicate with
each other (by multi-parent crossover and better): an individual in
a local optimum will be eliminated by a newly created individual,
if it is poor enough compared with other individuals and the new
one. By this means, each individual has some probability of
jumping onto another hill if it has not reached the global optimum.
Because of this, swarm hill climbing is not as subject to premature
convergence to local optima as the deterministic classical
algorithms.

Guo[7] has discussed its effect on single objective optimizations,
based on some successful experiments. In SEEA, we take the
advantage of swarm hill climbing to solve multi-objective
optimization problems. It shows good search abilities in MOP, as
in SOP.

4.4. New evaluation and selection methods: better
To design the fitness assignment method for MOEA, one must pay
attention to two aims:

(1)Preference to nondominated solutions in a population
(2)Maintenance of diversity among nondominated solutions [1].

This is an inherent two-objective problem in MOEA. There
are many ways to deal with this task:

MOGA[3] sorts solutions by rank and assigns fitness via linear
or exponential interpolation. Then the assigned fitness values are
divided by the niche count and scaled. This method transforms the
two objectives (preference to nondominated solutions and
maintenance of diversity) into one by summing. But it does not
ensure that a solution in a poorer rank will always have a worse
scaled fitness than every solution in a better rank. The reverse may
happen particularly if there exist many crowded solutions with a
better rank. The niche count for these solutions would be large and
the resulting shared fitness may be small. If this happens, adequate
selection pressure may not exist to all solutions in a better rank,
thereby leading to a slow convergence or inability to find a good
spread in the Pareto-optimal front.

In order to avoid this drawback, NSGA use another method [2],
In this method, no solution in the first front has a shared fitness
worse than the assigned fitness of any solution in the second front,
which ensures that the rank pressure has more priority than the
niche pressure.

In SEEA, we only need to sort the individuals in the population
and compare sonX with worstX . We can make this comparison
directly without fitness assignment, in order to save the
expenditure of extra time for this task. Therefore, in SEEA we
design better to make the comparison rather than assign fitness to
each individual. During the first step of better, we see if 1x
dominates 2x . Obviously, if 1x dominates 2x , 1x .rank< 2x .rank. If

1x does not dominate 2x , we compare their ranks directly in the
second step. If their ranks are equal, we compare their niche count
in the third step. By better we can get the same comparison results
as the results we get by using the NSGA’s fitness assignment

method. The two methods both make sure that the rank pressure
has more priority than the niche pressure, while better compares
the individuals directly, saving the time cost of fitness assignment.

It is reasonable to give the rank pressure more priority. In the
initial stage of optimization, we emphasize the extent the solutions
approach the Pareto Front, rather than their uniformity. In the late
stage of optimization, the solutions are near to Pareto Front, and
the ranks of individuals are almost zero so that the rank pressure is
rather small. In this stage, we mainly make the solution more
uniform through niche pressure.

5 EXPERIMENTS AND DISCUSSION

5.1. Test functions

1F is suggested by Deb [6], who used it to compare the main
current MOEAs. For all Pareto-optimal solutions, two objective
functions are related as 2f =1/ 1f （0.1 ≤ 1f ≤ 1） , thereby
constituting the trade-off among the Pareto-optimal solutions.

Minimize 1f (x)= 1x
Minimize 2f (x)=(1+ 2x)/ 1x
Subject to 0.1 ≤ 1x ≤ 1, 0 ≤ 2x ≤ 5

Function 2F , 3F are proposed by Zitzler [4]. Each of the test
functions defined below is structured in the same manner and
consists itself of three functions f 1 ,g,h.

Minimize F(X)=(f 1 (1x), f 2 (2x))
Subject to

f 2
(X)=g(xx m,........,2)h(f 1 (1x),g(xx m,........,2))

Where X=(xx m,........,1)
Function 2F :

1f (x) = 1x
g(xx m,........,2) = 1+9*∑ = −m

i i mx2)1/(
h(f 1

,g) = 1- gf /
1

Where m=30, and ix ∈ [0,1]. The Pareto optimal front is
formed with g(x)=1.

Function 3F :

1f (x) = 1x
g(xx m,........,2) = 1+9*∑ = −m

i i mx2)1/(
h(f 1

,g) = 1- gf /
1

-(gf /1)sin(10 π 1f)
Where m=30, and ix ∈ [0,1]. The Pareto optimal front is
formed with g(x)=1.

5.2. Simulation results
To compare SEEA with other MOEAs, we use parameters
corresponding to the references from which they are derived.
 The concept of generation in SEEA is different from traditional
MOEAs. Only one new individual is created in each generation in
SEEA, therefore, it is more reasonable to regard the number of
new individuals generated during the run as the standard for
comparison, rather than number of generations. Traditional MOEA
will generate 40 individuals in every generation, if its population
size is 40. In Deb [6], the generation parameter is 500,
independent of the algorithm. So 500*40=20000 individuals will
be generated. This would be generated by SEEA in 20000
generations (one individual one generation).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

Figure 1: Test function 1F

0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

Figure 2: Test funct

0 0.2 0.4
-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 3: Test f

SEEA
SEEA
SPEA

SOEA

NSGA

VEGA
0.6 0.8 1

ion 2F

0.6

unction
SEEA
SPEA

SOEA

NSGA

VEGA
0.8 1

3F

1F , 2F and 3F were run using the following parameters:
Pop size Generation Number shareσ

1F 40(from [6]) 9 20000(equal to 500*40) 0.038

2F

3F
100(from [4]) 13 25000(equal to 250*100) 0.018

In Figure 1-3, the nondominated fronts achieved by SEEA of
the simulation runs are compared to some other algorithms.

According to 1F , SEEA outperforms all the nonelitist MOEAs
listed by Deb [6] (the comparative data could not be printed in
Figure 1, please refer to [6]), with respect to both distance to the
Pareto-optimal front and distribution of the nondominated
solutions. It also outperforms the elitist MOEAs with respect to
uniformity.

As Figure2 and Figure3 show, SEEA outperforms SOEA,
NSGA and VEGA, and it is as good as, if not better than, SPEA,
the elitist MOEA using archive and elitist-preserving operator.

5.3. Analysis and conclusion
It is widely accepted that elitism is an indispensable strategy in
MOEAs[1][6].
 In SEEA, we do not use a second population to preserving elites
intentionally with elite-preserving operator. Nevertheless, we get
solutions, which are as good as, if not better than, elitist MOEAs.
We infer that the steady elimination character of SEEA that
preserves the elites automatically and realizes elitism without the
extra time and space complexity.

Here we revise definition 1 to a stricter condition:
∀ t Ν∈ : ρ∈∀ x t* : 0)(

1
>

+ xpt
And we show that SEEA fulfills it.

Conclusion1. SEEA realize elitism.
Proof:

In SEEA(Algorithm1), at ∀ t Ν∈ generation, we select m parents

randomly from the current population Pt to generate multi-parent

crossover. So it is easy to draw the conclusion that:

∀ t Ν∈ : Ptx ∈∀ : 0)(
1

>
+ xpt

So in order to prove SEEA realize elitism, we only need to

prove that:

∀ t Ν∈ : ρ∈∀ x t* :x ∈ Pt (based on definition 1 and our more

strictly conditional revision)

The � in definition 1 is instantiated with better (Algorithm

2), which incorporates the components of rank and niche, in

SEEA.

Suppose ∃ t Ν∈ : ρ∈∃ x t* : x ∉ Pt and x was eliminated at

t ' Ν∈ (t ' t≤) generation. Then at t ' generation, there must

have been created an individual x' : xx �
' . And x' was added

into the population at t ' generation, which is to say that x ' Pt '

∈

Since ρ t = P
t

τ

τ
t
≤

 and t ' t≤ , so x ' ∈ ρ t

So ∃ x ' ∈ ρ t : xx �
' ,

So ρ∉x t* , which conflicts with our above supposition.

Thus, we can say that our previous supposition was wrong

and it is true that

∀ t Ν∈ : ρ∈∀ x t* :x ∈ Pt

Thus, we can draw the conclusion that SEEA realizes elitism.

□

Furthermore, current elitist MOEAs must consume time and

space to realize elitism with elite-preserving operators, whereas,
SEEA need not. Moreover, multi-parent crossover and swarm hill
climbing strategy are incorporated in SEEA, both of which lead to
improvements in its search ability. As a conclusion, the proposed
Steady Elimination Evolutionary Algorithm shows some
advantages in solving Multi-Objective Problems.

ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Science
Foundation of China (No. 60073043,70071042,60133010)

REFERENCES

[1] David A.VanVeldhuizen and Gary B.Lamont.Multiobjective

Evolutionary Algorithms: Analyzing the State-of-the-Art
Evolutionary Computation, 2000, 8(2) 125-147

[2N.Srinivas and Kalyanmoy Deb. Multiobjective Optimization
Using Nondominated Sorting In Genetic Algorithms,
Evolutionary Computation1995,2(3)221-248

[3]Carlos Fonseca and Peter J.Fleming
Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms I:A Unified Formulation
Research Report , 1995, 564

[4]Zitzler,E.and Thiele, L. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength Pareto
Approach. IEEE Transactions on Evolutionary Compution,
1999,3(4), 257-271

[5]Horn,j and Nafpliotis,N. and Goldberg,D.E. A Niched Pareto
Genetic Algorithm for Multiobjective Optimization, CEC 1994,
pages 82-87, IEEE Press, Piscataway, New Jersey.

[6] Kalyanmoy Deb. Multi-Objective Optimization using
Evolutionary Algorithms. John Wiley&Sons, Ltd Baffins Lane,
Chichester, West Sussex, PO19 IUD,England, 2001

[7]Guo Tao and Kang Li-shan A new Evolutionary Algorithm for
Function Optimization Wuhan University Journal of Natural
Sciences Vol.4 No.4 1999,409-414

[8]Horn ,J. Multicriterion Decision Making. Handbook of
EvolutionaryCompution, Oxford University Press, Oxford,
England, 1997, Volume 1,Pages F1,9:1-f1.9:15.

[9]Rudolph,G..On a Multi-Objective Evolutionary Algorithm and
Its Convergence to Pareto Set. CEC 98, IEEE Press, Piscateway,

New Jersy 1998, Pages 516.
[10]Marco Laumanns and Eckart Zitzler. A Unified Model for

Multi-Objective Evolutionary Algorithms with Elitism. 2001,
Proceedings of the 2001 IEEE Congress on Evolutionary
Computation Seoul, Korea May 27-30, 2001.

	Index
	ICONIP 2002
	SEAL 2002
	FSKD 2002
	Global Search

	SEAL Home Page
	Conference Info
	Welcome Message
	About Singapore
	Venue
	Organized By
	Sponsors and Support
	Organizing Committee
	Program Committee
	Reviewers
	Support Team

	Sessions
	Tuesday, 19 November, 2002
	TueAmRm8-Multiobjective Evolutionary Algorithms I
	TueAmRm9-Evolutionary Learning I
	TueAmRm12-Parallel Evolutionary Algorithms
	TuePmRm8Ss1-Special Session: Evolutionary Optimization ...
	TuePmRm9Ss1-Special Session: Evolutionary Computation & ...
	TuePmRm12Ss1-Evolutionary Design
	TuePmRm8Ss2-Multiobjective Evolutionary Algorithms II
	TuePmRm9Ss2-Evolutionary Theory I
	TuePmRm12Ss2-Evolutionary Scheduling I
	TuePmRm19Ss2-Evolutionary Applications I
	TuePmRm20Ss2-Models of Evolutionary Algorithms

	Wednesday, 20 November, 2002
	WedAmRm8-Evolutionary Learning II
	WedAmRm9-Evolutionary Signal Processing and Agents Appl ...
	WedPmRm8Ss1-Special Session: Artificial Intelligence Ap ...
	WedPmRm9Ss1-Special Session: Evolutionary Computation i ...
	WedPmRm8Ss2-Evolutionary Theory II
	WedPmRm9Ss2-Evolutionary Data Mining
	WedPmRm19Ss2-Evolutionary Applications II
	WedPmRm20Ss2-Evolutionary Modeling

	Thursday, 21 November, 2002
	ThuAmRm8-Evolutionary Learning III
	ThuAmRm9-Evolutionary Control and System Applications
	ThuPmRm8Ss1-Evolutionary Scheduling II
	ThuPmRm9Ss1-Evolutionary Optimization
	ThuPmRm8Ss2-Evolutionary Operations Research Applicatio ...
	ThuPmRm9Ss2-Special Session: Exploring Essence in Inter ...
	ThuPmRm19Ss2-Evolutionary Applications III
	ThuPmRm20Ss2-Evolutionary Applications IV

	Papers not Presented
	NAP-SEAL-Papers not Presented

	Keynote Speech
	Panel Discussions
	Plenary Speech

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	Papers by Session
	All papers
	Papers by Topic
	Table of Contents

	Topics
	1. EVOLUTIONARY LEARNING
	1.1 Learning algorithms
	1.2 Representation in evolutionary learning
	1.3 Artificial life
	1.4 Adaptive behavior
	1.5 Classifier systems
	1.6 Bayesian evolutionary algorithms
	1.7 Artificial immune systems
	1.8 Self-adaptation
	1.9 Other
	2.1 Selection
	2.2 Genetic operators
	2.3 Coding methods
	2.4 Fitness evaluation
	2.5 Convergence
	2.6 Models of evolutionary computation
	2.8 Dynamic environment
	2.9 Niching and clustering
	2.10 Co-evolution
	2.11 Optimization
	2.12 Fitness landscape
	3.1 Evolution strategies
	3.2 Genetic algorithms
	3.3 Evolutionary programming
	3.4 Genetic programming
	3.5 Molecular algorithms
	3.6 Simulated evolution
	3.7 Evolvable hardware
	3.8 Evolutionary agents
	3.10 DNA computing
	3.11 Multi-objective optimization
	3.12 Parallel evolutionary algorithms
	3.13 Other
	4.1 Computational intelligence
	4.2 Soft computing
	4.3 Evolutionary neural systems
	4.5 Evolutionary fuzzy systems
	4.6 Evolutionary neuro-fuzzy systems
	4.7 Other
	5. APPLICATIONS
	5.1 Design
	5.2 Scheduling
	5.3 Power engineering
	5.4 Forecasting
	5.5 Circuit design
	5.6 Data mining
	5.7 Route and network planning
	5.8 Control systems
	5.9 Aerospace
	5.10 Manufacturing optimization
	5.11 Operations research problems
	5.12 Expert system
	5.13 Ant colony optimization
	5.15 Biomodelling
	5.16 Signal processing
	5.17 Finance and marketing
	5.19 Parallel and distributed processing
	5.20 Evolutionary robotics
	5.21 Internet
	5.23 Other
	6. Other SEAL'02 topic
	2. Evolutionary Computation in Bioinfomratics and the B ...
	3. Artificial Intelligence Applications in Power Engine ...
	4. Exploring Essence in Interaction among Agents, Robot ...
	5. Evolutionary Computing for Control and System Applic ...
	6. Evolutionary Multi-objective Optimization
	7. Evolutionary Optimization and Design on Industrial E ...
	Evolutionary Computation and Intelligent Robotics and M ...
	Evolutionary Algorithms for Time-tabling
	Evolutional Aspects of Human-Machine Interactions

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	Zhenyu Yan
	Lishan Kang
	Bob McKay
	Fu Penghui

