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Abstract

This paper proposes a non-gradient based method for
the parameter optimization of fixed-structure controllers

in hard disk drives (HDDs). Besides satisfying multi-

ple frequency-domain constraints, the primary target of
HDD servo design aims at the minimization of position
error signal (PES) for a large population of drives. This
is made possible by adopting a new statistical distur-
bance model inside the optimization loop to evaluate the
time-domain performance of candidate controllers. The
convexity of multi-dimension searching space is lost be-
cause the controller structure is fixed. This non-convex
multiobjective optimization problem (MOP) is solved
by multiobjective genetic algorithms (MOGA), which
are genetic algorithms (GA) combined with the concept
of Pareto optimality. Multiple optimal solutions with
trade-offs are provided to support decision making. A
design example of tuning a track following controller is
used to demonstrate the effectiveness of the proposed
method.

1 Introduction

Given cost-limited hardware and computing resources,
designing a positioning system for mass-produced hard
disk drives (HDDs) is a challenging work. The controller
needs to achieve acceptable performance in the presence
of external disturbances and measurement noises. Fur-
thermore, the plant parameters vary from drive to drive
due to manufacturing tolerances and also change with
time and temperature. The controller therefore needs
to provide sufficient robustness against these variations.
On the other hand, the usage of economical digital sig-
nal processor in servo system requires a low order design
of controller. This is a typical optimization problem
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with multiple non-commensurable objectives and con-
straints. Recently, linear matrix inequalities(LMIs) have
received a great deal of attention in dealing with these
kinds of multi-objective optimization problems (MOPs)
[1]. LMIs provide a unifying framework to setup mul-
tiple quadratic performance inequalities, which are suc-
cessfully solved by convex optimization approaches. It
has been shown that a number of multi-objective prob-
lems, including the popular mixed Hy/H,, optimal con-
trol problem [2], can be reduced to solving LMIs. How-
ever, for the practical control of systems like HDD, it
is rather difficult to fit the problem into a solvable con-
vex form because of numerous design specifications and
constraints. Furthermore, an optimal solution from the
free-order synthesis is a high order controller, which is
not implementable in HDD even with order reduction
techniques. In fact, it is more efficient to start with
a controller structure that has good nominal proper-
ties, and optimize the parameters within that structure.
Fixing the structure of controller minimizes the coding
difficulties involved in design iterations and enhances
the controllability of overall firmware. However, since it
also inevitably loses the convexity of the search space,
gradient-based methods [3] will have no guarantee of
convergence and require lots of auxiliary conditions.

This paper presents a non-gradient based solution to the
design problem above by using multi-objective genetic
algorithms (MOGA), which are the combinations of ge-
netic algorithms (GA) and Pareto optimization. GAs
are non-gradient based optimization methods that imi-
tate the stochastic mechanisms of natural selection and
genetic variation. Pareto optimality, which defines the
optima based on vectorial performance, eliminates the
use of weightings before optimization and provides mul-
tiple optimal solutions to decision maker. A new statis-
tical disturbance model is included inside the optimiza-
tion loop to evaluate the time-domain performance of
candidate controllers [4]. This makes it possible to di-
rectly tune the controller towards the minimization of
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Figure I: A typical blockdiagram of track following con-
trol

position error signal (PES) for a family of drives. Fi-
nally, the effectiveness of the proposed method is shown
by an example of tuning a track following controller for
HDD. i

2 Problem Formulation

Figure 1 shows a discrete time model of HDD servo
system. P (271!) is the ZOH equivalence of contin-
uous time plant dynamics, including power amplifier
(PA), voice coil motor (VCM), and head-disk assem-
bly (HDA). Far convenience, disturbances and noises
are lumped into three sources depending on their in-
jecting points in the loop: torque disturbance d;, posi-
tion disturbance d, and measurement noise n,,. Note
that the true position error PE; can not be measured
directly and PES is always contaminated by measure-
ment noise n,. C(z~1, K) represents the fixed-structure
low-order digital controller with m tunable parameters
K= {kyi,...km} € Qx C R™ where Qx is the non-
convex search space with boundaries defined by de-
signer.

The most important performance index of track fol-
lowing servo is the variance of PES, opgs. Since
we are designing the controller for the mass produced
HDDs with plant variations and disturbance uncertain-
ties, opgs is not a constant but rather a random vari-
able. It is more appropriate to assess the average per-
formance mean(opgs) and the performance robustness
var(opgs). To get a precise and efficient prediction of
mean(opgs) and var{opgs) for a given controller, a
statistical model is built based on the PESs measured
from a large population of drives [4]. This model not
only covers the characteristics of a large population of
drives but also requires little computational efforts in
calculating mean(opgs) and var(opgs). The design
also needs to satisfy some minimum relative stability
margins. In this paper, all constraints are related to
the frequency domain requirements, such as the mini-
mum phase margin PM sy which is a direct safeguard
against time delay uncertainty, the minimum gain mar-
gin GMjn which is a direct safeguard against steady-

state gain uncertainty, the minimum crossover frequency
WoMIN, and the maximum peak of sensitivity function
S, coMAX -

There are couple difficulties in solving this non-convex
MOP. First, the most widely used method is to com-
bine all objectives into a single cost function by weight-
ings before optimization. Apparently, the final solution
depends on the selection of weightings. However, the
best set of weight functions is not known in advance.
This dependence will become problematic in practice as
there are so many trade-offs among design objectives.
The whole design iteration will become inefficient due
to tremendous trial-and-errors. Secondly, in designing
the controller for HDD, it is desired to provide the de-
cision maker with a number of “trade-off” solutions
which reveal the characteristics of solution space before
a final solution is chosen. However, the method of us-
ing weighting only gives a single solution at each iter-
ation. Finally, due to non-convex nature of this MOP,
the gradient-based methods, like hill-climbing, are likely
to be trapped in the local minima or fail to converge.
In the following section, MOGA is shown to effectively
overcome these difficulties.

3 Multi-Objective Genetic Algo-
rithms (MOGA)

GA is a biologically inspired global searching method.
The basic concepts were developed by Holland [5], Gold-
berg [6] and Michalewicz [7]. A simple GA is an iterative
procedure starting with a randomly generated popula-
tion of candidate solutions. For the current generation,

" each candidate is first evaluated via the fitness which

is a real number quantifying its quality with respect to
the targeting problem. The Roulette-wheel-like selec-
tion is more likely to pick up candidates with higher
fitness values into a parents pool. The selected solu-
tions (parents) are then processed by applying crossover
which pairs up the parents and exchanges some of their
parts pairwisely. Finally, Mutation performs a slight
perturbation to the resulting solutions. On the basis
of these genetic operators and the evaluations, a better
new generation is formed [8]. The convergence of GA
can be proved by Schema Theorem [6]. To deal with
multiple non-commensurable objectives, several multi-
objective genetic algorithms (MOGA), which are GAs
combined with the concept of Pareto optimality, have
been proposed 6] [9]. A good review on MOGA is in
(10]. Many researchers [11] [12] {13] have successfully
applied MOGA to solve MOPs in control systems de-

sign.

The flow chart of the MOGA used in this paper is shown
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Figure 2: The flow chart of MOGA with elitism and
random imigrants

in Figure 2. The details are described below. A sum-
mary of this MOGA is given at the end of this section.

Real-coded representation In this paper, each can-
didate solution, or called individual, is represented as
a float-point vector K7= [k, ..., ki,]. At (f)th genera-
tion, MOGA maintains a population of individuals, K(#)
= [K'(t), ..., K7 (t), ..., K™o? (¢)] ,with a fixed size npop.
This real-coded (RC) representation has many advan-
tages over the classical binary-coded (BC) representa-
tion which uses a bit string to code candidate solution
[7]. 1) RC is faster, more consistent from run to run
and provides a higher precision than BC, especially with

large search domains. 2) RC is intuitively closer to the

problem space, so virtually no decoding required. 3) RC
avoids Hamming Cliffs effect from which BC suffers.

Cost functions [13] shows a genetic method to solve
LMIs. However, limiting the objective functions in
quadratic form does not fully use the potential of GA.
Since GA is a population-based probabilistic optimiza-
tion method and does not require the convexity of search
space, the cost function can be freely chosen for the con-
venience of designer. The cost functions associated with
the design objectives and constraints are defined as

J1(K) = var(opgs) - (1)
Jo(K) = mean(opgs)

J3(K) = Q[PMyn — PM(K))

Ja(K) = Q[GMp N — GM(K)]

J5(K) = Qlwormrn — wo(K)]

J6(K) = Q[Soo(K) — Scormrax (K))

where
aed={§ 224 @)

and the phase margin PM(K) , the gain margin
GM(K), the crossover frequency w,(K), and the peak of
sensitivity function Seo(K)=||S(K, jw)l,, are functions
of the tunable parameter set K € Q. J3(K) ~ Jg(K)
are constraint cost functions which will be zero if the
candidate solution K satisfies all constraints. Thus,
the original constrained MOP is converted to a uncon-
strained MOP whose target is to minimize the cost vec-
tor J(K) = {Ji(K), ..., Ji(K), ..., Jo(K)} over K. J(K)
is therefore called the vectorial performance index.

Pareto optimality and Pareto Ranking The con-
cept of Pareto optimality eliminates the use of weight-
ings and makes it possible to provide multiple opti-
mal solutions to support decision making. The vector
J(KY)={J1(K"),..., Jn(K')} is said to dominate vec-
tor J(K2)={J,(K?), ..., J.(K?)} if and only if J(K?) is
partially less than J(X?2), denoted as J(K!) <, J(K?),

.more precisely

(Vi) Ji(KY) < Ji(K?) A (F)T(KY) < Ji(K?).  (3)

A solution K! is Pareto optimal if and only if there
is no K? € Qg such that J(K') <, J(K?). Pareto
optimal solutions K, are also called non-dominated or
non-inferior set, which 'are a set of K* such that

J(E?) #p I(ED)) A (I(KF) £ J(KH)),
K'e Ky, K eKp, Vi) (4)

All K* in the Pareto optimal set have the similar vec-
torial performance and thus are so-called “the equally
best solutions” among the current generation K =
[K1,..., K™o0], Therefore they are assigned the same
rank of 1. The final solution of a MOP depends only on
the vectorial performance and on the preferences of the
decision maker, and not on any subsequent optimiza-
tion [14]. Based on (3) and (4), a Pareto ranking [15] is
performed as follows

L. Sort K = [K',...,K7,..., K] from the least to
the largest according to ||J(K7)|ly = Y1, Ji(KY).
The sorted vector is denoted as K,. Let RNK=1.

2. Use the first entry of K,, K1, as criterion. Take out
any KJ from K, and put it into a dominated vector
®, if J(KL) <p J(KE), j =2, ..., length(K,).

3. Move out K} from K, and put it into a Pareto
optimal set K.

4. Let the remaining candidate solutions in K, to form
a new K, then repeat 2 to 4 until all dominated
solutions are removed.
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5. Assign all entries in K, with the same rank, RNK.
Empty K.

6. Replace K, with &g, i.e. K, = ®;.

7. RNK = RNK+1 and repeat 2 to 7 until the entire
population is ranked,

Rank-based fitness assignment Every candidate
solution K is assigned a fitness value f(K) which is the
measurement of solution quality. For a candidate solu-
tion in MOGA, the smaller the rank number, the better
the vectorial performance. By selection, the MOGA is
biased to the solution with higher fitness value. There-
fore the fitness assignment is such a mapping that max-
imizing the fitness f(K) is equivalent to minimizing the
cost vector J(K), i.e. maximizing the vectorial perform
of K. In this paper, a simple exponential mapping is
used
1

FE) = @)

)

Fitness sharing Although all “equally good” solu-
tions are assigned the same fitness, their actual choice
to be selected as parents may differ due to the ran-
dom nature of selection. .This imbalance can be accu-
mulated with the evolutions such that the population
drift towards an arbitrary region of the trade-off sur-
face, a phenomenon known as genetic drift [16]. Fitness
sharing is a mechanism to counteract the genetic drift
by re-distributing the fitness among the candidate solu-
tions with the same rank [14]. In this paper, the sharing
function is defined as
iy - _DE?) 1K
) = b ijf (K7) ®)

where D(K7(t)) is the total mutual geometric distance
in search space from K7(t) to all other individuals with
the same rank. This function penalizes the fitness of
individuals in popular neighborhoods and is in favor of
more remote individuals.

Elitism and random migrants To increase the con-
verging rate of MOGA, the elite (individuals with the
Rank 1) of current generation are directly copied to
the new generation, which will be €% of total popu-
lation. (95 — €)% individuals are generated from selec-
tion/crossover /mutation process. As a complementary
mechanism of mutation, the remaining 5% are generated
randomly to preserve the population diversity.

The MOGA used in this paper is summarized as follows.

1. Determine the search space of K, Qx C R™, which
is the range of K that stabilizes the nominal plant
Po(271) by Jury Criterion {17].

Table 1: MOGA configerations
Npop = 200 | Pr(crossover) =1 % < 30%
Ngen = 60 | Pr(mutation) = 0.02

Table 2: Design objectives before and after MOGA op-

timization

Before Optimization | After Optimization
Simultaion Experiment | Simulation | Experiment
mean(opgg) | 5.240 5.219 5.032 5.011
var(opgs) 2.253 2.311 2.095 2.154
GM 6.1dB 6.3dB 6.1dB 6.2dB
PM 42.1° 40.4° . 41.0° 39.7°
Wo 540Hz 544H 2 552Hz | 557THz
Soo 5.7dB 5.5dB 5.4dB 5.2dB

2. The MOGA randomly and uniformly generates the
first generation with ngyop individuals (candidate
solutions), [K(1),..., K7(1),...,K™?(1)] € Q.
Each individual is represented by RC. :

3. For each individual K7(¢) in the current (t)th gen-
eration, calculate the cost function vector J(K7(t))
= {N(K?(2)), ..., Ti(KI(F)), ..., Jn (K (£)) }-

4. Pareto ranking of [K1(t), ..., K9 (t), ..., K"»or(t)] ac-
cording to J(K¥(t)).

5. Assign fitness to K7(t) based on, its ranking ,
F(Ki@®) = m, and apply the fitness shar-

ing, F(K(t)) = 52553y 5 £/ (KA (t))-

6. Directly migrate the elite, individuals with rank 1,
to the (¢ + 1)th generation. This makes up €% of
total population npep, where e% is up to 30%. .

7. Apply the tournament selection [6] to generate
Tpop * (95 — €)% parents from the (t)th generation.
A linear crossover is used to produce npop - (95—€)%
new individuals from these parents. Apply muta-
tion to these new individuals.

8. Randomly generate 5% of total 7, individuals in
the search space Qi for the (¢ + 1)th generation.

9. Set [K'(t+1),..., K (t+1),..., K™r(t+1)] as the
current generation. Should this new generation

achieve the optimization goal, stop the MOGA; oth-
erwise go to step 3.

4 Design Example

The disk drives used in our experiments have a recording
density of 19,300 TPI and a sampling rate of 10,800Hz.
The track-following controller for these drives is an ex-
tended PID controller in the following form

C(Z“I) =k0 ~F(Z_l;k1,k2,k[) (7)
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Figure 3: The Pareto optimal solutions by MOGA

where kg is the proportional gain, F(-) is a function of
271, and constant parameters of k;, kg, and k;. A dig-
ital notch filter is added to attenuate the adverse effect
due to the suspension resonance at 2700Hz. The inte-
grator gain, K7, is predetermined and hence not a target
of optimization. So the tunable parameter set is K =
[ko, k1, k2]. The original controller used by these drives
was [ko, k1, k] = [0.243,0.850,0.261], which was hand-
tuned in the previous design cycle. PES of those drives
were collected to build the statistical disturbance model.
The search space x = [(0.01 : 0.98), (—0.8 : 0.99),
(—0.8: 0.99)] is the range of K that stabilizes the nom-
inal plant. The gradient method used in [3] had al-
ways failed to converge in this range. The parameter
- for MOGA is listed in Table 1. Design constraints are
PMMIN = 360, GMMIN = 5.5dB, WoMIN = 500HZ,
and Seomax = 8dB.

It took the MOGA 10.5 minutes in a PIII 550 computer
to give a Pareto optimal set (Rank 1) with 9 solutions
in the 60th generation, as shown in Figure 3. One so-
lution, K = [0.261,0.864, 0.335], which has the minimal
var(opgps) among the Pareto optimal set, was picked
up and loaded into those drives. The performance com-
parison between this optimized controller and the orig-
inal one is shown in Table 2. The 4% improvement
of mean(opps) and 7% of var(opgs) in experiments
may be considered moderate because the original con-
troller had been well optimized. It also can be seen that
mean(opgs) and var(opgs) predicted by the model
match up reasonably well with the experimental results.
The disturbance model was then updated based on new
PES measurements, and ready for the next run of op-
timization. This iterative optimization process can be
repeated until satisfactory results are obtained.

5 Conclusion

In this paper, a non-convex MOP of tuning the fixed-
structure track following controller for HDDs has been

solved by using the MOGA. A disturbance model was
used to effectively predict the time-domain performance
of candidate solutions for a large population of drives.
The controller parameters were then tuned by MOGA,
directly towards the minimization of mean(opgs) and
var(opgs) under various frequency-domain constraints.
As shown by simulations and experiments, the pro-
posed method was capable of optimizing the controller
in a large range in which gradient-based methods gen-
erally failed. The proposed method is also very use-
ful for other mass-produced electro-mechanical systems
with fixed-structure controllers during the initial devel-
opment phase.
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