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Evolutionary algorithms (EAs) have become es-
tablished as the method at hand to explore the
Pareto-optimal front in multiobjective optimiza-
tion problems. This is not only because there are
hardly any alternatives in the field of multiob-
jective optimization; due to their inherent paral-
lelism and their capability to exploit similarities
of solutions by crossover, they are able to capture
several Pareto-optimal solutions in a single opti-
mization run. The numerous applications and the
rapidly growing interest in the area of multiobjec-
tive EAs take this fact into account.

After the first pioneering studies on evolutionary
multiobjective optimization appeared in the mid-
1980s (Schaffer 1985; Fourman 1985), a couple
of different EA implementations were proposed
in the years 1991-1994 (Kursawe 1991; Hajela
and Lin 1992; Fonseca and Fleming 1993; Horn,
Nafpliotis, and Goldberg 1994; Srinivas and Deb
1994). Later, these approaches (and variations of
them) were successfully applied to various multi-
objective optimization problems. In recent years,
some researchers have investigated particular top-
ics of evolutionary multiobjective search, such as
convergence to the Pareto-optimal front, niching,
and elitism, while others have concentrated on de-
veloping new evolutionary techniques.

In spite of this variety, there is a lack of studies
which compare the performance and different as-
pects of the several approaches. Consequently,
the question arises, which implementations are
suited to which sort of problem and what are the
specific advantages and drawbacks, respectively,
of different techniques.

First steps in this direction have been made in
both theory and practice. On the theoretical
side, Fonseca and Fleming (1995) discussed the
influence of different fitness assignment strategies
on the selection process. On the practical side,
Zitzler and Thiele (1998b, 1999) used a NP-hard
0/1 knapsack problem to compare several multi-
objective EAs.

In this study!, we provide a systematic compar-
ison of six multiobjective EAs, including a ran-
dom search strategy as well as a single-objective
EA using objective aggregation. The basis of this
empirical study is formed by a set of well-defined,
domain-independent test functions which allow
the investigation of independent problem features.
We thereby draw upon results presented in (Deb
1998), where problem features that may make
convergence of EAs to the Pareto-optimal front
difficult are identified and, furthermore, meth-
ods of constructing appropriate test functions are
suggested. The functions considered here cover
the range of convexity, non-convexity, discrete
Pareto fronts, multimodality, deception, and bi-
ased search spaces. Hence, we are able to system-
atically compare the approaches based on differ-
ent kinds of difficulty and to determine more ex-
actly where certain techniques are advantageous
or have trouble. In this context, we also examine
further factors such as population size and elitism.

Major results of this study are:

e The suggested test functions provide suffi-

!This work is described in more detail with additional
extensions in (Zitzler, Deb, and Thiele 1999).



cient complexity to compare different mul-
tiobjective optimizers. Multimodality and
deception seem to cause the most difficulty
for evolutionary approaches. However, non-
convexity is also a problem feature which
mainly weighted-sum based algorithms ap-
pear to have problems with.

A clear hierarchy of algorithms emerges re-
garding the distance to the Pareto-optimal
front in descending order of merit:

1. SPEA (Zitzler and Thiele 1998a; Zitzler
and Thiele 1999).

NSGA (Srinivas and Deb 1994).
VEGA (Schaffer 1985).
HLGA (Hajela and Lin 1992)

NPGA (Horn, Nafpliotis, and Goldberg
1994).

6. FFGA (Fonseca and Fleming 1993).

ok N

While there is a clear performance gap be-
tween SPEA and NSGA as well as between
NSGA and the remaining algorithms, the
fronts achieved by VEGA, HLGA, NPGA, and
FFGA are rather close together. However, the
results indicate that VEGA might be slightly
superior to the other three EAs, while NPGA
achieves fronts closer to the global optimum
as FFGA. Moreover, it seems that VEGA
and HLGA have difficulties evolving well-
distributed trade-off fronts on the non-convex
function.

Elitism is an important factor in evolution-
ary multiobjective optimization. On the one
hand, this statement is supported by the fact
that SPEA i) clearly outperforms all algo-
rithms on five of the six test functions and
ii) is the only method among the ones un-
der consideration which incorporates elitism
as a central part of the algorithm. On the
other hand, the performance of the other al-
gorithms improved significantly when SPEA’s
elitist strategy was included. Preliminary re-
sults indicate that NSGA with elitism equals
the performance of SPEA.
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