
Evolutionary Algorithm Based Exploration of Software Schedules forDigital Signal ProcessorsEckart ZitzlerEE Dept. and Institute TIKETH Z�urich, Gloriastr. 35CH{8092 Z�urich, Switzerlandzitzler@tik.ee.ethz.ch J�urgen TeichEE Dept. and Institute DATEUniversity of PaderbornD{33098 Paderborn, Germanyteich@date.uni-paderborn.de Shuvra S. BhattacharyyaEE Dept. and UMIACSUniversity of MarylandCollege Park, MD 20742, U.S.A.ssb@eng.umd.eduAbstractThe simultaneous exploration of tradeo�s be-tween program memory, data memory and ex-ecution time requirements (3D) for DSP (dig-ital signal processing) algorithms in embed-ded computing environments is a demandingapplication and example par excellence of amulti-objective optimization problem. In or-der to solve this problem, two evolutionaryalgorithms are shown to be successfully appli-cable for exploring Pareto-optimal solutions.For di�erent well-known target DSP proces-sors, the trade-o� fronts are analyzed. Thetwo approaches are quantitatively compared.1 IntroductionStarting with a data 
ow graph speci�cation to be im-plemented on a digital signal processor, we study thee�ects between instantiating code by inlining or sub-routine calls as well as the e�ect of loop nesting andcontext switching on a target processor (DSP) that isused as a component in a memory and cost-critical en-vironment, e.g., a single-chip solution. For such appli-cations, a careful exploration of the possible spectrumof implementations is of utmost importance becausethe market of these products is driven by tight costand performance constraints. Frequently, these sys-tems are once programmed to run forever. Optimiza-tion and exploration times in the order of hours aretherefore neglectable.We present the �rst systematic optimization frame-work for exploring implementation trade-o�s in the3-dimensional run-time/program memory/data mem-ory space of implementations, and we compare twoevolutionary algorithm based Pareto-front explorationapproaches to solve this multi-objective optimizationproblem.The methodology begins with a given synchronousdata
ow graph [Lee and Messerschmitt, 1987] as usedin many rapid prototyping environments as in-put for code generators for programmable dig-

ital signal processors (PDSPs) [Buck et al., 1991,Lauwereins et al., 1990, Ritz et al., 1992].Example 1 A practical example is a sample-rate con-version system. In Fig. 1, a digital audio tape (DAT),operating at a sample rate of 48 kHz is interfacedto a compact disk (CD) player operating at a sam-pling rate of 44.1 kHz, e.g., for recording purposes, see[Vaidyanathan, 1993] for details on multistage samplerate conversion. 3A B C D E FCD DAT1 1 2 2 7 8 7 5 1Figure 1: CDtoDAT conversion benchmarkAs reported by DSP analysts (e.g., the DSPStonebenchmarking group [Zivojnovic et al., 1994]), today'sDSP compilers still produce several 100%s of overheadwith respect to assembly code written and optimizedby hand. A commonly used approach in SDF-baseddesign environments that avoids the limitations of cur-rent compiler technology is to store optimized assem-bly code for each actor in a target-speci�c library andto generate code from a given schedule by instantiat-ing actor code in the �nal program. By doing this, thein
uence of the compiler technology may be taken outas one unknown factor of e�ciency.Prior work on code size minimization of SDF sched-ules has focused on an inline code generation model[Bhattacharyya et al., 1996]. The total memory re-quirement may then be approximated by a linear com-bination of the (weighted) number of actor appear-ances in a schedule. Evidently, so called single ap-pearance schedules (SASs), where each actor appearsonly once in a schedule, are program memory optimalunder this model. However, they may not be datamemory minimal, and in general, it may be desirableto trade-o� some of the run-time e�ciency of code in-lining with further reduction in code size by using sub-routine calls, especially with system-on-a-chip imple-mentations. For example, if only a very small amountof program memory is available for a signal process-



ing subsystem, but the data memory and speed con-straints are not tight, then a compact looped scheduleorganization with heavy use of subroutines would bedesirable. Similarly, if the data memory and execu-tion time are severe "bottlenecks", but program spaceis abundant, then a minimal bu�er schedule organi-zation (which typically precludes the use of extensivelooping [Bhattacharyya et al., 1999] with inline code)would be preferable.The present study extends our previous work[Teich et al., 1998] where a single-objective EA wasused to minimize data memory requirements for a re-stricted class of schedules (SAS) and implementations(no subroutine calls). Here, we seek to explore the di-mensions of program memory, data memory, and exe-cution time requirements simultaneously for arbitraryschedules, a demanding multi-objective optimizationproblem. For its solution, two evolutionary algorithmbased approaches are compared in Section 4 First, theoptimization problem and metrics are formally de�ned(Section 2 and 3). Sections 5 and 6 deal with aspectsof the EAs, and the experiments performed, respec-tively, including a quantitative comparison of the twoEAs for solving the exploration problem.2 SDF Scheduling FrameworkDe�nition 1 (SDF graph) An SDF graph G de-notes a 5-tuple G = (V;A; produced; consumed; delay)where� V is the set of nodes (actors)(V = fv1; v2; � � � ; vjVjg).� A is the set of directed arcs. With source(�)(sink(�)), we denote the source node (targetnode) of an arc � 2 A.� produced : A! N denotes a function that assignsto each directed arc � 2 A the number of pro-duced tokens produced(�) per invocation of actorsource(�).� consumed : A ! N denotes a function that as-signs to each directed arc � 2 A the number ofconsumed tokens per invocation of actor sink(�).� delay : A! N0 denotes the function that assignsto each arc � 2 A the number of initial tokensdelay(�) that reside on �.Example 2 The graph in Fig. 1 has jV j = 6 nodes (oractors). Each presents a function that may be executedas soon as its input contains at least consumed(�) datatokens on each ingoing arc �, see the numbers anno-tated with the arc heads. E.g., actor B requires oneinput token on its input arc, and produces 2 outputtokens on its outgoing arc when �ring. In the showngraph, delay(�) = 0 8� 2 A. Hence, initially, only ac-tor A, the source node, may �re. Afterwards, B may�re for the �rst time. After that, however, node C stillcannot yet �re, because it requires consumed(�) = 3tokens on its ingoing arc, however, there are only two

produced by the �ring of B. In general, many �ringsequences of actors may evolve.A schedule is a sequence of actor �rings. A properly-constructed SDF graph is compiled by �rst construct-ing a �nite schedule S that �res each actor at leastonce, does not deadlock, and produces no net changein the number of tokens queues associated with eacharc. When such a schedule is repeated in�nitely, wecall the resulting in�nite sequence of actor �rings avalid periodic schedule, or simply valid schedule.Example 3 For the CDtoDAT graph in Figure 1,the minimal number of actor �rings is obtained asq(A) = q(B) = 147, q(C) = 98, q(D) = 28; q(E) =32; q(F ) = 160. The schedule (1(7(7(3AB)(2C))(4D))(32E(5F ))) represents a valid schedule.Each parenthesized term (n S1 S2 � � � Sk) is re-ferred to as schedule loop having iteration count n anditerands S1; S2; � � � ; Sk. We say that a schedule for anSDF graph is a looped schedule if it contains zero ormore schedule loops. A schedule is called single ap-pearance schedule, or simply SAS in the following, if itcontains only one appearance of each actor.Example 4 The schedule (1(147A)(147B)(98C)(28D)(32E)(160F )) is a valid SAS for the graph shownin Fig. 1.2.1 Code generation modelFor each actor in a valid schedule S, we insert a codeblock that is obtained from a library of prede�ned ac-tors or a simple subroutine call of the correspondingsubroutine, and the resulting sequence of code blocks(and subroutine calls) is encapsulated within an in�-nite loop to generate a software implementation. Eachschedule loop thereby is translated into a loop in thetarget code.Example 5 For the simple SDF graph in Fig. 2a), abu�er model for realizing the data bu�er on the arc� as well as a pseudo assembly code notation (sim-ilar to the Motorola DSP56k assembly language) forthe complete code for the schedule S = (1(3A)(2B))is shown in Fig. 2b), c) respectively. There is a lo-cation loc that is the address of the �rst memory cellthat implements the bu�er and one read (rp(�)) andwrite pointer (wp(�)) to store the actual read (write)location. The notation do #N LABEL denotes astatement that speci�es N successive executions of theblock of code between the do-statement and the instruc-tion at location LABEL. First, the read pointer rp(�)to the bu�er is loaded into register R1 and the writepointer wp(�) is loaded into R2. During the execu-tion of the code, the new pointer locations are obtainedwithout overhead using autoincrement modulo address-ing ((R1)+; (R2)+). For the above schedule, the con-tents of the registers (or pointers) is shown in Fig. 3.



A B2 3G �a)b) c) move loc;R1move loc;R2code for Aoutputs y0; y1move y0; (R1)+l do #3; loop Aloc move (R2)+; x0inputs x0; x1; x2move (R2)+; x1move (R2)+; x2do #2; loop Bcode for Bloop B :move y1; (R1)+loop A :wp(�)rp(�)
Figure 2: SDF graph a), memory model for arc bu�erb), and Motorola DSP56k-like assembly code realizingthe schedule S = (1(3A)(2B)).A2 B1A1 wp(�)rp(�) A3 B2Figure 3: Memory accesses for the schedule S =(1(3A)(2B))3 Optimization Metrics3.1 Program memory overhead P (S)Assume that each actorNi in the library has a programmemory requirement of w(Ni) 2 N memory words.Let flag(Ni) 2 f0; 1g denote the fact whether in aschedule, a subroutine call is instantiated for all actorinvocations of the schedule (flag(Ni) = 0) or whetherthe actor code is inlined into the �nal program textfor each occurrence of Ni in the code (flag(Ni) =1). Hence, given a schedule S, the program memoryoverhead P (S) will be accounted for by the followingequation:1P (S) = jV jXi=1 (app(Ni; S) � w(Ni) � flag(Ni))+ (w(Ni) + app(Ni; S) � PS) � (1� flag(Ni))+ PL(S) (1)Note that in case one subroutine is instantiated(flag(Ni) = 0), the second term is non-zero addingthe �xed program memory size of the module to thecost and the subroutine call overhead PS (code for call,context save and restore, and return commands). Inthe other case, the program memory of this actor iscounted as many times as it appears in the scheduleS (inlining model). The additive term PL(S) 2 N de-notes the program overhead for looped schedules. Itaccounts for a) the additional programmemory neededfor loop initialization, and b) loop counter increment,loop exit testing and branching instructions. Thisoverhead is processor-speci�c, and in our computationsproportional to the number of loops in the schedules.1app(Ni; S): number of times, Ni appears in the sched-ule string S).

3.2 Bu�er memory overhead D(S)We account for overhead due to data bu�ering for thecommunication of actors (bu�er cost). The simplestmodel for bu�ering is to assume that a distinct seg-ment of memory is allocated for each arc of a givengraph.2 The amount of data needed to store the to-kens that accumulate on each arc during the evolutionof a schedule S is given as:D(S) = X�2Amax tokens(�; S) (2)Here, max tokens(�; S) denotes the maximum num-ber of tokens that accumulate on arc � during theexecution of schedule S.Example 6 Consider the schedule in Example 4 ofthe CDtoDAT benchmark. This schedule has a bu�ermemory requirement of 1471+1472+982+288+325=1021. Similarly, the bu�er memory requirement of thelooped schedule (1(7(7(3AB)(2C))(4D))(32E(5F )))is 264.3.3 Execution Time Overhead T (S)With execution time, we denote the duration of ex-ecution of one iteration of a SDF graph comprisingq(Ni) activations of each actor Ni in clock cycles ofthe target processor.3In this work, we account for the e�ects of (1) loopoverhead, (2) subroutine call overhead, and (3) bu�er(data) communication overhead in our characteriza-tion of a schedule. Our computation of the executiontime overhead of a given schedule S therefore consistsof the following additive components:Subroutine call overhead: For each instance of an actorNi with flag(Ni) = 0, we add a processor speci�clatency time L(Ni) 2 N to the execution time. Thisnumber accounts for the number of cycles needed forstoring the necessary amount of context prior to callingthe subprogram (e.g., compute and save incrementedreturn address), and to restore the old context priorto returning from the subroutine (sometimes a simplebranch).42In [Teich et al., 1999], we introduced di�erent mod-els for bu�er sharing, and e�cient algorithms to computebu�er sharing. Due to space requirements, and for mattersof comparing our approach with other techniques, we usethe above simple model here.3Note that this measure is equivalent to the inverse ofthe throughput rate in case it is assumed that the outer-most loop repeats forever.4Note that the exact overhead may depend also on theregister allocation and bu�er strategy. Furthermore, we as-sume that no nesting of subroutine calls is allowed. Also,recursive subroutines are not created and hence disallowed.Under these conditions, the context switching overhead willbe approximated by a constant L(Ni) for each module Ni



Communication time overhead: Due to static schedul-ing, the execution time of an actor may be assumed�xed (no interrupts, no I/O-waiting) necessary), how-ever, the time needed to communicate data (read andwrite) depends in general a) on the processor capa-bilities, e.g., some processors are capable of managingpointer operations to modulo bu�ers in parallel withother computations.5, and b) on the chosen bu�ermodel (e.g., contiguous versus non-contiguous bu�ermemory allocation). In a �rst approximation, we de-�ne a penalty for the read and write execution cyclesthat is proportional to the number of data read (writ-ten) during the execution of a schedule S. For exam-ple, such a penalty may be of the formIO(S) = 2 X�=(Ni;Nj)2A q(Ni)produced(Ni)Tio (3)where Tio denotes the number of clock cycles that areneeded between reading (writing) 2 successive input(output) tokens.Loop overhead: For looped schedules, there is in gen-eral the overhead of initializing and updating a loopcounter, and of checking the loop exit condition, andof branching, respectively. The loop overhead for oneiteration of a simple schedule loop L (no inner loopscontained in L) is assumed a constant TL 2 N of pro-cessor cycles, and its initialization overhead T initL 2 N.Let x(L) 2 N denote the number of loop iterations ofloop L, then the loop execution overhead is given byO(L) = T initL + x(L) � TL. For nested loops, the to-tal overhead of an innermost loop is given as above,whereas for an outer loop L, the total loop overheadis recursively de�ned asO(L) = T initL + x(L) � TL + XL0 evoked inLO(L0)! (4)The total loop overhead O(S) of a looped schedule S isthe sum of the loop overheads of the outermost loops.Example 7 Consider the schedule (1(3(3A)(4B))(4(3C)(2D))), and assume that the overhead for oneloop iteration TL = 2 cycles in our machine model,the initialization overhead being T initL = 1. Theoutermost loop consists of 2 loops L1 (left) and L2(right). With O(S) = 1+ 1 � (2 +O(L1) +O(L2)) andx(L1) = 3, x(L2) = 4, we obtain the individual loopoverheads as O(L1) = 1 + 3 � (2 + O(3A) + O(4B))and O(L2) = 1 + 4 � (2 + O(3C) + O(2D)). The in-nermost loops (3A), (4B), (3C), (2D) have the over-heads 1 + 6; 1 + 8; 1 + 6; 1 + 4, respectively. Hence,or even to be a processor-speci�c constant TS, if no infor-mation on the compiler is available. Then, TS may by cho-sen as an average estimate or by the worst-case estimate(e.g., all processor registers must be saved and restoredupon a subroutine invocation).5Note that this overhead is then highly dependent onthe register allocation strategy.

O(L1) = 1 + 3 � 18 and O(L2) = 1 + 4 � 14, and O(S)becomes 115 cycles.In total, T (S) of a given schedule S is de�ned asT (S) = ( jV jXi=1(1� flag(Ni)) � L(Ni) � q(Ni))+ IO(S) + O(S) (5)Example 8 Consider again Example 7. Let the in-dividual execution time overheads for subroutine callsbe L(A) = L(B) = 2, and L(C) = L(D) = 10 cy-cles. Furthermore, let code for A and C be gener-ated by inlining (flag(A) = flag(C) = 1) and bysubroutine call for the other actors. Hence, T (S) =L(B) � q(B) + L(D) � q(D) + O(S) + IO(S) results inT (S) = 2 � 12 + 10 � 8 + 115 + IO(S) = 219 + IO(S).Hence, the execution overhead is 219 cycles with re-spect to the same actor execution sequence but withonly inlined actors and no looping at all.3.4 Target processor modelingFor the following experiments, we will characterize thein
uence of a chosen target processor by the followingoverhead parameters using the above target (overhead)functions:� PS : subroutine call overhead (number of cycles)(here: for simplicity assuming independence of ac-tor, and no context to be saved and restored ex-cept PC and status registers).� PL: the number of program words for a completeloop instruction including initialization overhead.� TS : the number of cycles required to execute asubroutine call and a return instruction and tostore and recover context information.� TL; T initL : loop overhead, loop initialization over-head, respectively in clock cycles.Three real DSPs and one �ctive processor P1 havebeen modeled, see Table 1. One can observe that theDSP56k and TMS320C40 have high subroutine execu-tion time overhead; the DSP56k, however, has a zero-loop overhead and high loop initialization overhead;Table 1: The parameters of 3 well-known DSP pro-cessors. All are capable of performing zero-overheadlooping. For the TMS320C40, however, it is recom-mended to use a conventional counter and branch im-plementation of a loop in case of nested loops.P1 is a�ctive processor modeling high subroutine overheads.System MotorolaDSP56k ADSP2106x TI320C40 P1PL 2 1 1 2PS 2 2 2 10TL; T initL 0,6 0,1 8,1 0,1TS 8 2 8 16



and the TMS320C40 has a high loop iteration over-head but low loop initialization overhead. P1 modelsa processor with high subroutine overheads.4 Evolutionary Multi-objectiveOptimizationThe problem under consideration involves three di�er-ent objectives: program memory, bu�er memory, andexecution time. These cannot be minimized simulta-neously, since they are con
icting { a typical multi-objective optimization problem. In this case, one isnot interested in a single solution but rather in a setof optimal trade-o�s which consists of all solutions thatcannot be improved in one criterion without degrada-tion in another. The corresponding set is denoted asPareto-optimal set.De�nition 2 Let us consider, without loss of gener-ality, a multi-objective minimization problem with mdecision variables and n objectives:Minimize ~y = f(~x) = (f1(~x); : : : ; fn(~x)) (6)where ~x = (x1; : : : ; xm) 2 X and ~y = (y1; : : : ; yn) 2 Yare tuples. A decision vector ~a 2 X is said to dominatea decision vector ~b 2 X (also written as ~a � ~b) i�8i 2 f1; : : : ; ng : fi(~a) � fi(~b) ^9j 2 f1; : : : ; ng : fj(~a) < fj(~b) (7)Additionally, in this study we say ~a covers ~b (~a � ~b) i�~a � ~b or f(~a) = f(~b). All decision vectors which arenot dominated by any other decision vector are callednondominated. Pareto-optimal points are the non-dominated decision vectors of the entire search space.Evolutionary algorithms (EAs) seem to be espe-cially suited to multi-objective optimization becausethey are able to capture multiple Pareto-optimalsolutions in a single simulation run and may ex-ploit similarities of solutions by crossover. Someresearchers even suggest that multi-objective searchand optimization might be a problem area whereEAs do better than other blind search strate-gies [Fonseca and Fleming, 1995]. The fact that sev-eral multi-objective EAs have been proposed since19856 and that the interest in that �eld has been grow-ing up to now supports this assumption.In this study, the Strength Pareto Evolution-ary Algorithm (SPEA), a recent technique pro-posed in [Zitzler and Thiele, 1998a], is used. InSection 6.2, it is compared with another ap-proach called Niched Pareto Genetic Algorithm(NPGA) [Horn and Nafpliotis, 1993]. Both methodsare brie
y described in the following.6An excellent review of di�erent evolutionary ap-proaches can be found in [Fonseca and Fleming, 1995].

4.1 Strength Pareto Evolutionary AlgorithmSPEA maintains besides the regular population an ex-ternal set of individuals that contains the nondomi-nated solutions of all solutions generated so far. Thisset is updated every generation and if necessary re-duced in size in case the maximum number of membersis exceeded. The reduction is accomplished by a clus-tering technique which preserves the characteristics ofthe nondominated front.Fitness assignment is performed in two steps:Step 1: Each solution i in the external nondominatedset is assigned a real �tness value fi 2 [0; 1),where fi is the number of population mem-bers j, for which i � j, divided by the popu-lation size plus one.Step 2: The �tness of an individual j in the popula-tion is calculated by summing the �tness val-ues of all external nondominated solutions ithat cover j.7Finally, both population and external nondominatedset take part in the selection process. Thereby, binarytournament selection with replacement is used to �llthe mating pool.4.2 Niched Pareto Genetic AlgorithmNPGA combines tournament selection and the con-cept of Pareto dominance. Two competing individ-uals and a comparison set of tdom other individualsare picked at random from the population. If one ofthe competing individuals is dominated by any mem-ber of the set and the other is not, then the latter ischosen as winner of the tournament. If both individ-uals are dominated (or not dominated), the result ofthe tournament is decided by �tness sharing (see, e.g.,[Deb and Goldberg, 1989]): The individual which hasless individuals in its niche (de�ned by the parameter�share) is selected for reproduction.5 Problem CodingEach genotype consists of four parts which are encodedin separate chromosomes:1. schedule,2. code model,3. actor implementation vector, and4. loop 
ag.The schedule represents the order of actor �rings andis �xed in length because the number of �rings ofeach actor is known a priori. Since arbitrary actor�ring sequences may contain deadlocks, etc., a repairmechanism is applied in order to map every schedulechromosome unambiguously to a valid schedule. It7Since small �tness values correspond to high reproduc-tion probabilities, members of the external nondominatedset have better �tness than the population members.



bases on a topological sort algorithm, and is describedin [Teich et al., 1998]: at each point in time, the left-most �reable actor is chosen whose maximum numberof �rings has not been reached yet.The code model chromosome determines the way howthe actors are implemented and contains one gene withthree possible alleles: all actors are implemented assubroutines, only inlining is used, or subroutines andinlining are mixed. For the last case, the actor imple-mentation vector, a bit vector, encodes for each actorseparately whether it appears as inlined or subroutinecode in the implementation.Finally, a fourth chromosome, the loop 
ag, deter-mines whether to use loops as a mean to reduce pro-gram memory. For this aim, a dynamic program-ming looping algorithm is applied to the actor �ringsequence in order to �nd an optimally looped sched-ule. This procedure, which has been incorporated inour system, is a generalization of the GDPPO algo-rithm presented in [Bhattacharyya et al., 1996]. Sincethe run-time is rather high (O(n3)) considering largen, the algorithm can be sped up by certain parametersettings|however, at the expense of optimality.8Due to the heterogeneous chromosomes, a mixtureof di�erent crossover and mutation operators accom-plishes the generation of new individuals. For theschedule, order-based uniform crossover and scramblesublist mutation are used [Davis, 1991]. These opera-tors only permute the actor �ring sequence and guar-antee that the number of occurrences per actor re-mains constant. Concerning the other chromosomes,we work with one-point crossover and bit 
ip mutation(as the code model gene is represented by an integer,mutation is done by choosing one of the three allelesat random).6 ExperimentsTwo kinds of experiments were performed: designspace exploration for the CDtoDAT example using dif-ferent processors and comparison of SPEA and NPGAon nine practical examples. In all cases, the followingEA parameters were used:generations : 250population size : 100crossover rate : 0.8mutation rate : 0.19Moreover, before every run a heuristic called AP-GAN (acyclic pairwise grouping of adjacent nodes[Bhattacharyya et al., 1996]) was applied to this prob-lem. The APGAN solution was inserted in two waysinto the initial population: with and without looping.8This extension is called suboptimal looping in thefollowing.9The bit vector was mutated with a probability of 1=Lper bit, where L denotes the length of the vector.

Finally, the set of all nondominated solutions foundduring the entire evolution process was considered asoutcome of one single optimization run.6.1 CDtoDAT Design Space ExplorationSPEA was used to compare the design spaces of thedi�erent DSP processors listed in Table 1; thereby, thesize of the external nondominated set was unrestrictedin order to �nd as many solutions as possible.The experimental results are visualized in Fig. 4 to8. Four times, the accelerated looping algorithm hasbeen used (about 5 hours run-time on a Sun ULTRA30), one run has also been made with optimal looping(run-time about 5 days).10To make the di�erences between the processors clearer,the plots have been cut at the top without destroyingtheir characteristics.The trade-o�s between the three objectives are verywell re
ected by the extreme points. The rightmostpoints in the plots represent schedules that neitheruse looping nor subroutine calls. Therefore, they areoptimal in the execution time dimension, but need amaximum of program memory because for each ac-tor �ring there is an inlined code block. In contrast,the leftmost points make excessive use of looping andsubroutines which leads to minimal program memoryrequirements, however at the expense of a maximumexecution time overhead.Furthermore, the in
uence of looping and subroutinecalls is remarkable. Using subroutines does not inter-fere with bu�er memory requirements; there is onlya trade-o� between program memory and executiontime. Subroutine calls may save much program mem-ory, but at the same time they are expensive in termsof execution time. This fact is re
ected by "gaps" onthe execution time axis in Figures 5 to 7. Looping,however, depends on the schedule: schedules which10Note that this optimization time is still quite low forprocessor targets assumed to be programmed once and sup-posed to run an application forever.
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timeFigure 8: Motorola DSP56k (optimal looping)961 for a point with lowest program memory require-ments when using the suboptimal looping algorithm.As a result, the optimization time spent by the loop-ing algorithm has a big in
uence on the shape of thenondominated front.6.2 Comparison of SPEA and NPGANine practical DSP applications, which were takenfrom [Bhattacharyya et al., 1996], form the basis tocompare the performance of SPEA and NPGA. Thenumber of actors of the corresponding SDF graphsvaries between 12 and 92, the length of the associatedschedules ranges from 30 to 313 actor �rings.To evaluate the performance of the two EAs, a metricintroduced in [Zitzler and Thiele, 1998b] is used here:De�nition 3 Let A and B be two sets of decision vec-tors. The function C maps the ordered pair (A,B) tothe interval [0,1]:C(A;B) := jfb 2 B; 9 a 2 A : a � bgjjBj (8)The value C(A;B) gives the fraction of B that is cov-ered by members of A. Note that both C(A;B) andC(B;A) have to be taken into account, since not nec-essarily C(A;B) = 1� C(B;A). Although, this metric



does not say anything about the distributions and thedistances of the two fronts, it is su�cient here, as theresults will show.On each example, SPEA and NPGA ran in pairs onthe same initial population, using optimal looping;then the two resulting nondominated sets were as-sessed by means of the C function. Altogether, eightof these pairwise runs were performed per applica-tion, each time operating on a di�erent initial pop-ulation. Furthermore, in the SPEA implementationthe population size was set to 80 and the size of theexternal nondominated set was limited to 20. Con-cerning NPGA, we followed recommendations givenin [Horn and Nafpliotis, 1993] and chose tdom = 10(10% of the population size); the niching parameter�share = 0:4886 was calculated based on guidelinesgiven in [Deb and Goldberg, 1989].Table 2: Comparison of SPEA and NPGA on ninepractical examples11System C(SPEA,NPGA) C(NPGA,SPEA)mean min max mean min max1 99% 97% 100% 12% 10% 17%2 98% 93% 100% 34% 14% 53%3 94% 78% 100% 6% 5% 8%4 99% 95% 100% 4% 2% 8%5 99% 96% 100% 4% 2% 10%6 91% 79% 98% 7% 4% 10%7 97% 89% 100% 8% 5% 17%8 98% 93% 100% 3% 2% 3%9 97% 90% 100% 4% 2% 7%The experimental results are summarized in Table 2.On all nine applications, SPEA covers more than 78%of the NPGA outcomes (in average more than 90%),whereas NPGA covers in average less than 10% of theSPEA outcomes. This means that the fronts generatedby SPEA dominate most parts of the correspondingNPGA fronts, whereas only very few solutions foundby NPGA are not covered. Since SPEA incorporatesan elitist strategy in contrast with NPGA, the resultssuggest that elitism might be an important factor toimprove evolutionary multi-objective search. This ob-servation was also made in [Zitzler and Thiele, 1998a].References[Bhattacharyya et al., 1999] Bhattacharyya, S., Murthy,P., and Lee, E. (1999). Synthesis of embedded softwarefrom synchronous data
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