
Comparison of Multiobjetive Evolutionary Algorithms:Empirial Results(Revised Version)Ekart Zitzler1, Kalyanmoy Deb2, and Lothar Thiele11Computer Engineering and Networks Laboratory (TIK)Department of Eletrial EngineeringSwiss Federal Institute of Tehnology (ETH) ZurihCH-8092 Z�urih, SwitzerlandE-mail: fzitzler,thieleg�tik.ee.ethz.h2Kanpur Geneti Algorithms Laboratory (KanGAL)Department of Mehanial EngineeringIndian Institute of Tehnology KanpurKanpur, PIN 208 016, IndiaE-mail: deb�iitk.a.inTIK-Report No. 70Institut f�ur Tehnishe Informatik und Kommunikationsnetze, ETH Z�urihGloriastrasse 35, ETH-Zentrum, CH{8092 Z�urih, SwitzerlandDeember 22, 1999AbstratIn this paper, we provide a systemati omparison of various evolutionary approahesto multiobjetive optimization using six arefully hosen test funtions. Eah test funtioninvolves a partiular feature that is known to ause diÆulty in the evolutionary optimiza-tion proess, mainly in onverging to the Pareto-optimal front (e.g., multimodality anddeeption). By investigating these di�erent problem features separately, it is possible topredit the kind of problems to whih a ertain tehnique is well suited or not. However, inontrast to what was suspeted beforehand, the experimental results indiate a hierarhyof the algorithms under onsideration. Furthermore, the emerging e�ets give evidenethat the suggested test funtions provide suÆient omplexity to ompare multiobjetiveoptimizers. Finally, elitism is shown to be an important fator for improving evolutionarymultiobjetive searh.
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1 MotivationEvolutionary algorithms (EAs) have beome established as the method at hand to explorethe Pareto-optimal front in multiobjetive optimization problems that are too omplex to besolved by exat methods suh as linear programming and gradient searh. This is not onlybeause there are hardly any alternatives for searhing intratably large spaes for multiplePareto-optimal solutions; due to their inherent parallelism and their apability to exploitsimilarities of solutions by reombination, they are able to approximate the Pareto-optimalfront in a single optimization run. The numerous appliations and the rapidly growing interestin the area of multiobjetive EAs take this fat into aount.After the �rst pioneering studies on evolutionary multiobjetive optimization appearedin the mid-eighties (Sha�er 1984; Sha�er 1985; Fourman 1985), a ouple of di�erent EAimplementations were proposed in the years 1991{1994 (Kursawe 1991; Hajela and Lin 1992;Fonsea and Fleming 1993; Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 1994).Later, these approahes (and variations of them) were suessfully applied to various mul-tiobjetive optimization problems (Ishibuhi and Murata 1996; Cunha, Oliviera, and Covas1997; Valenzuela-Rend�on and Uresti-Charre 1997; Fonsea and Fleming 1998; Parks andMiller 1998). In reent years, some researhers have investigated partiular topis of evolu-tionary multiobjetive searh, suh as onvergene to the Pareto-optimal front (Veldhuizenand Lamont 1998a; Rudolph 1998), nihing (Obayashi, Takahashi, and Takeguhi 1998), andelitism (Parks and Miller 1998; Obayashi, Takahashi, and Takeguhi 1998), while others haveonentrated on developing new evolutionary tehniques (Laumanns, Rudolph, and Shwe-fel 1998; Zitzler and Thiele 1999). For a thorough disussion of evolutionary algorithms formultiobjetive optimization, the interested reader is referred to (Fonsea and Fleming 1995;Horn 1997; Veldhuizen and Lamont 1998b; Coello 1999).In spite of this variety, there is a lak of studies whih ompare the performane anddi�erent aspets of the several approahes. Consequently, the question arises, whih imple-mentations are suited to whih sort of problem and what are the spei� advantages anddrawbaks, respetively, of di�erent tehniques.First steps in this diretion have been made in both theory and pratie. On the theoret-ial side, Fonsea and Fleming (1995) disussed the inuene of di�erent �tness assignmentstrategies on the seletion proess. On the pratial side, Zitzler and Thiele (1998, 1999) useda NP-hard 0/1 knapsak problem to ompare several multiobjetive EAs.In this paper, we provide a systemati omparison of six multiobjetive EAs, inluding arandom searh strategy as well as a single-objetive EA using objetive aggregation. The basisof this empirial study is formed by a set of well-de�ned, domain-independent test funtionswhih allow the investigation of independent problem features. We thereby draw upon resultspresented in (Deb 1999), where problem features that may make onvergene of EAs tothe Pareto-optimal front diÆult are identi�ed and, furthermore, methods of onstrutingappropriate test funtions are suggested. The funtions onsidered here over the range ofonvexity, non-onvexity, disrete Pareto fronts, multimodality, deeption, and biased searhspaes. Hene, we are able to systematially ompare the approahes based on di�erent kindsof diÆulty and to determine more exatly where ertain tehniques are advantageous or havetrouble. In this ontext, we also examine further fators suh as population size and elitism.The paper is strutured as follows: Setion 2 introdues key onepts of multiobjetiveoptimization and de�nes the terminology used in this paper mathematially. We then givea brief overview of the multiobjetive EAs under onsideration with speial emphasis on1



the di�erenes between them. The test funtions, their onstrution and their hoie, are thesubjet of Setion 4, whih is followed by a disussion about performane metris to assess thequality of trade-o� fronts. Afterwards, we present the experimental results in Setion 6 andinvestigate further aspets like elitism (Setion 7) and population size (Setion 8) separately.A disussion of the results as well as future perspetives are given in the last hapter.2 De�nitionsOptimization problems involving multiple, oniting objetives are often approahed byaggregating the objetives into a salar funtion and solving the resulting single-objetiveoptimization problem. In ontrast, in this study we are onerned with �nding a set of optimaltrade-o�s, the so-alled Pareto-optimal set. In the following, we formalize this well-knownonept and also de�ne the di�erene between loal and global Pareto-optimal sets.A multiobjetive searh spae is partially ordered in the sense that two arbitrary solutionsare related to eah other in two possible ways: either one dominates the other or neitherdominates.De�nition 1 Let us onsider, without loss of generality, a multiobjetive minimization prob-lem with m deision variables (parameters) and n objetives:Minimize y = f(x) = (f1(x); : : : ; fn(x))where x = (x1; : : : ; xm) 2 Xy = (y1; : : : ; yn) 2 Y (1)and where x is alled deision vetor, X parameter spae, y objetive vetor, and Y objetivespae. A deision vetor a 2 X is said to dominate a deision vetor b 2 X (also written asa � b) if and only if 8i 2 f1; : : : ; ng : fi(a) � fi(b) ^9j 2 f1; : : : ; ng : fj(a) < fj(b) (2)Additionally, in this study we say a overs b (a � b) if and only if a � b or f(a) = f(b).Based on the above relation, we an de�ne nondominated and Pareto-optimal solutions:De�nition 2 Let a 2 X be an arbitrary deision vetor.1. The deision vetor a is said to be nondominated regarding a set X 0 � X if and only ifthere is no vetor in X 0 whih dominates a; formally6 9a0 2 X 0 : a0 � a (3)If it is lear within the ontext whih set X 0 is meant, we simply leave it out.2. The deision vetor a is Pareto-optimal if and only if a is nondominated regarding X.
2



Pareto-optimal deision vetors annot by improved in any objetive without ausinga degradation in at least one other objetive; they represent, in our terminology, globallyoptimal solutions. However, analogous to single-objetive optimization problems there mayalso be loal optima whih onstitute a nondominated set within a ertain neighborhood.This orresponds to the onepts of global and loal Pareto-optimal sets introdued by Deb(1999)1:De�nition 3 Consider a set of deision vetors X 0 � X.1. The set X 0 is denoted as a loal Pareto-optimal set if and only if8a0 2 X 0 :6 9a 2 X : a � a0 ^ jja� a0jj < � ^ jjf(a)� f(a0)jj < Æ (4)where jj � jj is a orresponding distane metri and � > 0, Æ > 0.2. The set X 0 is alled a global Pareto-optimal set if and only if8a0 2 X 0 :6 9a 2 X : a � a0 (5)Note that a global Pareto-optimal set does not neessarily ontain all Pareto-optimal solutions.If we refer to the entirety of the Pareto-optimal solutions, we simply write Pareto-optimalset; the orresponding set of objetive vetors is denoted as Pareto-optimal front.3 Evolutionary Multiobjetive OptimizationTwo major problems must be addressed when an evolutionary algorithm is applied to multi-objetive optimization:1. How to aomplish �tness assignment and seletion, respetively, in order to guide thesearh towards the Pareto-optimal set.2. How to maintain a diverse population in order to prevent premature onvergene andahieve a well distributed trade-o� front.Often, di�erent approahes are lassi�ed with regard to the �rst issue, where one an dis-tinguish between riterion seletion, aggregation seletion, and Pareto seletion (Horn 1997).Methods performing riterion seletion swith between the objetives during the seletionphase. Eah time an individual is hosen for reprodution, potentially a di�erent objetivewill deide whih member of the population will be opied into the mating pool. Aggregationseletion is based on the traditional approahes to multiobjetive optimization where the mul-tiple objetives are ombined into a parameterized single objetive funtion. The parametersof the resulting funtion are systematially varied during the same run in order to �nd a set ofPareto-optimal solutions. Finally, Pareto seletion makes diret use of the dominane relationfrom De�nition 1; Goldberg (1989) was the �rst to suggest a Pareto-based �tness assignmentstrategy.In this study, six of the most salient multiobjetive EAs are onsidered, where for eahof the above ategories at least one representative was hosen. Nevertheless, there are manyother methods that may be under onsideration for the omparison (f. (Veldhuizen andLamont 1998b; Coello 1999) for an overview of di�erent evolutionary tehniques):1A slightly modi�ed de�nition of loal Pareto optimality is given here.3



� Among the lass of riterion seletion approahes, the Vetor Evaluated Geneti Algo-rithm (Sha�er 1984; Sha�er 1985) has been hosen. Although some serious drawbaksare known (Sha�er 1985; Fonsea and Fleming 1995; Horn 1997), this algorithm hasbeen a strong point of referene up to now. Therefore, it has been inluded in thisinvestigation.� The EA proposed by Hajela and Lin (1992) is based on aggregation seletion in om-bination with �tness sharing (Goldberg and Rihardson 1987), where an individual isassessed by summing up the weighted objetive values. As weighted-sum aggregationappears still to be widespread due to its simpliity, Hajela and Lin's tehnique has beenseleted to represent this lass of multiobjetive EAs.� Pareto-based tehniques seem to be most popular in the �eld of evolutionary multiob-jetive optimization (Veldhuizen and Lamont 1998b). In partiular, the algorithm pre-sented by Fonsea and Fleming (1993), the Nihed Pareto Geneti Algorithm (Horn andNafpliotis 1993; Horn, Nafpliotis, and Goldberg 1994), and the Nondominated SortingGeneti Algorithm (Srinivas and Deb 1994) appear to have ahieved the most attentionin the EA literature and have been used in various studies. Thus, they are also on-sidered here. Furthermore, a reent elitist Pareto-based strategy, the Strength ParetoEvolutionary Algorithm (Zitzler and Thiele 1999), whih outperformed four other mul-tiobjetive EAs on an extended 0/1 knapsak problem, is inluded in the omparison.4 Test Funtions for Multiobjetive OptimizersDeb (1999) has identi�ed several features whih may ause diÆulties for multiobjetiveEAs in i) onverging to the Pareto-optimal front and ii) maintaining diversity within thepopulation. Conerning the �rst issue, multimodality, deeption, and isolated optima arewell-known problem areas in single-objetive evolutionary optimization. The seond issueis important in order to ahieve a well distributed nondominated front. However, ertainharateristis of the Pareto-optimal front may prevent an EA from �nding diverse Pareto-optimal solutions: onvexity or non-onvexity, disreteness, and non-uniformity. For eahof the six problem features mentioned a orresponding test funtion is onstruted followingthe guidelines in (Deb 1999). We thereby restrit ourselves to only two objetives, in orderto investigate the simplest ase �rst. In our opinion, two objetives are suÆient to reetessential aspets of multiobjetive optimization. Moreover, we do not onsider maximizationor mixed minimization/maximization problems.Eah of the test funtions de�ned below is strutured in the same manner and onsistsitself of three funtions f1; g; h (Deb 1999, p.216):Minimize T (x) = (f1(x1); f2(x))subjet to f2(x) = g(x2; : : : ; xm)h(f1(x1); g(x2; : : : ; xm))where x = (x1; : : : ; xm) (6)The funtion f1 is a funtion of the �rst deision variable only, g is a funtion of the remainingm�1 variables, and the parameters of h are the funtion values of f1 and g. The test funtionsdi�er in these three funtions as well as in the number of variables m and in the values thevariables may take. 4



De�nition 4 We introdue six test funtions T1; : : : ;T6 that follow the sheme given in Equa-tion 6:� The test funtion T1 has a onvex Pareto-optimal front:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1�pf1=g (7)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1.� The test funtion T2 is the non-onvex ounterpart to T1:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1� (f1=g)2 (8)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1.� The test funtion T3 represents the disreteness feature; its Pareto-optimal front onsistsof several non-ontiguous onvex parts:f1(x1) = x1g(x2; : : : ; xm) = 1 + 9 �Pmi=2 xi=(m� 1)h(f1; g) = 1�pf1=g � (f1=g) sin(10�f1) (9)where m = 30 and xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1. Theintrodution of the sine funtion in h auses disontinuity in the Pareto-optimal front.However, there is no disontinuity in the parameter spae.� The test funtion T4 ontains 219 loal Pareto-optimal fronts and therefore tests for theEA's ability to deal with multimodality:f1(x1) = x1g(x2; : : : ; xm) = 1 + 10(m� 1) +Pmi=2(x2i � 10 os(4�xi))h(f1; g) = 1�pf1=g (10)where m = 10, x1 2 [0; 1℄ and x2; : : : ; xm 2 [�5; 5℄. The global Pareto-optimal front isformed with g(x) = 1 , the best loal Pareto-optimal front with g(x) = 1:25. Note thatnot all loal Pareto-optimal sets are distinguishable in the objetive spae.� The test funtion T5 desribes a deeptive problem and distinguishes itself from the othertest funtions in that xi represents a binary string:f1(x1) = 1 + u(x1)g(x2; : : : ; xm) = Pmi=2 v(u(xi))h(f1; g) = 1=f1 (11)where u(xi) gives the number of ones in the bit vetor xi (unitation),v(u(xi)) = ( 2 + u(xi) if u(xi) < 51 if u(xi) = 5 ) :5



and m = 11, x1 2 f0; 1g30 and x2; : : : ; xm 2 f0; 1g5. The true Pareto-optimal front isformed with g(x) = 10, while the best deeptive Pareto-optimal front is represented bythe solutions for whih g(x) = 11. The global Pareto-optimal front as well as the loalones are onvex.� The test funtion T6 inludes two diÆulties aused by the non-uniformity of the searhspae: �rstly, the Pareto-optimal solutions are non-uniformly distributed along the globalPareto front (the front is biased for solutions for whih f1(x) is near one); seondly, thedensity of the solutions is least near the Pareto-optimal front and highest away from thefront: f1(x1) = 1� exp(�4x1) sin6(6�x1)g(x2; : : : ; xm) = 1 + 9 � ((Pmi=2 xi)=(m� 1))0:25h(f1; g) = 1� (f1=g)2 (12)where m = 10, xi 2 [0; 1℄. The Pareto-optimal front is formed with g(x) = 1 and isnon-onvex.We will disuss eah funtion in more detail in Setion 6, where the orresponding Pareto-optimal fronts are visualized as well (Figures 1 to 6).5 Metris of PerformaneComparing di�erent optimization tehniques experimentally always involves the notion of per-formane. In the ase of multiobjetive optimization, the de�nition of quality is substantiallymore omplex than for single-objetive optimization problems, beause the optimization goalitself onsists of multiple objetives:� The distane of the resulting nondominated set to the Pareto-optimal front should beminimized.� A good (in most ases uniform) distribution of the solutions found is desirable. Theassessment of this riterion might be based on a ertain distane metri.� The extent of the obtained nondominated front should be maximized, i.e., for eahobjetive a wide range of values should be overed by the nondominated solutions.In the literature, some attempts an be found to formalize the above de�nition (or partsof it) by means of quantitative metris. Performane assessment by means of weighted-sumaggregation was introdued by Esbensen and Kuh (1996). Thereby, a setX 0 of deision vetorsis evaluated regarding a given linear ombination by determining the minimum weighted-sum of all orresponding objetive vetors of X 0. Based on this onept, a sample of linearombinations is hosen at random (with respet to a ertain probability distribution) andthe minimum weighted-sums for all linear ombinations are summed up and averaged. Theresulting value is taken as a measure of quality. A drawbak of this metri is that only the\worst" solution determines the quality value per linear ombination. Although several weightombinations are used, non-onvex regions of the trade-o� surfae ontribute to the qualitymore than onvex parts and may, as a onsequene, dominate the performane assessment.Finally, the distribution as well as the extent of the nondominated front is not onsidered.6



Another interesting way of performane assessment was proposed by Fonsea and Fleming(1996). Given a set X 0 � X of nondominated solutions, a boundary funtion divides theobjetive spae into two regions: the objetive vetors for whih the orresponding solutionsare not overed by X 0 and the objetive vetors for whih the assoiated solutions are overedby X 0. They all this partiular funtion, whih an also be seen as the lous of the familyof tightest goal vetors known to be attainable, the attainment surfae. Taking multipleoptimization runs into aount, a method is desribed to ompute a median attainmentsurfae by using auxiliary straight lines and sampling their intersetions with the attainmentsurfaes obtained. As a result, the samples represented by the median attainment surfaean be assessed relatively by means of statistial tests and therefore allow omparison ofthe performane of two or more multiobjetive optimizers. A drawbak of this approah isthat it remains unlear how the quality di�erene an be expressed, i.e., how muh betterone algorithm is than another. However, Fonsea and Fleming desribe ways of meaningfulstatistial interpretation in ontrast to the other studies onsidered here, and furthermore,their methodology seems to be well suited for visualization of the outomes of several runs.In the ontext of investigations on onvergene to the Pareto-optimal front, some authors(Rudolph 1998; Veldhuizen and Lamont 1998a) have onsidered the distane of a given set tothe Pareto-optimal set in the same way as the funtion M1 de�ned below. The distributionwas not taken into aount, beause the fous was not on this matter. However, in omparativestudies distane alone is not suÆient for performane evaluation, sine extremely di�erentlydistributed fronts may have the same distane to the Pareto-optimal front.Two omplementary metris of performane were presented in (Zitzler and Thiele 1998;Zitzler and Thiele 1999). On the one hand, the size of the dominated area in the objetivespae is taken under onsideration; on the other hand, a pair of nondominated sets is omparedby alulating the fration of eah set that is overed by the other set. The area ombines allthree riteria (distane, distribution, and extent) into one, and therefore sets di�ering in morethan one riterion may not be distinguished. The seond metri is in some way similar to theomparison methodology proposed in (Fonsea and Fleming 1996). It an be used to showthat the outomes of an algorithm dominate the outomes of another algorithm, although,it does not tell how muh better it is.2 We give its de�nition here, beause it is used in theremainder of this paper.De�nition 5 Let X 0;X 00 � X be two sets of deision vetors. The funtion C maps theordered pair (X 0;X 00) to the interval [0; 1℄:C(X 0;X 00) := jfa00 2 X 00;9a0 2 X 0 : a0 � a00gjjX 00j (13)The value C(X 0;X 00) = 1 means that all solutions inX 00 are dominated by or equal to solutionsin X 0. The opposite, C(X 0;X 00) = 0, represents the situation when none of the solutions in X 00are overed by the set X 0. Note that both C(X 0;X 00) and C(X 00;X 0) have to be onsidered,sine C(X 0;X 00) is not neessarily equal to 1� C(X 00;X 0).In summary, it may be said that performane metris are hard to de�ne and probablyit will not be possible to de�ne a single metri whih allows for all riteria in a meaningfulway. Along with that problem, the statistial interpretation assoiated with a performaneomparison is rather diÆult and still needs to be answered, sine multiple signi�ane testsare involved and thus tools from analysis of variane may be required.2Reently, an alternative metri has been proposed in (Zitzler 1999) in order to overome this problem.7



In this study, we have hosen a visual presentation of the results together with the appli-ation of the metri from De�nition 5. The reason for this is that we would like to investigatei) whether test funtions an adequately test spei� aspets of eah multiobjetive algorithmand ii) whether any visual hierarhy of the hosen algorithms exists. However, for a deeperinvestigation of some of the algorithms (whih is the subjet of future work), we suggest thefollowing metris whih allow assessment of eah of the riteria listed at the beginning of thissetion separately.De�nition 6 Given a set of pairwise nondominating deision vetors X 0 � X, a neighbor-hood parameter � > 0 (to be hosen appropriately), and a distane metri jj � jj. We introduethree funtions to assess the quality of X 0 regarding the parameter spae:1. The funtion M1 gives the average distane to the Pareto-optimal set X � X:M1(X 0) := 1jX 0j Xa02X0 minfjja0 � ajj;a 2 Xg (14)2. The funtionM2 takes the distribution in ombination with the number of nondominatedsolutions found into aount:M2(X 0) := 1jX 0 � 1j Xa02X0 jfb0 2 X 0; jja0 � b0jj > �gj (15)3. The funtion M3 onsiders the extent of the front desribed by X 0:M3(X 0) :=vuut mXi=1maxfjja0i � b0ijj;a0;b0 2 X 0g (16)Analogously, we de�ne three metris M�1, M�2, and M�3 on the objetive spae. Let Y 0; Y � Ybe the sets of objetive vetors that orrespond to X 0 and X respetively, and �� > 0 and jj � jj�as before: M�1(Y 0) := 1jY 0j Xp02Y 0 minfjjp0 � pjj�;p 2 Y g (17)M�2(Y 0) := 1jY 0 � 1j Xp02Y 0 jfq0 2 Y 0; jjp0 � q0jj� > ��gj (18)M�3(Y 0) :=vuut nXi=1maxfjjp0i � q0ijj�;p0;q0 2 Y 0g (19)While M1 and M�1 are intuitive, M2 and M3 (respetively M�2 and M�3) need furtherexplanation. The distribution metris give a value within the interval [0; jX 0j℄ ([0; jY 0j℄) whihreets the number of �-nihes (��-nihes) in X 0 (Y 0). Obviously, the higher the value thebetter the distribution for an appropriate neighborhood parameter (e.g., M�2(Y 0) = jY 0jmeans that for eah objetive vetor there is no other objetive vetor within ��-distane toit). The funtions M3 and M�3 use the maximum extent in eah dimension to estimate therange to whih the fronts spreads out. In the ase of two objetives, this equals the distaneof the two outer solutions. 8



6 Comparison of Di�erent Evolutionary Approahes6.1 MethodologyWe ompare eight algorithms on the six proposed test funtions:1. RAND: A random searh algorithm.2. FFGA: Fonsea's and Fleming's multiobjetive EA (1993).3. NPGA: The Nihed Pareto Geneti Algorithm (Horn, Nafpliotis, and Goldberg 1994).4. HLGA: Hajela's and Lin's weighted-sum based approah (1992).5. VEGA: Vetor Evaluated Geneti Algorithm (Sha�er 1985).6. NSGA: The Nondominated Sorting Geneti Algorithm (Srinivas and Deb 1994).7. SOEA: A single-objetive evolutionary algorithm using weighted-sum aggregation.8. SPEA: The Strength Pareto Evolutionary Algorithm (Zitzler and Thiele 1999).The multiobjetive EAs as well as RAND were exeuted 30 times on eah test problem, wherethe population was monitored for nondominated solutions and the resulting nondominatedset was taken as the outome of one optimization run. Here, RAND serves as an additionalpoint of referene and randomly generates a ertain number of individuals per generation,aording to the rate of rossover and mutation (but neither rossover and mutation norseletion are performed). Hene, the number of �tness evaluations was the same as for theEAs. In ontrast, 100 simulation runs were onsidered in ase of SOEA, eah run optimizingtowards another randomly hosen linear ombination of the objetives. The nondominatedsolutions among all solutions generated in the 100 runs form the trade-o� front ahieved bySOEA on a partiular test funtion.Independent of the algorithm and the test funtion, eah simulation run was arried outusing the following parameters:Number of generations : 250Population size : 100Crossover rate : 0.8Mutation rate : 0.01Nihing parameter �share : 0.48862Domination pressure tdom : 10The nihing parameter was alulated using the guidelines given in (Deb and Goldberg 1989)assuming the formation of ten independent nihes. Sine NSGA uses genotypi �tness sharingon T5, a di�erent value �share = 34 was hosen for this partiular ase. Conerning NPGA,the reommended value for tdom = 10% of the population size was taken (Horn and Nafpliotis1993). Furthermore, for reasons of fairness SPEA ran with a population size of 80 where theexternal nondominated set was restrited to 20.Regarding the implementations of the algorithms, one hromosome was used to enode them parameters of the orresponding test problem. Eah parameter is represented by 30 bits;the parameters x2; : : : ; xm only omprise 5 bits for the deeptive funtion T5. Moreover, all9



approahes exept FFGA were realized using binary tournament seletion with replaement,in order to avoid e�ets aused by di�erent seletion shemes. Furthermore, sine �tnesssharing may produe haoti behavior in ombination with tournament seletion, a slightlymodi�ed method is inorporated here, named ontinuously updated sharing (Oei, Goldberg,and Chang 1991). As FFGA requires a generational seletion mehanism, stohasti universalsampling was used in the FFGA implementation.6.2 Simulation ResultsIn Figures 1 to 6, the nondominated fronts ahieved by the di�erent algorithms are visualized.Per algorithm and test funtion, the outomes of the �rst �ve runs were uni�ed, and then thedominated solutions were removed from the union set; the remaining points are plotted in the�gures. Also shown are the Pareto-optimal fronts (lower urves) as well as additional refereneurves (upper urves). The latter urves allow a more preise evaluation of the obtained trade-o� fronts and were alulated by adding 0:1 � jmaxff2(x)g �minff2(x)gj to the f2 values ofthe Pareto-optimal points. The spae between Pareto-optimal and referene fronts representsabout 10% of the orresponding objetive spae. However, the urve resulting for the deeptivefuntion T5 is not appropriate for our purposes, sine it lies above the fronts produed by therandom searh algorithm. Instead, we onsider all solutions with g(x) = 10 � 2, i.e., for whihthe parameters are set to the deeptive attrators (v(u(xi)) = 2 for x2; : : : ; x11).In addition to the graphial presentation, the di�erent algorithms were assessed in pairsusing the C metri from De�nition 5. For an ordered algorithm pair (A1; A2), there is a sampleof 30 C values aording to the 30 runs performed. Eah value is omputed on the basis ofthe nondominated sets ahieved by A1 and A2 with the same initial population. Here, boxplots are used to visualize the distribution of these samples (Figure 7). A box plot onsists ofa box summarizing 50% of the data. The upper and lower ends of the box are the upper andlower quartiles, while a thik line within the box enodes the median. Dashed appendagessummarize the spread and shape of the distribution.3 Furthermore, the shortut REFS inFigure 7 stands for referene set and represents for eah test funtion a set of 100 equidistantpoints whih are uniformly distributed on the orresponding referene urve.Generally, the simulation results prove that all multiobjetive EAs do better than therandom searh algorithm. However, the box plots reveal that HLGA, NPGA, and FFGA donot always over the randomly reated trade-o� front ompletely. Furthermore, it an beobserved that NSGA learly outperforms the other non-elitist multiobjetive EAs regardingboth distane to the Pareto-optimal front and distribution of the nondominated solutions.This on�rms the results presented in (Zitzler and Thiele 1998). Furthermore, it is remarkablethat VEGA performs well ompared to NPGA and FFGA, although some serious drawbaks ofthis approah are known (Fonsea and Fleming 1995). The reason for this might be that weonsider the o�-line performane here in ontrast to other studies whih examine the on-lineperformane (Horn and Nafpliotis 1993; Srinivas and Deb 1994). On-line performane meansthat only the nondominated solutions in the �nal population are onsidered as the outome,while o�-line performane takes the solutions nondominated among all solutions generatedduring the entire optimization run into aount. Finally, the best performane is provided bySPEA, whih makes expliit use of the onept of elitism. Apart from T5, it even outperformsSOEA, in spite of substantially lower omputational e�ort and although SOEA uses an elitist3Note that outside values are not plotted in Figure 7 in order to prevent overloading of the presentation.10
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Figure 1: Test funtion T1 (onvex)
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Figure 2: Test funtion T2 (non-onvex)11
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Figure 3: Test funtion T3 (disrete)
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Figure 4: Test funtion T4 (multimodal)12
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Figure 5: Test funtion T5 (deeptive)
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Figure 6: Test funtion T6 (non-uniform)13
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14



strategy as well. This observation leads to the question of whether elitism would inreasethe performane of the other multiobjetive EAs. We will investigate this matter in the nextsetion.Considering the di�erent problem features separately, onvexity seems to ause the leastamount of diÆulty for the multiobjetive EAs. All algorithms evolved reasonably distributedfronts, although there was a di�erene in the distane to the Pareto-optimal set. On thenon-onvex test funtion T2, however, HLGA, VEGA, and SOEA have diÆulties �nding inter-mediate solutions, as linear ombinations of the objetives tend to prefer solutions strong inat least one objetive (Fonsea and Fleming 1995, p.4). Pareto-based algorithms have advan-tages here, but only NSGA and SPEA evolved a suÆient number of nondominated solutions.In the ase of T3 (disreteness), HLGA and VEGA are superior to both FFGA and NPGA. Whilethe fronts ahieved by the former over about 25% of the referene set on average, the latterome up with 0% overage. Among the onsidered test funtions, T4 and T5 seem to be thehardest problems, sine none of the algorithms was able to evolve a global Pareto-optimalset. The results on the multimodal problem indiate that elitism is helpful here; SPEA is theonly algorithm whih found a widely distributed front. Remarkable is also that NSGA andVEGA outperform SOEA on T4. Again, the omparison with the referene set reveals, thatHLGA and VEGA (100% overage) surpass NPGA (50% overage) and FFGA (0% overage).Conerning the deeptive funtion, SOEA is best, followed by SPEA and NSGA. Among theremaining EAs, VEGA appears to be preferable here, overing about 20% of the refereneset, while the others over 0% in all runs. Finally, it an be observed that the biased searhspae together with the non-uniform represented Pareto-optimal front (T6) makes it diÆultfor the EAs to evolve a well-distributed nondominated set. This also a�ets the distane tothe global optimum, as even the fronts produed by NSGA do not over the points in thereferene set.Finally, it must be noted that the inuene of the seletion sheme in ombination withthe mutation rate has not been investigated here. This mainly onerns FFGA whih uses adi�erent seletion mehanism than the other EAs under onsideration and may provide betterperformane with lower mutation rates.7 Elitism in Multiobjetive SearhSPEA showed the best performane among the algorithms under onsideration for the givenparameter settings. As it is the only method whih expliitly makes use of the onept ofelitism, the question arises whether elitism is the reason for this gap in performane andwhether the other EAs an be improved by the inorporation of elitism. We will brieydisuss this issue in the following.As opposed to single-objetive optimization, where the best solution is always opied intothe next population, the inorporation of elitism in multiobjetive EAs is substantially moreomplex. Instead of one best solution, we have here an elite set whose size an be onsiderableompared to the population. This fat involves two questions whih must be answered in thisontext:� Population =) Elite Set:Whih solutions are kept for how long in the elite set?� Elite Set =) Population: 15



When and how are whih members of the elite set re-inserted into the population?Often used is the onept of maintaining an external set of solutions whih are nondomi-nated among all individuals generated so far. In eah generation, a ertain perentage of thepopulation is �lled up or replaed by members of the external set|these members are eitherseleted at random (Ishibuhi and Murata 1996) or aording to other riteria, suh as theperiod that an individual has stayed in the set (Parks and Miller 1998). Another promisingelitism approah provides the so-alled (�+�) seletion mainly used in the area of evolution-ary strategies (B�ak 1996), where parents and o�spring ompete against eah other. Rudolph(1998) examines a simpli�ed version of a multiobjetive EA originally presented in (Kursawe1991) whih is based on (1+1) seletion.In this study, the elitism mehanism proposed in (Zitzler and Thiele 1999) was generalizedand implemented in FFGA, NPGA, HLGA, VEGA, and NSGA as follows: Let P denote the ur-rent population of size N and P a seond, external population whih keeps the nondominatedsolutions found so far; the size of P is restrited to N .Step 1: Generate the initial population P and set P = ;.Step 2: Set P 0 = P + P (multi-set union) and perform �tness assignment on the extendedpopulation P 0 of size N 0 = N +N .Step 3: Update external population by opying all nondominated members of P to P andafterwards removing double or dominated individuals from P .Step 4: If jP j > N then alulate redued nondominated set Pr of size N by lustering andset P = Pr.Step 5: Selet N individuals out of the N 0 individuals in P 0 and perform rossover andmutation to reate the next population P 00.Step 6: Substitute P by P 00 and go to Step 2 if the maximum number of generations is notreahed.The elitism variants of the algorithms are marked by an asterisk in order to distinguish themfrom the tehniques originally proposed by the orresponding authors. Note that the luster-ing proedure in Step 4 requires a distane metri. In ase of NSGA�, the phenotypi distaneon the parameter spae was onsidered, while the other algorithms used the phenotypi dis-tane on the objetive spae.The results for T1 and T2 are shown in Figures 8 and 9.4 Obviously, elitism is helpfulon these two funtions, although the visual presentation has to be interpreted with are asonly �ve runs are onsidered. For instane, NSGA� and SPEA seem to perform equally wellhere using those partiular parameter settings. Moreover, the �gures indiate that elitism aneven help multiobjetive EAs to surpass the performane of a weighted-sum single-objetiveEA in spite of signi�antly lower omputational e�ort. However, both test funtions andthe metri used are not suÆient here to also ompare the elitist variants with eah other.Testing di�erent elitist strategies and di�erent elitist multiobjetive EAs on more diÆulttest funtions will be the subjet of future work.4The experiments were performed as desribed in Setion 6; however, N was set to 80 and N to 20, similarto SPEA. 16
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Figure 8: Results on the test funtion T1 using elitism.

0.2 0.4 0.6 0.8 1
f1

0.2

0.4

0.6

0.8

1

1.2

f2

RAND

FFGA*

NPGA*

HLGA*

VEGA*

NSGA*

SOEA

SPEA

Figure 9: Results on the test funtion T2 using elitism.17



C(A�; A) FFGA NPGA HLGA VEGA NSGA

C(A;A�)Figure 10: Box plots omparing eah non-elitism algorithm A with its elitism-variant A�.Nevertheless, we have ompared eah algorithm with its elitist variant based on the Cmetri. As an be seen in Figure 10, elitism appears to be an important fator to improveevolutionary multiobjetive optimization. Only in one ase (NSGA on the deeptive problem)was the performane of the elitist variant worse than the non-elitist version. Investigation ofthis matter will also be an important part of an elitism study.8 Inuene of the Population SizeOn two test funtions (T4 and T5), none of the algorithms under onsideration was able to �nda global Pareto-optimal set regarding the hosen parameters. Therefore, several runs wereperformed in order to investigate the inuene of the population size as well as the maximumnumber of generations onverging towards the Pareto-optimal front.In Figures 11 and 12, the outomes of multiple NSGA runs are visualized. On the deeptivetest funtion T5, NSGA found a subset of the globally optimal solutions using a population sizeof 1000. In ontrast, T4 seems to be a diÆult test problem, sine even a population size of10000 was not suÆient to onverge to the optimal trade-o� front after 250 generations. Thisdid also not hange when the maximum number of generations was inreased substantially(10000). In the later ase, the resulting front was (using a population size of 500) almostidential to the one ahieved by NSGA� running 1000 generations. However, the inorporationof elitism �nally enabled NSGA to �nd a global Pareto-optimal set after 10000 generations.To sum up, one may say that the hoie of the population size strongly inuenes the EA'sapability to onverge towards the Pareto-optimal front. Obviously, small populations do notprovide enough diversity among the individuals. Inreasing the population size, however, doesnot automatially yield an inrease in performane, as an be observed with the multimodalfuntion. The same holds for the number of generations to be simulated. Elitism, on theother hand, seems to be an appropriate tehnique to prevent premature onvergene. Evenafter 1000 generations, better solutions, and �nally Pareto-optimal solutions, evolved withT4.9 ConlusionsWe have arried out a systemati omparison of several multiobjetive EAs on six di�erenttest funtions. Major results are: 18



0 0.2 0.4 0.6 0.8 1
f1

0

1

2

3

4

5

6

7

f2

Pop: 500 + elitism
Gen: 10000

Pop: 500 + elitism
Gen: 1000

Pop: 10000
Gen: 250

Pop: 5000
Gen: 250

Pop: 1000
Gen: 250

Pop: 500
Gen: 250

Pop: 250
Gen: 250

Pop: 100
Gen: 250

Figure 11: Comparison of di�erent population sizes on the test funtion T4 using NSGA. Tworuns with elitism were performed for 1000 and 10000 generations.
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� The suggested test funtions provide suÆient omplexity to ompare di�erent multi-objetive optimizers. Multimodality and deeption seem to ause the most diÆultyfor evolutionary approahes. However, non-onvexity is also a problem feature whihmainly weighted-sum based algorithms appear to have problems with.� For the hosen test problems and parameter settings, a lear hierarhy of algorithmsemerges regarding the distane to the Pareto-optimal front in desending order of merit:1. SPEA (Zitzler and Thiele 1999).2. NSGA (Srinivas and Deb 1994).3. VEGA (Sha�er 1985).4. HLGA (Hajela and Lin 1992)5. NPGA (Horn, Nafpliotis, and Goldberg 1994).6. FFGA (Fonsea and Fleming 1993).While there is a lear performane gap between SPEA and NSGA as well as betweenNSGA and the remaining algorithms, the fronts ahieved by VEGA, HLGA, NPGA, andFFGA are rather lose together. However, the results indiate that VEGA might beslightly superior to the other three EAs, while NPGA ahieves fronts loser to the globaloptimum as FFGA. Moreover, it seems that VEGA and HLGA have diÆulties evolvingwell-distributed trade-o� fronts on the non-onvex funtion. Nevertheless, the situationmay be di�erent for other parameter settings and other test problems.� Elitism is an important fator in evolutionary multiobjetive optimization. On theone hand, this statement is supported by the fat that SPEA i) learly outperforms allalgorithms on �ve of the six test funtions and ii) is the only method among the onesunder onsideration whih inorporates elitism as a entral part of the algorithm. Onthe other hand, the performane of the other algorithms improved signi�antly whenSPEA's elitist strategy was inluded (f. Figure 10). Preliminary results indiate thatNSGA with elitism equals the performane of SPEA.However, it also has to be mentioned that in ertain situations, e.g., when prefereneinformation is inluded in the �tness assignment proess and the preferenes hangeover time, elitism may have its drawbaks. This issue has not been onsidered here.This study forms a good basis to ombine promising aspets of di�erent algorithms intoa new approah that shows good performane on all test problems. The experimental resultssuggest that suh an algorithm may be onstruted, where probably the nondominated sortinglassi�ation as well as elitism play a major role. Several issues must be addressed, rangingfrom the question of how elitism is implemented most e�etively to the problem of whetherdistane metris should operate on the parameter spae or the objetive spae. In this ontext,the suggested performane metris ould be useful to ompare tehniques quantitatively,allowing a more aurate assessment than the C metri used here.Finally, authors who are interested in omparing the performane of their own algorithmswith those onsidered here an download the simulation results from the following internetsite: http://www.tik.ee.ethz.h/�zitzler/testdata.html.20
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