Solving of Discrete Multiobjective Problems using an Evolutionary Algorithm with
a Repair Mechanism

Jesse B. Zydallis and Gary B. Lamont
Dept of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433, USA

Abstract—The solving of Real-World Multiobjective prob-
lems (MOPs) with an Evolutionary Algorithm (EA) is an increas-
ing area of interest. Presented in this paper is the application
of a building block based EA to a real-world discrete MOP. A
constraint handling method had to be designed and employed.
The description of this method and the repair mechanism instru-
mented to repair infeasible solutions is described in detail along
with statistical analysis.

I. INTRODUCTION

Real-World optimization problem solving is a task that we
as engineers and scientists encounter daily. Having a good
tool and validating the ability of that tool to solve optimization
problems that are important to our work is an integral part of
being an engineer or scientist. In this paper we present a a pop-
ulation based, stochastic approach, an Evolutionary Algorithm
(EA), to solving a complex, discrete multiobjective problem
(MOP) with equality constraints.

The algorithm utilized to solve this MOP is the Multiobjec-
tive Messy Genetic Algorithm IT (MOMGA-II) {7]. This algo-
rithm is unique in its explicit manipulation of Building Blocks
(BBs) and variable string lengths to find the solution to com-
plex MOPs. This paper is organized as follows: The following
section presents background information on the MOMGA-IIL
Section III. presents the problem domain information followed
by the results and conclusions.

II. MOMGA-II

The MOMGA-II is a modification of the MOMGA [6] cre-
ated by Van Veldhuizen and Lamont. The modifications of the
MOMGA resulted in an increase in efficiency, and the ability
to solve discrete MOPs and MOPs containing any number of
input decision variables [7]. The MOMGA-II modifications re-
flect the improvements completed to the messy GA [4] to cre-
ate the fast messy GA [3]. The fast-messy GA and MOMGA-II
consist of the following phases: Initialization Phase, Building
Block Filtering, Juxtapositional Phase [3], [7]. The difference
from the MOMGA lies in the Initialization phase and the Pri-
mordial phase, which is referred to as the Building Block Fil-

The views expressed in this article are those of the authors and do not reflect
the official policy or position of the United States Air Force, Department of
Defense, or the US Government.

470 0-7803-7150-X/01/$10.00@2001 IEEE

tering (BBF) phase. The initialization phase creates the popu-
lation randomly and uses a reduced population size.

The MOMGA-II utilizes a probabilistic approach in initial-
izing the population. This is referred to as Probabilistically
Complete Initialization (PCI) [3]. The probabilistic BB ap-
proach initializes the population by creating a controlled num-
ber of BB clones of a user specified size. Building blocks are
sub-strings that contain “good” information, i.e. an example
of a BB of size two is one in which a 1 in position 0 and 10
typically results in a good solution. This approach effectively
reduces the computational bottlenecks encountered with the
original MOMGA’s initialization phase by reducing the size
of the initial population required.

After creation these BBs are filtered, through a Building
Block Filtering (BBF) phase, to probabilistically ensure that
all of the desired BBs are in the initial population. This fil-
tering is accomplished through a schedule consisting of the
random deletion of bits in each of the chromosomes through-
out the user specified input schedule. The schedule specifies
the generations to conduct the random deletion, the number of
specified bits to delete from the chromosomes and the number
of juxtapositional generations to execute. The random dele-
tion of bits is alternated with tournament selection between the
building blocks that have been found to yield a population of
“good” building blocks. This complex parameter selection is
a very critical element of the MOMGA-II. A more detailed
fmGA discussion of the theoretical analysis of the schedule is
presented in [3], [S].

In order to accomplish this filtering operation, all of the BBs
must be evaluated with respect to the fitness function. Since
the BBs are in actuality only partial strings, also referred to
as underspecified population members, a method must exist to
complete this evaluation. A competitive template is utilized
here. This template is a fully specified population member,
i.e. a member that is equal in length to the specified string
length. To complete the evaluation, the underspecified popu-
lation member’s bits replace the respective bits in the template
and then the evaluation takes place. This effectively allows the
BB to be evaluated based on the bits present in the BB.

During the Juxtapositional phase the building blocks that

have been found through the Initialization phase and the BBF
phase are recombined through the use of a cut and splice op-

erator alternated with tournament selection with thresholding.
The cut-and-splice operation takes the population members
from the BB size and combines them to reach the specified
string length. This process increases the length of the individ-
ual’s strings towards becoming fully specified while keeping
the best members through the selection operator. Again the
fitness evaluation is completed on fully specified individuals,
through the use of the competitive templates if necessary.

These modifications have shown the MOMGA-II to be a sta-
tistically more efficient algorithm than the MOMGA, while re-
utilizing much of the same code as the original MOMGA. In
terms of the competitive template, the MOMGA-II operates in
the same fashion as the MOMGA. Each of the strings in the
population are evaluated with respect to the different functions
that one is attempting to optimize. The different competitive
templates are used to fully specify individuals that have un-
specified bits. In the case of overspecification, where a gene
location has multiple allele values, a left to right scheme is
used upon which the first value encountered to specify the gene
becomes the allele value for that gene.

II1. MULTIOBJECTIVE PROBLEMS AND TERMINOLOGY

MOPs typically consist of competing objective functions,
which may be independent or dependent on each other. An
example of this is a company’s quest to purchase a backbone
for their network that will provide the greatest throughput at
the least monetary cost. These objectives are are highly de-
pendent on each other as increased cost will bring about in-
creased throughput and vice-versa. Although single-objective
optimization problems may have a unique optimal solution,
MOPs usually have a possibly uncountable set of solutions,
which when evaluated produce vectors whose components rep-
resent trade-offs in decision space.

Pareto optimal solutions are those solutions within the search
space whose corresponding objective vector components can-
not be all simultaneously improved. These solutions are also
termed non-inferior, admissible, or efficient solutions. Their
corresponding vectors are termed nondominated; selecting a
vector(s) from this vector set implicitly indicates acceptable
Pareto optimal solutions (genotypes). These solutions may
have no clearly apparent relationship besides their member-
ship in the Pareto optimal set. It is simply the set of all so-
lutions whose associated vectors are nondominated; we stress
that these solutions are classified as such based on their pheno-
typical expression. Their expression (the nondominated vec-
tors), when plotted in criterion (phenotype) space, is known as
the current Pareto front.

The concept of Pareto Optimality is integral to the theory and
analysis of MOPs. A way to determine if one solution is “bet-
ter” than another is a necessity here as well as in all problems.
Pareto concepts allow for the determination of a set of opti-
mal solutions in MOPs. Some key Pareto concepts are defined
mathematically [6]. The following Pareto notation is utilized

in order to clarify the analysis. Pipown and Py, are genotype
sets of Pareto optimal solutions. Each of these partially ordered
sets has a corresponding phenotype set, or Pareto front set
termed PFipon and PFyye . Pipown represents the Pareto
optimal solutions that the particular Multiobjective Evolution-
ary Algorithm (MOEA) has found versus P;,,,. which contains
the true Pareto optimal solutions for the MOP, PF},, 04, and
PF}y. are the representative phenotype sets.

IV. CONSTRAINT HANDLING

Discrete Optimization problems with hard constraints are dif-
ficult problems to solve with MOEAs. This is especially true
if the constraints drastically reduce the size of the feasible so-
lution space. An easy method to implement would be to allow
the MOEA to execute as normal and remove the infeasible so-
lutions at the end. This is a simplistic method to implement
but suffers from the possibility of producing no solutions to the
problem if the constraints are very restrictive. What may occur
is that the MOEA finds solutions to the unconstrained prob-
lem and thereby throws away solutions that actually meet the
constraints. This would occur in the Pareto dominance routine
since at each generation the Pareto optimal solutions that the
MOEA found for the MOP may change. A simple example of
this is if the MOEA found a set of Pareto optimal solutions in
the first generation that meet the constraints but the Pareto opti-
mal solutions found in the 5th generation do not meet the con-
straints and dominate those found in the 1st generation. This
would result in a solution set of infeasible solutions.

Another approach to the constraint handling problem is pre-
sented by Deb [1], [2]. He proposed a constraint handling
method that is utilized within the Pareto dominance selection
mechanism, presented in Definition 1, and compared it to other
methods that exist. He states that the method presented in his
paper produced “better” results than other methods on the lim-
ited test problems utilized.

Definition 1 Pareto Based Constraint Handling Selection
In comparing two solutions, © and j:

1. If both solutions, i and j, are feasible, choose the solution
with the “better” value.

2. If solution 1 is feasible and solution j is not, choose solu-
tion 1.

3. If neither solution, i or j, is feasible, but solution i has a
smaller overall constraint violation, choose solution 1.

The aforementioned constraint handling methods were con-
sidered for inclusion into the MOMGA-II. In order to accom-
plish this, each of the phases must be analyzed to determine
if the method can be effectively applied in this MOEA. In the
initialization phase the population of the MOMGA-II is ran-
domly created. This initialization phase implementation at-
tempts to disperse the population members across the search

471

space. There is a necessity in creating population members
that are sufficiently different from each other in attempting
to find various “good” building blocks. The disadvantage of
this approach is apparent once a highly constrained MOP (HC-
MOP) is encountered. In a HCMOP, the majority of solutions,
if not all solutions, created by this random process are infeasi-
ble. This is a poor starting point for the MOMGA-IL. Since the
MOMGA-II relies on the idea that the PCI initialization phase
probabilistically produces the majority of “good” BBs, a pop-
ulation of infeasible solutions potentially has 0 “good” BBs, or
may lead to all of the feasible BBs being lost in the BBF phase.
This necessitates a different initialization method.

A population of infeasible members also illustrates problems
associated with Deb’s and other’s constraint handling methods
when applied to a BB based EA [1], {2]. With infeasible so-
lutions and the MOMGA-II's explicit BB based manipulation
and selection routines, the MOMGA-II has a low probability
of producing a feasible BB or population member in this situa-
tion. This is a result of the random initialization and selection
mechanism. In any problem a random solution method may or
may not produce a “good” solution or BB. The selection mech-
anism utilized promotes population members that have the best
fitness, not necessarily those that are feasible. The MOMGA-II
proceeds to solve the MOP with the best BBs it finds, feasible
or infeasible. One may then ask, Why not just keep and use
the feasible BBs in the BBF and selection routines? This ques-
tion assumes that there are some feasible BBs to start with and
that there is enough diversity in the population members to pre-
vent premature convergence. While this situation may be true
for MOPs with “relaxed” constraints, this generally is not true
for HCMOPs. HCMOPs may start with 0 feasible population
members and BBs. If this is the case, other constraint han-
dling methods generate solutions but do not reverse the affect
of the BBF phase and its removal of “poor” solutions from the
population, which in fact may be feasible solutions. -

Another factor that must not be overlooked is the competitive
template. Even with the assumption of a feasible template to
start with, feasible or infeasible BBs may lead to an infeasible
population member. This is important since the competitive
template has a large affect on the population members while
the string lengths are short, since more bits are used from the
template. As the strings increase in length in the juxtaposi-
tional phase, the competitive template has a lesser affect on
the evaluation and possibly no affect once the member is fully
specified. The issue here is that even keeping a feasible tem-

_plate does not guarantee a feasible population member. This
is due to the combination of the BBs and the templates for
evaluation and the different possible combinations of BBs in
producing a final solution.

To avoid the potential of producing few feasible solutions, the
simple post-constraint handling method was deemed inappro-
priate as well as the method suggested by Deb. The approach
used in the MOMGA-II does not rely on constraint handling

472

being coupled with the selection mechanism but instead relies
on a repair mechanism. The use of a repair mechanism allows
the algorithm to proceed without modification to the existing
selection routines.

V. REPAIR MECHANISMS

The MOMGA-II is a unique MOEA in comparison to most
other MOEAs in its building block manipulation, variable
string lengths and competitive templates. In order to effectively
handle repairing population members, there are a number of
issues that must be addressed. Repair of population members
appears to be the most effective means of solving HCMOPs
with the MOMGA-II. This section discusses potential repair
mechanisms, potential problems with these mechanisms and
methods chosen for implementation.

The initialization of the population and the competitive tem-
plate are a key issue in the effectiveness of the MOMGA-IIL
Since HCMOPs tend to yield few feasible population members
the proposed solution is to randomly generate the population
members and the competitive templates. Immediately follow-
ing this repair all of the population members and competitive
templates. This ensures that the MOMGA-II starts with a fea-
sible population and templates.

The repair of the population members is necessary. A repair
mechanism must be decided upon as well. The repair mecha-
nism presented here assumes an integer based decision variable
space MOP. In an integer based input variable space, the fol-
lowing procedure repairs the population members:

1. Randomly choose a bit position to start at.
2. Randomly choose a direction to start with.

3. Proceed in the specified direction to increment or decre-
ment each decision variable by one unit until the member
is feasible

This method has overhead associated with the constant analysis
to determine if the population member is feasible or not. The
advantage of this method is that one decision variable is not
decremented by a huge amount while the others are left the
same. The idea here is to “move” the population member by
a uniform amount in each decision variable dimension until a
feasible solution is achieved.

Once the repair mechanism completes, all of the population
members are feasible going into the BBF phase. While in the
BBF phase the population members are allowed to become in-
feasible. If during the BBF phase, each BB was repaired, this
would occur with respect to the specific competitive template
that is being used. Essentially it may be the template that is
causing the combination of the BB and the template to be in-
feasible. Therefore the BBs are allowed to be infeasible and no
repairs take place in this phase.

The juxtapositional phase proceeds with potentially infeasi-
ble BBs and a feasible template. As each generation of this
phase executes, the population members are not repaired fol-
lowing each cut-and-splice operation. This is to help avoid
convergence to a non-optimal solution. However, after each
generation of the juxtapositional phase, all of the Pareto front
population members are recorded to a data file. The members
that are written to the data file are repaired to ensure that the
MOMGA-II produces a feasible solution set. As the juxtapo-
sitional generations are completed, the population member’s
strings become longer. The repair mechanism is not used to
allow for infeasible solutions to exist. These infeasible solu-
tions may lead to feasible solutions in subsequent recombina-
tion generations and therefore are not removed. Once all three
phases of the algorithm complete, all of the population mem-
bers are repaired and the “best” members become the new com-
petitive templates for the next iteration of the phases.

VI. RESULTS

The MOMGA-II’s repair mechanism is applied to a discrete
HCMOP consisting of 15 decision variables, 3 minimization
objective functions and strict equality constraints. The results
with and without the repair mechanism are presented. The ob-
jective functions are:

S=- (0.8$1,1 + 0.3-’1)1,2 + 0.6z1,3 +0.00121.4 + 0.0012}1’5

+0.4x2,1 + 0.822,2 + 0.6z2,3 + 0.001z24 + 0.001z2,5
+0.001z3,1 + 0.001z3,2 + 0.1z33 + 0.823,4 + 0.4za5) (1)

W =20.2(z1,1 + 22,1 + ®3,1) + 28.5(x1,2 + 22,2 + 3,2)
+35.7(x1,3 + T2,3 + 3,3) + 19.9(z1,4 + 2,4 + T3.4)
+22.5(z1,5 + 2,5 + T3,5) 2)

V =1650(z1,1 + 2,1 + z3,1) + 2475(21,2 + 22,2 + 3,2)
+2887.5(z1,3 + T2,3 + £3,3) + 1705(x1.4 + £2,4 + 3,4)

+2200(z1,5 + 2.5 + Z3,5) ®
subject to:

(z1,1,...235) > 0 (C))

(311,1,...1'3,5) € (5)

zii+ T2+ T13+21a+T1s = 10 (6)

21+ T22+T23+T24+225 = B)

T3) + 232+ T3+ a3a+aas = 1 ®

Figure 1 presents the true Pareto Front, found through a total
enumeration of the search space, versus the Pareto Front the
MOMGA-II with its repair mechanism finds. We see that the
MOMGA-II with the repair mechanism finds all of the points!
In the case of the MOMGA-II without the repair mechanism,
none of the true Pareto Front points are found since it does not
even find one feasible point. This illustrates how useful a repair
mechanism is with HCMOPs.

MOP-ALP Pareto Front

Function 3

Function 2

Function 1

Fig. 1. True Pareto Front Versus MOMGA-II Pareto Front

VII. CONCLUSIONS

Through testing we have shown that our constraint handling
method for messy GAs is effective on the test problem pre-
sented here. Various constraint handling techniques exist and
are employed today but they are not the most effective tech-
niques for messy GA based processing. Future work will look
at additional problems and the probabilities associated with
messy constraint handling techniques. Further the work pre-
sented here can be expanded to non-integer based decision
variables since these variables are discretized in the computer’s
representation.

REFERENCES

[1] Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective
Optimization: NSGA-II. KanGAL report 200001, Indian Institute of
Technology, Kanpur, India, 2000.

{2] Kalyanmoy Deb and T. Meyarivan. Constrained Test Problems for Multi-
Objective Evolutionary Optimization. KanGAL report 200005, Indian
Institute of Technology, Kanpur, India, 2000.

[3] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges
Harik. Rapid, accurate optimization of difficult problems using fast
messy genetic algorithms. In Stephanie Forrest, editor. Proceedings of
the Fifth International Conference on Genetic Algoritlins, pages 56-64,
San Mateo. CA, July 1993. Morgan Kaufmann Publishers.

[4] David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic
algorithms: Motivation, analysis, and first results. Complex Systems,
3:493-530, 1989.

[5] Hillol Kargupta. SEARCH: Polynomial Complexity. And The Fast
Messy Genetic Algorithm. PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[6] David A. Van Veldhuizen. Multiobjective Evolutionary Algorithins:
Classifications, Analyses, and New Innovations. PhD thesis, Department
of Electrical and Computer Engineering. Graduate School of Engineer-
ing. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May
1999.

[71 Jesse B. Zydallis, David Van Veldhuizen, and Gary Lamont. A statisti-
cal comparison of multiobjective evolutionary algorithms including the
MOMGA-II. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello, and
D. Corne, editors, Proceedings of the First International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2001), volume 1993
of Lecture Notes in Computer Science, pages 226-240, Berlin, 2001.
Springer-Verlag.

473

