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Abstract In this chapter, we analyze the behavior of an adaptive immune system
when solving dynamic constrained optimization problems (DCOPs). Our proposed
approach is called Dynamic Constrained T-Cell (DCTC) and itis an adaptation of an
existing algorithm, which was originally designed to solvestatic constrained prob-
lems. Here, this approach is extended to deal with problems which change over time
and whose solutions are subject to constraints. Our proposed DCTC is validated
with eleven dynamic constrained problems which involve thefollowing scenarios:
dynamic objective function with static constraints, static objective function with dy-
namic constraints and, dynamic objective function with dynamic constraints. The
performance of the proposed approach is compared with respect to that of another
algorithm that was originally designed to solve static constrained problems (SMES)
and which is adapted here to solve DCOPs. Besides, the performance of our pro-
posed DCTC is compared with respect to two approaches which have been used
to solve dynamic constrained optimization problems (RIGA and dRepairRIGA).
Some statistical analysis is performed in order to get some insights regarding the ef-
fect that the dynamic features of the problems have on the behavior of the proposed
algorithm.
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ccoello@cs.cinvestav.mx

1



2 Victoria S. Aragón, Susana C. Esquivel and Carlos A. Coello Coello

1 Introduction

Three are the main scenarios that we could have in dynamic constrained optimiza-
tion problems (DCOPs): 1) we could have a dynamic objective function and static
constraints (if the objective function changes over time, this could affect the loca-
tion of the optimum, which could move, for example, from a disconnected feasible
region to another one), 2) we could have a static objective function and dynamic
constraints (in this case, new local optima (or even a new global optimum) could
appear as the infeasible region changes) and 3) we could havea dynamic objective
function and dynamic constraints (this is perhaps the most difficult case, since there
are changes in both the location of the optimum and the infeasible region).

Regardless of the scenario that we consider, DCOPs are, clearly, very difficult
problems [17]. When the objective function is moving, it is necessary to have good
mechanisms to track it. When the dynamic components of the problem are given
by the constraints, then the changes could vary the shape, ratio (with respect to the
entire search space) and/or structure of the feasible region [17].

DCOPs are not simply an academic challenge, since there are several real-
world problems with such features. For example: the cargo movement problem in
metropolitan areas adjacent to marine ports. In particular, truck scheduling and route
planning, where ISO (International Standards Organization) containers need to be
transferred between marine terminals, intermodal facilities, and end customers. In
such an application, the objective is to reduce empty miles,and to improve customer
service. A dynamic component is given in this case for incorporating the informa-
tion of new customers after the set of routes has been determined [10]. Another
example is the assembly of a schedule for transport ships, where the ships transport
liquified natural gas from different ports around the world to one destination port. In
this case, after finding a valid schedule, a recalculation may be needed because some
ship got delayed (for example, due to a storm or some mechanical damage) [14]. An-
other example are the hydro-thermal power generation systems, in which both the
hydroelectric and the thermal generating units are utilized to meet the total power
demand. The optimum power scheduling problem involves the allocation of power
to all concerned units, but the total fuel cost of thermal generation and emission
properties have to be minimized, while satisfying all the constraints imposed by the
hydraulic and power system networks. The problem is dynamicdue to the chang-
ing nature of power demand over time. Thus, ideally, the optimal power scheduling
problem should be considered as an online dynamic optimization problem in which
solutions must be found when there is a change in the power demand [9]. All of
these problems have a great industrial impact, and their efficient solution can, there-
fore, be very profitable. Surprisingly enough, however, theliterature on the solution
of DCOPs is relatively scarce.

In this chapter, we propose the use of an algorithm based on anadaptive immune
system model for solving DCOPs. The proposed approach is inspired on the immune
responses mediated by the T cells, and constitutes an extension of an algorithm
(developed by the authors of this chapter) that was originally designed for solving
static constrained optimization problems.
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The remainder of this chapter is organized as follows. Section 2 formally defines
the problem of our interest. In Section 3, we provide a reviewof the previous related
work. In Section 4, we describe our proposed approach. Section 5 presents the test
problems and performance measures adopted to evaluate our proposed approach.
This section also describes the algorithm that we used to compare our results and
the experimental design that we adopted. Finally, Sections6 and 7 present the results
that we obtained from the experiments performed and our conclusions, respectively.

2 Problem Statement

We are interested in solving problems of the form1:
minimize

f (X ; t) (1)

subject to:

g j(X ; t)≤ 0 j = 1, . . . ,m (2)

hk(X ; t) = 0 k = 1, . . . , p (3)

xl
i ≤ xi ≤ xu

i i = 1, . . . ,n (4)

In equation (1),f designates the objective function,X = (x1,x2, . . . ,xn)
T is a vector

containing the design variables andt is a positive integer which denotes time. The
remaining functions correspond to inequality constraintsg (equation (2)), equality
constraintsh (equation (3)) and side constraints with lower and upper limits indi-
cated by the superscriptsl and u (equation (4)), respectively. Both the objective
function and the constraints could be linear or nonlinear.

When an inequality constraint takes a zero value at the optimum, we say that it
is active. By definition, all equality constraints are active at all points of the search
space.

3 Previous Related Work

The literature on the solution of DCOPs using artificial immune systems is very
scarce and is briefly reviewed next.

1 Without loss of generality, we will assume only minimization problems.
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Schiex et al. [29] defined the maintenance solution problem in dynamic con-
straint satisfaction problems (CSPs) and underlined that the iterative application of
commonly used constraint satisfaction algorithms would result in redundant search
and inefficiency. They also indicated that a complete description of the space ex-
plored justified in terms of the set of constraints may grow exponentially in space.
Thus, they proposed a class of nogood recording algorithm tosolve the satisfaction
problem and simultaneously offered a polynomially boundedspace compromise be-
tween both of these approaches. They outperformed all algorithms considered for
the solution maintenance problem in dynamic CSPs, and also provided very good
results for static CSPs.

Modi et al. [16] proposed a formalization of distributed resource allocation that,
its authors claim to be expressive enough to represent both dynamic and distributed
aspects of the problem. They defined different categories ofdifficulties of the prob-
lem and presented complexity results for them. Also, they defined the notion of
Dynamic Distributed Constraint Satisfaction Problem (DyDCSP) and presented a
generalized mapping from distributed resource allocationto DyDCSP. Through both
theoretical analysis and experimental verifications, theyshowed that this approach
to dynamic and distributed resource allocation is powerfuland can be applied to
real-world problems such as the Distributed Sensor NetworkProblem.

Mailler [11] presented two protocols for solving dynamic distributed constraint
satisfaction problems which are based on the classical Distributed Breakout Algo-
rithm (DBA) and the Asynchronous Partial Overlay (APO) algorithm. These two
new algorithms are compared on a broad class of problems varying their overall dif-
ficulty as well as the rate at which they change over time. The results obtained by
the author indicate that neither of the algorithms completely dominates the other on
all problem classes, but that depending on environmental conditions and the needs
of the user, one method may be preferable over the other.

Richter and his collaborators have investigated the use of evolutionary algorithms
in dynamic environments in a number of papers [19, 20, 21, 22,23, 24, 25, 26, 27,
28]. Some of this work will be briefly reviewed next.

In [19], Richter studied the behavior of an evolutionary algorithm in dynamic
environments that change chaotically. Additionally, he analyzed the concept of dy-
namic severity when applied to chaotic changes, as well as the relationship between
severity, change frequency and predictability of the changes. Richter et al. [20] pro-
posed a memory scheme based on abstraction for evolutionaryalgorithms with the
aim of solving dynamic optimization problems. In this scheme, the memory does
not store good solutions as themselves but as their abstraction, i.e., their approxi-
mate location in the search space. Thus, when the environment changes, the stored
abstraction information is extracted to generate new individuals into the population.
The authors argued that their results show the efficiency of their proposed approach.
In a further paper, Richter [25] proposed a memory design forsolving constrained
dynamic optimization problems using an evolutionary algorithm. Based on ideas
from abstract memory, Richter introduced and tested two schemes: blending and
censoring. Through some experiments he showed that such a memory can be used
to solve certain types of constrained dynamic problems. Richter’s work also involves
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a study of the automatic detection of changes through population-based and sensor-
based schemes [22]. In another paper, Richter [24] employeda negative selection
algorithm to detect changes in order to solve dynamic optimization problems. His
numerical experiments showed that the use of an immunological approach can be
successfully used to solve the change detection problem fordynamic fitness land-
scapes. In Richter et al. [26], the authors proposed a methodfor generating variable-
sized detectors in the framework of negative selection based artificial immune sys-
tems. The method is inspired by the idea of interpreting the feature space as a poten-
tial field. The authors used a divide-and-conquer algorithmin order to accelerate the
generation of detectors. They also generalized the idea of overlapping detectors by
introducing multiple detector layers compromising different geometric structures
for the used detectors. In [27], Richter et al. proposed a method for solving the
change detection problem for constrained dynamic optimization using evolutionary
algorithms. The basis for this detection is the use of both fitness values and cor-
rected fitness values of the individuals, without requiringany additional data from
the fitness landscape. The fitness distribution of the individuals of one generation is
analyzed using simple statistical measures and by hypothesis test based classifiers.
The authors argued that good results could be found for the constraint change and
the landscape change detection, for classifiers based on theKolmogorov-Smirnov
test whereas simple statistical methods failed to detect changes with high robust-
ness. Richter et al. [28] considered optimization problemswith a dynamic fitness
landscape and dynamic constraints that may change in an independent manner. The
authors argued that this situation can lead to asynchronouschange patterns with the
possibility of occasional synchronization points. So, they presented a framework for
describing such a dynamical setting and for performing numerical experiments on
the algorithm’s behavior.

The DynCOAA algorithm was proposed by Mertens et al. [14]. Itis based on
the Ant Colony Optimization (ACO) metaheuristic and was designed for solving
DCOPs. Its authors compared this approach with respect to two other algorithms in
two different types of problems: artificial graph coloring problems and real-world
ship scheduling problems. The main conclusions from the authors were the follow-
ing: DynCOAA is well suited for solving DCOPs, as it beats DynAWC [29, 16]
in the two types of problems that they studied and DynDBA [11]in one of them.
Their second conclusion was that choosing the right algorithm for a specific prob-
lem is very important because the performance of the algorithms greatly depend
on the type of problem being solved. The main difference between DynCOAA and
the approach proposed by us in this paper resides on the biological metaphors they
are based on: DynCOAA is based on the behavior of ants when foraging for food
and ours is based on the behavior of the immune system when receiving an exter-
nal attack. There is also another difference worth emphasizing. DynCOAA builds a
solution and then it takes the best solution as a guideline when a change occurs. In
contrast, our approach does not follow the direction of the best solution found so far
but, instead, the activities of each cell are influenced by another random cell from
the same population to which the cell belongs.
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Deb et al. [9] modified the NSGA-II so that it could track down anew Pareto
optimal front, as soon as there was a change in the problem. The authors investigated
the introduction of a few randomly generated solutions or a few mutated solutions.
The proposed approaches were tested and compared on a benchmark problem and
on the real-world optimization of a hydro-thermal power scheduling problem. This
systematic study was able to find a minimum frequency of change allowed in the
problem for two dynamic EMO procedures to adequately track down the Pareto
optimal frontiers on-line. Based on their results, the authors suggested an automatic
decision-making procedure for arriving to a single optimalsolution on-line.

Nguyen et al. [17] studied the characteristics that might make dynamic con-
strained problems difficult to solve by some of the existing dynamic optimization
and constraint-handling algorithms. They also introduceda set of (numerical) dy-
namic benchmark problems with the features analyzed in the paper. They tested
several dynamic and constrained optimization strategies on the proposed benchmark
problems, including the use of two canonical algorithms, a triggered hyper-mutation
Genetic Algorithm (GA), a random-immigrant GA named RIGA (RIGA-elit is an al-
gorithm derivated from the GA (Genetic Algorithm), but after applying the mutation
operator on each generation, a fraction of the population isreplaced by randomly
generated individuals, in order to maintain diversity.), and a GA plus repair, named
dRepairGA. The authors stated that their results confirm that dynamic constrained
problems have special characteristics that might significatively affect the perfor-
mance of the algorithms traditionally used for static problems. At the end of the
paper, they proposed a list of possible requirements that analgorithm should meet
to solve dynamic constrained problems effectively. Our algorithm differs from the
ones used by Nguyen et al. [17] in the following aspects: in our proposed DCTC, the
mutation probability is not increased when a change occurs,but instead, it remains
fixed during all the search process. Additionally, any of therandomly generated cells
are inserted into any population, except when virgin cells are initializated. Finally,
our proposed DCTC works over feasible as well as over infeasible solutions and,
therefore, it does not require any repair algorithm.

Nguyen et al. [18] proposed a new approach to solving DCOPs, combining
existing dynamic optimization techniques with constraint-handling techniques in
order to handle objective-function changes and constraint-function changes sepa-
rately and differently. They modified an existing repair method to track down the
moving constraints and combined it with existing random-immigrant and hyper-
mutation operators, in order to handle objective-functionchanges. They also used
different techniques to detect objective function changesand constraint-function
changes separately and differently. This proposed approach was used to derive two
new algorithms. The first of them was calleddRepairGA, and is based ondRepair-
RIGA, an algorithm which integrates the characteristics of a GA,a repair method
(to transform infeasible solutions into feasible ones, if possible) and the dynamic
optimization strategyRIGA-elit). The second approach was calleddGenocop, and
is based on Genocop III. They also proposed variants of thesetwo algorithms.
The authors validated their algorithms using 18 test problems and argued that their
proposed algorithms were able to significantly outperform GA/RIGA/HyperM and
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GA+Repair/Genocop III in solving DCOPs while still maintaining equal or better
overall performance in solving other groups of problems except for the static cases.

4 Our Proposed Approach

Our proposed approach consists of an adaptive immune systemmodel based on the
immune responses mediated by the T cells. Originally, this approach was used to
solve static optimization problems (see [3]). Then, it was extended to solve dynamic
(unconstrained) problemsand, later on, to solve (static) constrained problems (see
[1, 2, 4, 5]).

The model that we developed is called TCELL, and it considersmany of the pro-
cesses that T cells suffer from their origin in the hematopoietic stem cells in the bone
marrow until they become memory cells. T cells belong to a group of white blood
cells known as lymphocytes. They play a central role in cell-mediated immunity.
They present special receptors on their cell surface calledT cell receptors (TCR2).
All T cells originate from hematopoietic stem cells in the bone marrow. Hematopoi-
etic progenitor derived from hematopoietic stem cells populate the thymus and ex-
pand by cell division to generate a large population of immature thymocytes [30].

Several subsets of the T cells have been discovered, each with a distinct function.
Thus, they can be classified in different populations according to the antigen recep-
tor they express. These antigens receptors could be TCR-1 orTCR-2. Additionally,
TCR-2 cells express CD4 or CD8.3

Also, T cells can be divided into three groups according to their maturation or
development level (phylogenies of the T cells [8]): virgin,effector and memory
cells. Virgin cells are those which have never been activated (i.e., they have not
suffered proliferation or differentiation). At the beginning, these cells do not express
CD4 nor CD8. However, later on, they develop and express bothmarks, CD4 and
CD8. Finally, virgin cells mature and express only one mark,either CD4 or CD8.
Before these cells release the thymus, they are subject to both positive selection [12]
and negative selection [12]. Positive selection guarantees that the only survivors are
the cells with TCRs that present a moderate affinity with respect to the self MHC.
Negative selection eliminates the cells with TCRs that recognize self components
unrelated to the MHC.

Effector cells are a type of cells that express only one mark,CD4 or CD8. They
can be activated by co-stimulating signals plus their ability to recognize an antigen
[7, 13]. The immune cells interact through the secretion of cytokines.4 Cytokines al-

2 TCRs are responsible for recognizing antigens bound to major histocompatibility complex
(MHC) molecules.
3 Lymphocytes express a large number of surface molecules that can be used to mark different cel-
lular populations. CD meansCluster Denomination and indicates the group to which lymphocytes
belong.
4 Proteins act as signal transmitters between cells, and alsoinduce growth, differentiation, activa-
tion, etc.
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low cellular communication. Thus, an immune cellci influences the activities (pro-
liferation and differentiation) of another cellc j through the secretion of cytokines,
modulating the production and secretion of cytokines byc j [8]. In order to activate
an effector cell, a co-stimulated signal is necessary. Suchsignal corresponds to the
cytokines secreted from another effector cell. The activation of an effector cell im-
plies that it will be replicated and differentiated. Thus, the proliferation process has
as its goal to replicate the cells and the differentiation process changes the clones so
that they acquire specialized functional properties.

Finally, the memory cells are those that remain in the host even when the infec-
tion or danger has been overtaken, so that in the future, theyare able to get stimu-
lated by the same or by a similar antigen. Usually, they respond (through prolifer-
ation and differentiation) faster with a low dosage of antigens than the B memory
cells. It is worth noting that, although the effector and memory cells are replicated,
they are not subject to somatic hypermutation. For the effector cells, the differen-
tiation process is subject to the cytokines released by another effector cell. In our
model, the differentiation process of the memory cells relies on their own cytokines.

The immune response consists of two phases: the first (calledrecognizing phase)
involves the processes that suffer only the virgin cells andthe second (calledeffector
phase) is related to the processes that suffer the effector and memory cells. The
recognizing phase has to provide some diversity so that the next phase can produce
a cell to eliminate the antigen. Meanwhile, theeffector phase is on charge of doing
this job.

Summarizing the features of the natural immune system that inspired our model,
we can highlight that TCELL considers that T cells react whenthe system is invaded
by an external pathogen as well as the presence of co-stimulating signals, sent by the
own T cells, according to the Danger Theory. Additionally, TCELL uses the Self-
Non-self concept (in therecognizing phase) in order to remove undesirable cells
which can be considered dangerous to the host. Finally, TCELL also considers the
interaction among the T cells through the secretion of cytokines, as a communication
mechanism.

4.1 Proposed Algorithm Based on TCELL

DCTC (Dynamic Constrained T-Cell) is an algorithm inspiredon the TCELL model
[4], which we propose here to solve dynamic constrained optimization problems.
DCTC operates on four populations, corresponding to the groups in which the T-
cells are divided: (1) Virgin Cells (VC), (2) Effector Cellswith cluster denomina-
tion CD4 (CD4), (3) Effector Cells with cluster denomination CD8 (CD8) and (4)
Memory Cells (MC). Each population is composed by a set of T cells whose char-
acteristics are subject to the population to which they belong.

Virgin Cells (VC) do not suffer the activation process. Theyhave to provide
diversity. This is reached through the random acquisition of TCR receptors. Virgin
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cells are represented by: 1) aTCR represented by a bitstring using Gray coding
(called TCRb) and 2) aTCR represented by a vector of real numbers (called TCRr).

Into the natural immune system, the positive and negative selections have to re-
move the potentially harmful cells. Thus, in our proposed algorithm, positive se-
lection is in charge of eliminating the cells that recognizethe antigen with a low
matching. On the other hand, negative selection has to eliminate the cells that have
a similar TCR, according to a Hamming or an Euclidean distance, depending on
whether the TCR is represented by a TCRb or by a TCRr.

Effector Cells are composed by: 1) a TCRb or TCRr, if they belong to CD4 or
CD8, respectively, 2) a proliferation level and 3) a differentiation level. The goal of
this type of cell is to explore in a global way the search space. Thus, CD4 explores
the search space, taking advantage of the Gray coding properties (there is only one
bit of difference between two consecutive numbers), while CD8 uses real numbers
representation (big or small jumps).

The goal of the memory cells is to explore the neighborhood ofthe best found
solutions. These cells are represented by the same components as CD8.

In our proposal, the TCR identifies the decision variables ofthe problem, inde-
pendently of the TCR representation. The proliferation level indicates the number of
clones that will be assigned to a cell and the differentiation level indicates the num-
ber of bits or decision variables (depending on the TCR representation adopted) that
will be changed, when the differentiation process is applied.

The activation of an effector cell, calledcei, implies the random selection of a set
of potential activator (or stimulating) cells. The closestcell to cei (using Hamming
or Euclidean distance), according to the TCR in the set, is chosen to become the
stimulating cell, sayce j. Then,cei proliferates and differentiates.

At the beginning, the proliferation level of each stimulated cell, cei, is given by
a random value within [1, 3],5 but then, it is determined taking into account the
proliferation level of its stimulating cell (ce j). If the cei is better thance j, thencei

keeps its own proliferation level; otherwise,cei receives a level which is 10% lower
than the level ofce j.

Memory cells proliferate and differentiate according to their proliferation level
(randomly between 1 and the size of MC6) and differentiation level (number of de-
cision variables,7) respectively. Both levels are independent from the other memory
cells.

In our proposed DCTC algorithm, the constraint-handling method needs to cal-
culate, for each cell (solution), regardless of the population to which it belongs, the
following: 1) the sum of constraint violations (sumres)8 and 2) the value of the
objective function (only if the cell is feasible).

We consider that acei cell is better than ace j cell if: 1) TCR’scei is feasible and
TCR’s ce j is infeasible, 2) both cells have feasible TCRs but the objective function

5 This value was derived after numerous experiments.
6 This is an arbitrary value in order to avoid overloading the number of required parameters.
7 This value was set thinking on performing an intensive localsearch.
8 This is a positive value determined bygi(x)+ for i = 1, . . . ,m and|hk(x)| for k = 1, . . . , p.
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value ofcei is lower than the objective function value ofce j and 3) both cells have
infeasible TCRs but sumres’ of cei is lower than sumres’ of ce j. This criterion is
used to sort the population. Each type of cell has its own differentiation process,
which is blind to their representation and population:

Differentiation for CD4: the differentiation level ofcei is determined by the
Hamming distance between the stimulated (cei) and stimulating (ce j) cells. It
indicates the number of bits to be changed. Each decision variable and the bit to
be inverted are chosen in a random way. The bits change according to a proba-
bility probdi f f−CD4. The pseudo-code for the proliferation and differentiation of
cell cei is shown next:

for np = 1 to Proliferation Level ofcei do
clonenp← cei

for nd = 1 to Differentiation Level ofcei do
if probdi f f−CD4 then

k←U(1, | vd |)
l ←U(1, | bitsk |)
Invert thelth-bit of vdk of the clonenp

end if
end for

end for
whereU(1,w) refers to a random number with a uniform distribution in the range
(1,w), | vd | is the number of decision variables of the problem,| bitsk | is the
number of bits to represent thekth decision variable andvdk indicates thekth

decision variable.
Differentiation for CD8: the differentiation level for cellcei is related to its stim-

ulating cell (ce j). If the TCRr of thece j is better than theTCRr of the stimulated
cell cei (according to the objective function value), then the level(for cei) is a
random number within [1,| dv |9]; otherwise, it is a random value within [1,
| dv | /2], where| dv | is the number of decision variables of the problem. Each
variable to be changed is chosen in a random way and it is modified according to
equation (5):

x
′
= x±

U(0, lu− ll)
107iter

U(0,1)

(5)

wherex andx
′
are the original and the mutated decision variables, respectively. lu

andll are the upper and lower bounds ofx, respectively.iter indicates the number
of iterations until reaching the maximum number of evaluations for a change. At
the moment of the differentiation of a cell (cei), the value of the objective func-
tion of its stimulating cell (ce j) is taken into account. In order to determine if

r = U(0,lu−ll)
107iter

U(0,1)
, will be added or subtracted tox, the following criteria are

considered: ifce j is better thancei and the decision variable value ofce j is less

9 If the stimulating cell is better, thencei should change more decision variables
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than the value ofcei, or if cei is better thance j and the decision variable value of
cei is less than the value ofce j, thenr is subtracted fromx; otherwise,r is added
to x. Both criteria aim to guide the search towards the best solutions found so far.
The pseudo-code for the proliferation and differentiationof the cellcei with the
stimulating cellce j is shown next:

for np = 1 to Proliferation Level ofcei do
clonenp← cei

for nd = 1 to Differentiation Level ofcei do
k←U(1, | vd |)

r← U(0,lu−ll)
107iter

U(0,1)

if f (ce jTCRr) is better thanf (ceiTCRr) andce jTCRrk
< ceiTCRrk

o f (ceiTCRr)

is better thanf (ce jTCRr) andce jTCRrk
> ceiTCRrk

then
clonnpTCRrk ← ceiTCRrk

− r
else if f (ce jTCRr) is better thanf (ceiTCRr) and ce jTCRrk

> ceiTCRrk
o

f (ceiTCRr) is better thanf (ce jTCRr) andce jTCRrk
< ceiTCRrk

then
clonenpTCRrk ← ceiTCRrk

+ r
else

add or subtractr with probability 50%
end if

end for
end for

whereU(w1,w2) refers to a random number with a uniform distribution in the
range (w1,w2), | vd | is the number of decision variables of the problem,lux and
llx are the upper and lower bounds ofx, respectively.iter indicates the number
of iterations until reaching the maximum number of evaluations for a change.
f (cehTCRr) is the objective function value for the TCRr of the cell ceh, and
cehTCRrk

indicates thekth decision variable of the cellh. If after ten trials, the
procedure cannot find anx′ in the allowable range, a random number with a uni-
form distribution is assigned to it.

Differentiation for MC: the number of decision variables to be changed is deter-
mined by the differentiation level of the cell to be differentiated. Each variable
to be changed is chosen in a random way and it is modified according to equa-
tion (6):

x
′
= x±

(

U(0, lux− llx)
107iter

)U(0,1)

(6)

wherex andx
′
are the original and the mutated decision variables, respectively.

U(0,w) refers to a random number with a uniform distribution in the range (0,w).
lux andllx are the upper and lower bounds ofx, respectively.iter indicates the
number of iterations until reaching the maximum number of evaluations for a

change. In a random way, we decide ifr =
(

U(0,lux−llx)
107iter

)U(0,1)
will be added or
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subtracted tox. If after ten trials, the procedure cannot find anx′ in the allowable
range, then a random number with a uniform distribution is assigned to it.

The general structure of our proposed algorithm for dynamicconstrained opti-
mization problems is given in Algorithm 1.

Algorithm 1 DCTC Algorithm
1: Initialize VC();
2: EvaluateVC();
3: AssignProliferation();
4: Divide CDs();// take into account feasibility of the solutions
5: PositiveSelectionCD4();// eliminate the worst cells in CD4
6: PositiveSelectionCD8();// eliminate the worst cells in CD8
7: NegativeSelectionCD4();// eliminate the most similar cells in CD4
8: NegativeSelectionCD8();// eliminate the most similar cells in CD8
9: while A predetermined number of changes has not been reacheddo

10: while A predetermined number of evaluations has not been performed do
11: ProliferateCD4();
12: DifferentiateCD4();
13: SortCD4();
14: ProliferateCD8();
15: DifferentiateCD8();
16: SortCD8();
17: InsertCDs en MC();
18: for i = 1 to repMC do
19: ProliferateMC();
20: DifferentiateMC();
21: end for
22: SortCM();
23: end while
24: Statistics();
25: ChangeFunction();
26: Re-evaluatePopulations();
27: end while

The algorithm works in the following way. At the beginning, the TCRb and TCRr

from the virgin cells are initialized in a random way, according to the TCR’s encod-
ing (step 1). Then, each TCR of a virgin cell is evaluated (step 2). In step 3, the
proliferation levels are assigned. Then, in step 4, the virgin cells are divided taking
into account their feasibility. Next, the feasible cells, TCRb and TCRr, from VC are
selected to form CD4 and CD8, respectively. If it is not possible to complete the
required number of cells, then the infeasible TCRs needed toreach such value are
selected. Each effector cell will inherit the proliferation level of the virgin cell which
received the TCR.

The negative and positive selections are applied to each effector population (CD4
and CD8). The first selection eliminates 10% of the worst cells and the second se-
lection eliminates cells that are similar among them (keeping the best from them).
This mechanism works in the following way: for each effectorcell, we search inside
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its population the closest cell (using Hamming or Euclideandistance according to
the TCR’s cell) and the worst from them is eliminated. This process reduces the
effector’s population sizes.

The first iteration (step 9) is controlled by the number of changes of the objective
function.

Furthermore, for each change, a maximum number of objectivefunction evalua-
tions is allowed (step 10)10. The steps inside the last iteration are: first, to activate
the CD4 population; in other words, to perform proliferation and differentiation of
all the cells from CD4 (steps 11 and 12). Then, these cells aresorted (step 13). Next,
the CD8 population is activated. This means that we perform proliferation and dif-
ferentiation of all the cells from CD8 (steps 14 and 15), which are sorted in (step
16).

The best solutions from CD4 and CD8 are inserted or are used toreplace the 50%
of the worst solutions in MC (depending on whether or not, MC is empty) (step 17).
Since the representation schemes of the TCR, for CD4 and MC, are different, before
the insertion of the best cell from CD4 (with TCRb) into MC, the receptor has to be
converted into a real-values vector (TCRr). For this process, we use equation (7),
which takes as input a bitstring generated with Gray coding and returns a real num-
ber (this process is applied as many times as decision variables has the problem):

dv j = ll j +
∑

L j
i=02L j−idv′i j(lu j− ll j)

2L
j −1

(7)

wheredv j is the jth decision variable withj = 1, . . . , number of decision variables
of the problem,L j is the number of bits for thejth decision variable,lu j andll j are
the upper and lower limits for the decision variabledv j, respectively. Anddv′i j is

the ith bit of the bitstring that representsdv j. Also, equation (7) is used when a cell
from CD4 has to be decoded in order to be evaluated. Next, the cells from MC are
activated a certain (predefined) number of times, repMC (steps 19 and 20).

The algorithm is notified about the existence of a change in the environment
(step 25), since that information is required in order to re-evaluate the populations
(step 26). Even when some literature about change detectionexists (see for example,
[22, 24, 26, 27]), dealing with this (rather difficult) topicis beyond the scope of this
chapter. Here, we only focus on the mechanisms to react to anyincoming changes.
In fact, when using metaheuristics, it is normally assumed that the search engine
will be informed whenever a change has occurred.

10 Since it is not knowna priori how many clones will be assigned to each cell, it is possible to
exceed the maximum number of evaluations per change in 3| f easible(CD4) |+ | f easible(CD8) |
+repMC | f easible(MC) |2, where f easible(x) indicates the number of feasible solutions in popu-
lationx.
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5 Experiments

In this section, we describe our experimental setup. This includes a description of the
set of test problems used to validate our proposed DCTC, the performance measures
used to evaluate it, the corresponding parameters settings, and the description of the
algorithm chosen to compare our results. Some statistical analysis is performed in
order to determine the effect of the dynamic features of the problems on the behavior
of the proposed algorithm.

5.1 Dynamic Constrained Benchmark

In order to validate our proposed approach, we adopted eleven dynamic constrained
optimization problems from a set that was originally proposed by Nguyen et al. [17].
The subset of problems chosen present some kind of dynamism,either in the objec-
tive function, in the constraints or both. Table 1 summarizes the main features of the
test problems adopted.

5.2 Performance Measures

Here, we describe the performance measures adopted for our experimental study.
One of them is relatively popular in the literature [6]: theoffline error (oe), which
represents the average of the best error at each iteration. This measure is calculated
here, only for feasible solutions. If an infeasible solution is found then nothing is
added, as defined by equation (8).

oe =
1

Nc

Nc

∑
j=1

iter

∑
i=1

( f ∗j − f ∗ji)) (8)

whereNc is the total number of changes within an experiment,iter is the current
iteration number,f ∗j is the value of the optimum solution for thejth state11 and f ∗ji
is the current best fitness value found for thejth state.

The ideal value foroe is zero, which would mean that the optimum was found at
the very beginning of each state.

As oe is calculated only for feasible solutions, it is possible that this value be-
comes zero or a value close to it, but without finding any feasible solution. For this
reason, we use this measure along with the measurer f , which calculates the per-
centage of runs in which at least one feasible solution was found for all the changes
that took place. Thus, the ideal value ofr f is 100%, which would mean that, in all
runs, feasible solutions were found, for all changes.

11 We callstate to the time period where objective function and constraintsremain fixed.
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Table 1 Main features of the test problems adopted

Problem ObjFunc Constr. DFR Parameters Setting

G24 l f1 Dynamic g1 g2 Fixed 2 p2(t) = ri(t) = 1;qi(t) = si(t) = 0; p1(t) =
sin(kπt + π

2 )
G24 2 f1 Dynamic g1 g2 Fixed 2 i f (t mod 2 = 0) =







p1(t) = sin( kπt
2 + π

2 )

p2(t) =

{

p2(t−1) i f t > 0
p2(0) = 0 i f t = 0

i f (t mod 2 6= 0) =
{

p1(t) = sin( kπt
2 + π

2 )

p2(t) = sin( kπ(t−1)
2 + π

2 )
ri(t) = 1;qi(t) = si(t) = 0;

G24 3 f1 Fixed g1 g2 Dynamic 2-3 pi(t)= ri(t)= 1;qi(t)= s1(t)= 0;s2(t) = 2+

t x2 max−x2 min
S

G24 3b f1 Dynamic g1 g2 Dynamic 2-3 p1(t) = sin(kπt + π
2 ); p2(t) = ri(t) =

1;qi(t) = s1(t) = 0;s2(t) = 2+ t x2 max−x2 min
S

G24 4 f1 Dynamic g1 g2 Dynamic 2-3 p1(t) = sin(kπt + π
2 ); p2(t) = ri(t) =

1;qi(t) = s1(t) = 0;s2(t) = t x2 max−x2 min
S

G24 5 f1 Dynamic g1 g2 Dynamic 2-3 i f (t mod 2 = 0) =






p1(t) = sin( kπt
2 + π

2 )

p2(t) =

{

p2(t−1) i f t > 0
p2(0) = 0 i f t = 0

i f (t mod 2 6= 0) =
{

p1(t) = sin( kπt
2 + π

2 )

p2(t) = sin( kπ(t−1)
2 + π

2 )
ri(t) = 1;qi(t) = s1(t) = 0;s2(t) =

t x2 max−x2 min
S

G24 6a f1 Dynamic g3 g6 Fixed 2 p1(t) = sin(πt + π
2 ); p2(t) = ri(t) = 1;qi(t) =

si(t) = 0;
G24 6c f1 Dynamic g3 g4 Fixed 2 p1(t) = sin(πt + π

2 ); p2(t) = ri(t) = 1;qi(t) =
si(t) = 0;

G24 6d f1 Dynamic g5 g6 Fixed 2 p1(t) = sin(πt + π
2 ); p2(t) = ri(t) = 1;qi(t) =

si(t) = 0;
G24 7 f1 Fixed g1 g2 Dynamic 2 pi(t) = ri(t) = 1;qi(t) = s1(t) = 0;s2(t) =

t x2 max−x2 min
S

G24 8b f2 Dynamic g1 g2 Fixed 2 pi(t) = −1;qi(t) = −(1.4706 +
0.859cos(kπt));q2(t) = −(3.442 +
0.859sin(kπt)); ri(t) = 1;si(t) = 0

Fixed - There is no change
Dynamic - The function is dynamic
f1 = −(X1(x1; t)+X2(x2; t))

f2 = −3exp

(

−
√

√

(X1(x1; t))2 +(X2(x2; t))2

)

g1 =−2Y1(x1; t)4 +8Y1(x1; t)3−8Y1(x1; t)2 +Y2(x2; t)−2
g2 = −4Y1(x1; t)4 +32Y1(x1; t)3−88Y1(x1; t)2 +96Y1(x1; t)+Y2(x2; t)−36
g3 = 2Y1(x1; t)+3Y2(x2; t)−9

g4 =

{

−1 i f (0≤ Y1(x1; t)≤ 1)or (2≤ Y1(x1; t)≤ 3)
1 otherwise

g5 =

{

−1 i f (0≤ Y1(x1; t)≤ 0.5)or (2≤Y1(x1; t)≤ 2.5)
1 otherwise

g6 =

{

−1 i f [(0≤Y1(x1; t)≤ 1)and (2≤Y2(x2; t)≤ 3)]or (2≤Y1(x1; t)≤ 3)
1 otherwise

whereXi(x; t) = pi(t)(x+qi(t)), Yi(x; t) = ri(t)(x+si(t)), 0≤ x1≤ 3, 0≤ x2≤ 4, pi(t), qi(t), ri(t)
andsi(t) are the dynamic parameters. The first two of them determine how the objective function
changes over time and the rest determine how the constraint functions change
DFR - Number of Disconnected Feasible Regions
In all problems, except for G243 and G247, the global optimum switches between disconnected
regions
Only in problem G243 a new optimum appears without changing the existing one.
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From [17], we took the measuresARR andRR, which indicate how quickly does
the algorithm converge to the global optimum before the nextchange occurs, and
how quickly does the algorithm recover from an environmental change and starts
converging to a new solution before a change occurs, respectively. ARR andRR are
defined by equations (9) and (10).

ARR =
1

Nc

Nc

∑
i=1

∑p(i)
j=1[ f ∗i j− f ∗i1]

p(i)[ f ∗i − f ∗i1]
(9)

RR =
1

Nc

Nc

∑
i=1

∑p(i)
j=1[ f ∗i j− f ∗i1)]

p(i)[ f ∗ip(i)− f ∗i1]
(10)

wheref ∗i j is the objective function value of the best feasible solution found since the
last change until thejth iteration of the algorithm of the statei, Nc is the number
of changes,p(i) is the maximum number of iterations performed by the algorithm
for the statei and f ∗i is the optimum value for the statei. Both, ARR andRR have
their ideal values in 1. BothARR andRR would be 1 when the algorithm is able to
recover and converge to a solution (the optimal solution forARR) immediately after
a change, and would be equal to zero in case the algorithm is completely unable to
recover from the change.

Nguyen et al. [17] proposed how to analyze the convergence behavior/recovery
speed of an algorithm through a plot of theRR/ARR scores. If a point is:

1. on the thick diagonal line, the algorithm has recovered and has converged to the
optimum;

2. at the top right corner, the algorithm has recovered quickly and is having a good
performance;

3. at the bottom right corner, it is likely that the algorithmhas converged to a local
optimum;

4. at the bottom left corner, the algorithm has recovered slowly and has not con-
verged yet.

5.3 Parameters Settings

Since the literature on dynamic constrained optimization using artificial immune
systems is scarce, in order to validate our proposed approach, we decided to adapt
an algorithm that was originally proposed to solve (static)constrained optimization
problems. This approach was proposed in [15], and it consists of a simple multi-
membered evolution strategy, calledSMES. This approach does not require the use
of penalty factors (or a penalty function at all). Instead, it uses a diversity mechanism
based on allowing infeasible solutions to remain in the population. It also uses a
comparison mechanism based on feasibility to guide the process towards the feasible
region of the search space. Also, the initial step size of theevolution strategy is re-
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duced in order to perform a finer search and a combined (discrete/intermediate) pan-
mictic recombination technique improves its exploitationcapabilities. The approach
was tested with a well-known benchmark, obtaining very competitive results. Its
source code was taken fromhttp://www.cs.cinvestav.mx/˜EVOCINV/
SES/principal.html . We modified this code by adding a mechanism for re-
evaluating populations after a change occurs. We called this new versionSMESD.
Table 2 highlights the main differences between DCTC andSMESD. Additionally,
our results are indirectly compared to two approaches whichare known to perform
well in dynamic optimization, namelyRIGA-elit anddRepairRIGA [18].

Table 2 Differences and similarities between DCTC andSMESD

DCTC SMESD

Search engine Artificial Immune System based on T
cells behavior

Multimembered Evolution Strategy

Population size 4 1
No. of mutation opera-
tors

3 1

Mutation rate Fixed It is decreased during the search pro-
cess

Recombination operator No Yes
Constraint-handling
mechanism

Discrimination between feasible and
infeasible solutions.

Discrimination between feasible and
infeasible solutions.

It uses the sum of constraint viola-
tions.

It uses the sum of constraint viola-
tions.

No penalty function is required. No penalty function is required.
Extra diversity mecha-
nism

No It allows that the best infeasible solu-
tion which is closest to the boundary
with the feasible region remains into
the population with some probability
(given by the user).

The following experiments were performed for our proposed DCTC and for
SMESD for validation purposes and in order to compare the performance of these
two approaches. Both algorithms were implemented in C and the experiments were
performed on a PC having an Intel Pentium P6000 processor, running at 1.87 GHz,
and with 3 GB in RAM.

5.3.1 Benchmark Problems Setting

Table 3 indicates the parameters settings adopted for our proposed DCTC, for
SMESD, for RIGA-elit and for dRepairRIGA. The dynamic parameters were set
as follows:

• Number of runs: 50
• Number of changes: 5/k
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• Change frequency: 250, 500 and 1000 objective function evaluations per change
• Objective function severity of the changes (k): 0.25 (small), 0.5 (medium) and

1.0 (large). For G246a, G246c and G246d only,k=1.0
• Constraints severity of the changes (S): 10 (small), 20 (medium) and 50 (large)

It is worth noting that optimal values (necessary to calculate the offline errors),
for each period through functions, were not provided in [17]. Thus, we obtained
them by executing DCTC andSMESD with a budget of 350000 objective function
evaluations pro period (for each dynamic parameters setting). Then, we took the
best solution for each period (choosing from the union of thesolutions obtained
by both DCTC andSMESD). Therefore, the offline errors for DCTC andSMESD
were calculated using these optimal values. Since the comparison of the results of
DCTC with respect to those ofRIGA-elit anddRepairRIGA are indirect and, con-
sidering that in [18], the authors do not describe how the optimal values were found,
we cannot guarantee that we used the same values adopted by them. Additionally,
in [18], only the results for medium severity and when using 1000 objective function
evaluations pro period are reported.

Table 3 Parameters settings for DCTC,SMESD, RIGA-elit anddRepairRIGA

Parameter DCTC ParameterSMESD ParameterRIGA-elit Parameter dRepairRIGA

VC 20 parents 10 popsize 25 popsize 20
CD4/ CD8 10 children 20 elitism Yes elitism Yes
CM 5 Apply

diversity
mecha-
nism

Yes selection
method

non-linear
ranking

selection
method

non-linear
ranking

repMC 2 Selection
ratio

0.97 mutation
operator

uniform
(P=0.15)

mutation
operator

uniform
(P=0.15)

probmut 0.9 crossover
operator

arithmetic
(P=0.1)

crossover
operator

arithmetic
(P=0.1)

clones 3 rand-
inming

rate
(P=0.3)

rand-
inming

rate (P=0.3)

reference
popsize

5

replace
rate

0

In order to statistically determine if when we increase the change frequency, the
objective function severity, the constraints severity or if when vary the dynamic
features of the problems, our proposed DCTC produces results with significant dif-
ferences, we performed an analysis of variance (ANOVA) taking into account the
offline errors attained by our proposed DCTC from each run of all the experiments
performed. Thus, the hypotheses considered were the following:

Null Hypothesis : there is no significant difference among the averages of the
offline errors (oe). If there are differences, they are due to random effects.
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Alternative Hypothesis : there is a combination of factor values for which the av-
erages of the offline errors (oe) are significatively different and these differences
are not due to random effects.

As the results (offline errors) do not follow a normal distribution, we applied the
Kruskal-Wallis test, to perform the ANOVA and then the Turkey method in order to
determine the experimental conditions for which significant differences exist. The
results obtained by the ANOVA proved the Null Hypothesis forseveral combina-
tions of parameters. However, the Alternative Hypothesis was proved, too. Tables 9
to 11 summarize the values of severity for which significant different results were
detected.

6 Discussion of Results

The running time depends on the number of objective functionevaluations and the
test function itself. For instance, for G241, the running time taken by one run ranges
from 9 to 200 milliseconds when 250 and 1000 objective function evaluations pro
period are performed, respectively. For G243, the execution time taken by one run
ranges from 12 to 243 milliseconds when 250 and 1000 objective function evalua-
tions pro period are performed, respectively. Finally, forG24 3b, the running time
taken by one run ranges from 12 to 239 milliseconds when 250 and 1000 objective
function evaluations are performed, respectively.

Table 4 shows the results obtained for problems with both a dynamic objective
function and dynamic constraints. If we fix the number of objective function evalu-
ations pro period as well as the constraint severity values and increase the objective
function severity values, we can see how for G243b, in general, the offline errors
deteriorate. But there are significant differences only between the results produced
when adopting low and medium values ofk with respect to those obtained whenk
is large. Furthermore, when the constraint severity is large, the results which show
significant differences are those produced with low values of k with respect to those
obtained with medium and large values ofk.

For G244, an increase in the objective function severity value gives rise to worse
offline errors with our proposed DCTC. In this case, we obtainresults with signif-
icant differences when the number of objective function evaluations pro period is
equal to 250 and the constraint severity value is low. For 500and 1000 evalua-
tions, the results that show significant differences are those produced with low and
medium values ofk with respect to those obtained with large values ofk.

For G245, an increase in the objective function severity value alsodeteriorates
the offline errors produced by our proposed DCTC. In this case, we obtain signifi-
cant differences when, in general, the constraint severityvalues are low and medium
andk grows from low to medium. In general, when the constraint severity value is
large, the results show significant differences only between those obtained with low
and medium valuesk and those corresponding to large values ofk.
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Table 4 Offline errors (the standard deviation is shown in parentheses) for problems with dynamic
objective function and dynamic constraints

Dynamic Parameters
k=0.25 k=0.5 k=1.0

Ev. Probl. Alg. S=10 S=20 S=50 S=10 S=20 S=50 S=10 S=20 S=50

DCTC 0.59 0.54 0.56 0.55 0.57 1.15 1.67 1.09 1.68
(0.15) (0.15) (0.14) (0.13) (0.13) (0.13) (0.26) (0.29) (0.20)

250 G243b
SMESD 0.85 0.851 0.87 0.78 0.83 1.44 1.49 1.31 2.40

(0.00) (0.00) (0.00) (0.00) (0.04) (0.00) (0.25) (0.14) (0.00)
DCTC 0.43 0.41 0.28 0.71 0.62 0.28 1.53 1.33 1.33

(0.07) (0.05) (0.04) (0.08) (0.05) (0.06) (0.13) (0.09) (0.11)
250 G244

SMESD 0.82 0.80 0.69 1.05 0.99 0.68 1.91 2.17 2.14
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.15) (0.00) (0.00)

DCTC 0.21 0.18 0.11 0.34 0.31 0.12 0.46 0.28 0.31
(0.02) (0.02) (0.02) (0.04) (0.04) (0.04) (0.08) (0.11) (0.09)

250 G245
SMESD 0.38 0.44 0.45 0.68 0.53 0.22 0.43 0.24 0.35

(0.01) (0.11) (0.03) (0.10) (0.03) (0.00) (0.00) (0.01) (0.00)
DCTC 0.54 0.49 0.49 0.49 0.51 1.03 1.59 0.93 1.54

(0.16) (0.13) (0.10) (0.14) (0.11) (0.10) (0.23) (0.18) (0.16)
500 G243b

SMESD 0.84 0.81 0.842 0.74 0.81 1.40 1.72 1.79 2.36
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.06) (0.00)

DCTC 0.36 0.35 0.23 0.63 0.55 0.20 1.41 1.26 1.20
(0.05) (0.02) (0.03) (0.05) (0.04) (0.04) (0.06) (0.08) (0.07)

500 G244
SMESD 0.81 0.813 0.67 0.834 0.94 0.61 2.23 2.05 2.03

(0.00) (0.02) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.01)
DCTC 0.18 0.15 0.07 0.28 0.26 0.07 0.38 0.20 0.25

(0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.05) (0.07)
500 G245

SMESD 0.47 0.58 0.52 0.47 0.45 0.17 0.32 0.37 0.73
(0.08) (0.19) (0.16) (0.02) (0.03) (0.00) (0.00) (0.28) (0.00)

DCTC 0.47 0.43 0.39 0.41 0.45 0.98 1.44 0.83 1.45
(0.12) (0.08) (0.06) (0.12) (0.09) (0.09) (0.18) (0.14) (0.08)

1000 G243b
SMESD 0.875 0.826 0.82 0.73 0.81 1.497 2.23 1.65 2.00

(0.03) (0.02) (0.03) (0.00) (0.00) (0.09) (0.00) (0.01) (0.29)
DCTC 0.32 0.32 0.19 0.57 0.50 0.15 1.36 1.17 1.13

(0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.05) (0.05) (0.05)
1000 G244

SMESD 0.81 0.808 0.689 1.0610 0.8711 0.61 2.07 1.57 2.01
(0.00) (0.02) (0.02) (0.06) (0.09) (0.00) (0.22) (0.22) (0.00)

DCTC 0.17 0.12 0.06 0.25 0.23 0.03 0.34 0.15 0.20
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.03)

1000 G245
SMESD 0.56 0.73 1.00 0.57 0.72 0.83 0.78 0.64 0.72

(0.15) (0.07) (0.17) (0.30) (0.24) (0.05) (0.12) (0.00) (0.00)

1 r f =32.0 -2 r f =68.0 -3 r f =44.0 -4 r f =6.0 -5 r f =30.0 -6 r f =70.0 -7 r f =46.0 -8 r f =80.0 -9

r f =60.0-10 r f =54.0 -11 r f =68.0
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On the other hand, if we fix the number of objective function evaluations pro pe-
riod as well as the objective function severity values and weincrease the constraint
severity value, we can see how G243b offline errors with lowk improve but without
significant differences. If we use medium values ofk, the results get worse but show
significant differences only between the results produced with low and mediumS
with respect to those obtained whenS is large. In general, with large values ofk, the
best results are obtained with medium values ofS showing significant differences
with respect to the results obtained with low and medium values ofS.

For G244, if we adopt either a low or a large value ofk, an increase ofS improves
the results but not with significant differences. With a medium value ofk, the results
also improve, showing significant differences only betweenthe results produced
with low and medium values ofS with respect to those obtained whenS is large.

For G245, an increase inS improves the results produced by our proposed
DCTC. For low values ofk, the results show significant differences only between the
results produced with either a low or a largeS. For medium values ofk, the results
show significant differences between the results produced with low and medium
values ofS with respect to those obtained with large values ofS. For large values of
k, the best results are obtained with medium values ofS, showing significant differ-
ences only with respect to those obtained with low values ofS, but not with respect
to those produced with large values ofS.

An increase in the number of objective function evaluationsper change does not
produce results with significant differences for G243b and G244. For G245, the
results obtained for 250 evaluations present significant differences with respect to
those found for 1000 evaluations with a large value ofk and either a low or a medium
S.

Our proposed DCTC always outperformsSMESD, when compared on problems
with dynamic objective function and dynamic constraints, except for four cases as
shown in Table 4. Furthermore, in one case, (the eleventh experiment),SMESD fails
to find feasible solutions in all changes for all runs, while our proposed DCTC had
success in the same task.

Tables 5 and 6 show the results obtained for problems with a dynamic objective
function and fixed constraints. If we fix the number of objective function evaluations
pro period and we increase the objective function severity value, we can see how
for G24 l and G242 the offline errors get worse. But the results show significant
differences only between the results produced when using low and large values of
k, for 250 and 500 evaluations per change.

For G246a, G246c and G248b, in general, offline errors get worse whenk
grows. But the results show significant differences only when are produced with
low values ofk with respect to those produced with medium and large values of k.

For G246d, an increase in the objective function severity value deteriorates the
offline errors but not with significant differences.

An increase in the number of objective function evaluationspro period whenk is
fixed produces better results with significant differences.

Our proposed DCTC always outperformsSMESD, when compared on problems
with dynamic objective function and static constraints, except for one case, as shown
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Table 5 Offline errors (the standard deviation is shown in parentheses) for problems with dynamic
objective function and fixed constraints

Dynamic Parameters
Ev. Probl. Alg. k=0.25 k=0.5 k=1.0

DCTC 0.03(0.01) 0.05(0.03) 0.12(0.04)
250 G24l

SMESD 1.66 (0.00) 1.58 (0.00) 2.39 (0.03)
DCTC 0.08(0.03) 0.12(0.03) 0.18 (0.10)

250 G242
SMESD 0.77 (0.01) 0.38 (0.00) 0.16(0.00)
DCTC 0.11(0.04) 0.25(0.08) 0.58(0.19)

250 G248b
SMESD 0.55 (0.01) 0.74 (0.00) 0.76 (0.00)
DCTC 0.00(0.00) 0.01(0.01) 0.03(0.02)

500 G24l
SMESD 1.65 (0.00) 1.58 (0.01) 1.74 (0.00)
DCTC 0.05(0.02) 0.06(0.03) 0.12(0.07)

500 G242
SMESD 0.84 (0.08) 0.26 (0.07) 0.57 (0.00)
DCTC 0.04(0.02) 0.12(0.06) 0.29(0.13)

500 G248b
SMESD 0.51 (0.00) 0.69 (0.09) 1.07 (0.00)
DCTC 0.00(0.00) 0.00(0.00) 0.00(0.00)

1000 G24l
SMESD 1.65 (0.00) 1.57 (0.00) 2.32 (0.00)
DCTC 0.03(0.01) 0.03(0.02) 0.04(0.04)

1000 G242
SMESD 1.31 (0.12) 0.79 (0.12) 0.49 (0.20)
DCTC 0.01(0.01) 0.03(0.02) 0.07(0.07)

1000 G248b
SMESD 0.51 (0.00) 0.72 (0.01) 1.03 (0.00)

Table 6 Offline errors (the standard deviation is shown in parentheses) for problems with dynamic
objective function and fixed constraints

Algorithms
Ev. Probl. DCTC SMESD

250 G246a 0.26(0.38) 1.76 (0.00)
250 G246c 0.12 (0.05) 0.11(0.00)
250 G246d 0.14(0.18) 0.55 (0.00)
500 G246a 0.06(0.12) 1.75 (0.00)
500 G246c 0.06(0.03) 0.10 (0.04)
500 G246d 0.04(0.14) 0.50 (0.00)
1000 G246a 0.02(0.02) 1.75 (0.00)
1000 G246c 0.04(0.03) 0.13 (0.00)
1000 G246d 0.00(0.00) 0.13 (0.00)
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in Table 5. In these problems both approaches found, for all runs, feasible solutions,
for all changes.

Table 7 shows the results obtained for problems with a staticobjective function
and dynamic constraints. If we fix the number of objective function evaluations
pro period and increase the constraint severity value we cansee how, for G243,
the offline errors improve. In general, the results show significant differences only
between the results produced with low values ofS with respect to those obtained
with medium and large values ofS.

Table 7 Offline errors (the standard deviation is shown in parentheses) for problems with static
objective function and dynamic constraints

Dynamic Parameters
Ev. Probl. Alg. S=10 S=20 S=50

DCTC 0.16 (0.15) 0.15 (0.21) 0.12 (0.07)
250 G243

SMESD 0.12(0.00) 0.04(0.01) 0.01(0.00)
DCTC 0.15 (0.02) 0.11 (0.03) 0.10 (0.03)

250 G247
SMESD 0.14(0.00) 0.03(0.01) 0.08(0.05)
DCTC 0.13 (0.14) 0.10 (0.13) 0.10 (0.11)

500 G243
SMESD 0.101 (0.00) 0.02(0.00) 0.00(0.00)
DCTC 0.12(0.02) 0.07 (0.02) 0.06 (0.02)

500 G247
SMESD 0.12(0.01) 0.04(0.03) 0.00(0.00)
DCTC 0.11 (0.03) 0.05 (0.03) 0.05 (0.04)

1000 G243
SMESD 0.09(0.01) 0.02(0.00) 0.00(0.00)
DCTC 0.10(0.02) 0.05 (0.01) 0.04 (0.01)

1000 G247
SMESD 0.11 (0.01) 0.02(0.00) 0.00(0.00)

1 r f =44.0

Finally, an increase in the number of objective function evaluations per change
produces results with significant differences for G243 and medium values ofS as
well as for a number of evaluations of 250 and 1000. For G247, the results that
present significant differences are those found for 250 and 1000 evaluations with
low values ofS, as well as the results produced with 250 evaluations with respect to
those obtained with 500 and 1000 evaluations, using a mediumvalue ofS. For those
two problems, the results show significant differences whenS is large.

SMESD outperforms our proposed DCTC in all problems with static objective
function and dynamic constraints, except for one case and, in another case (see Ta-
ble 7),SMESD fails to find feasible solutions in all changes for some runs,whereas
our proposed DCTC found feasible solutions for all changes in all the runs per-
formed.

Table 8 shows the results for DCTC vsRIGA-elit and dRepairRIGA. Here we
can note thatRIGA-elit outperforms DCTC only in one test case while DCTC is
superior to dRepairRIGA in seven of the eleven test cases adopted.
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,

Table 8 Offline errors (the standard deviation is shown in parentheses) for DCTC vsRIGA-elit
and dRepairRIGA

Algorithms
Probl. DCTC RIGA-elit dRepairRIGA

G24 1 0.00(0.00) 0.40 (0.04) 0.08 (0.01)
G24 2 0.03(0.02) 0.28 (0.02) 0.16 (0.02)
G24 3 0.05 (0.03) 0.34 (0.04) 0.02(0.00)
G24 3b 0.45 (0.09) 0.47 (0.05) 0.05(0.00)
G24 4 0.50 (0.02) 0.49 (0.07) 0.14(0.02)
G24 5 0.23 (0.01) 0.25 (0.03) 0.15(0.01)
G24 6a 0.02(0.02) 0.45 (0.05) 0.36 (0.03)
G24 6c 0.04(0.03) 0.41 (0.04) 0.32 (0.03)
G24 6d 0.00(0.00) 0.42 (0.02) 0.31 (0.02)
G24 7 0.05(0.01) 0.45 (0.05) 0.15 (0.03)
G24 8b 0.03(0.02) 1.08 (0.11) 0.34 (0.05)

In order to determine if DCTC is able to recover and converge to a solution
immediately after a change, we analyze the plot ofRR/ARR scores displayed in
Figures 1, 2, 3, 4 and 5.

For G24l and G242 (see Figures 1 (a) and (b)), our proposed DCTC found, on
the median run, solutions close to the optimum. As the numberof objective function
evaluations grows, the algorithm recovers faster and gets closer to the new optimum.
Also, objective function severity has a negative impact on convergence when it is
increased.

For those problems in which only the constraints change (seeFigures 1 (c) and 3),
the algorithm found solutions close to the optimum when the constraint severity was
larger. When constraint severity was low, the algorithm normally converged to local
optima.

For G246a, G246c and G246d with 500 and 1000 evaluations per change (see
Figure 2 (a)) the algorithm had a perfect and an almost perfect performance regard-
ing convergence behavior and recovery speed. But, with 250 evaluations per change
it presents moderate convergence behavior and recovery speed.

For G243b and G244, with 250 evaluations per change (see Figures 3 (a) and 4
(a)), our proposed DCTC presented relatively moderate convergence behavior and
recovery speed.

For G243b with 500 and 1000 evaluations per change and G245, with 250
and 500 evaluations per change (see Figures 3 (b) and (c) and Figures 5 (b) and
(c)), our proposed DCTC presented good convergence behavior and recovery speed.
Particularly, for G245, with 250 evaluations per change, the larger the objective
function severity, the better becomes the convergence behavior.

For G244 with 500 evaluations per change (see Figure 4 (b)), in general, the
algorithm presented a fast recovery speed but the solutionsfound were not very
close to the optimum.
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Fig. 1 RR/ARR for G241, G242 and G243
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Fig. 2 RR/ARR for G246a and G247
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Fig. 3 RR/ARR for G243b
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Fig. 4 RR/ARR for G244
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Fig. 5 RR/ARR for G245
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For G244 and G245, with 1000 evaluations per change (see Figures 4 (c) and 4
(c)), the convergence behavior of our proposed DCTC is very good and the recovery
speed is high.

In order to compare the effect that different features of thedynamic constrained
problems had on performance, Nguyen et al. [17] proposed to contrast the offline
errors produced over pairs of problems. In this work, the following comparison were
made:

• Static constraints versus dynamic constraints - G241 vs G244 and G242 vs
G24 5.

• Moving constraints that do not expose better optima versus moving constraints
that expose better optima - G243 vs G243b.

• Connected feasible regions versus disconnected feasible regions - G246c vs
G24 6d.

• Optima in the constraints boundary versus optima that are not in the constraints
boundary - G244 vs G245.

The offline errors produced by our proposed DCTC for problemswith static con-
straints and dynamic constraints (see Figures 6 (a) to (c)) clearly show the negative
impact on performance when constraints change over time. A statistical analysis of
variance indicates that the offline errors obtained for G241 have significant differ-
ences with respect to the offline errors obtained for G244. Note that for G244, the
larger the constraint severity, the better the performance.

For G242 versus G245, the offline errors also deteriorate when the problem
changes its constraints over time (see Figures 6 (d) to (f)),but the statistical analysis
of variance indicates that the offline errors obtained for G24 5, with a medium value
of S, are not significatively different from the offline errors obtained for G242,
regardless of the number of evaluations between changes.

The algorithm had better performance when the optimum was inthe constraint
boundary than when it was not (see Figure 7 (a)), showing onlysignificant differ-
ences with large values ofk and a few evaluations per change. The opposite situation
occurs when we compare the results obtained for G244 and G245 (see Figures 7
(b) to (d)). Also, they always presented significant differences.

When the algorithm had only a few evaluations to perform per state (or change),
moving inside the connected feasible regions was easier than moving between dis-
connected feasible regions. But, if we could perform more evaluations per change,
moving between disconnected regions became easier (see Figure 8 (a)), showing
significant differences in the offline errors for all the tested cases.

The exposition of better optima when the constraints change, had a negative im-
pact on the performance of our proposed DCTC, showing significant differences for
all the tested cases (see Figures 8 (b) to (d)).
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Table 9 Summary of the ANOVA results. - indicates that significant differences were detected

Probl. Eval. Pairs of severity values for the results havingsignificant differences

250 low k and high k
G24 1 500 low k and high k

1000 -
250 low k and high k

G24 2 500 low k and high k / medium k and high k
1000 -
250 low S and medium S

G24 3 500 low S and high S / low S and medium S
1000 low S and high S / low S and medium S
250 low k and medium k / low k and high k

G24 6a 500 low k and medium k
1000 low k and medium k / low k and high k
250 low k and medium k / low k and high k

G24 6c 500 low k and medium k / low k and high k
1000 low k and medium k / low k and high k
250 -

G24 6d 500 -
1000 -
250 low S and high S / low S and medium S

G24 7 500 low S and high S / low S and medium S
1000 low S and high S / low S and medium S
250 low k and medium k / low k and high k / medium k and high k

G24 8b 500 low k and medium k / low k and high k / medium k and high k
1000 low k and high k

Table 10 Summary of ANOVA results. - indicates that significant differences were detected

Probl. Eval. k Pairs of severity values for the results having significant dif-
ferences

250/ 500 / 1000 small -
G24 3b 250/ 500 / 1000 medium low S and high S / medium S and high S

250/ 500 / 1000 large low S and medium S / medium S and high S
250/ 500 / 1000 small -

G24 4 250/ 500 / 1000 medium low S and high S / medium S and high S
250/ 500 / 1000 large -
250/ 500 / 1000 small low S and high S

G24 5 250/ 500 / 1000 medium low S and high S / medium S and high S
250/ 500 / 1000 large low S and medium S / low S and high S
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a - ev=250 b - ev=500

c - ev=1000 d - ev=250

e - ev=500 f - ev=1000

Fig. 6 The effect of two different problem features on the performance of DCTC. G241 versus
G24 4 and G242 versus G245= Static constraints versus dynamic constraints. Performance is
evaluated based on the offline error

6.1 Increasing the number of changes pro run

In order to determine if the performance of DCTC andSMESD gets affected when
more than five changes occur, in the case in which severity is high (k= 0.01 and
S= 50) and the minimum time pro period is granted (only 250 objective function
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a b - ev=250

c - ev=500 d - ev=1000

Fig. 7 The effect of two different problem features on the performance of DCTC. G241 versus
G24 2 and G244 versus G245= Optimum in the constraint boundary versus Optimum not in the
constraint boundary. Performance was evaluated based on the offline error

evaluations), we ran these two algorithms allowing fifty changes (in 50 independent
runs) for each test problem. The results of these experiments are shown in Table 12.

First, it can be seen that DCTC outperformsSMESD in all the test cases, except
for G24 7 but here,SMESD could not find feasible solutions for every period (r f =
62.0). It is worth noting that, for G243 and G243b, even when the offline errors
of SMESD are zero, theirr f values are zero, as well. This means thatSMESD could
not find, in any run, a feasible solution for each period whileDCTC could do it.

On the other hand, when we consider the results obtained by DCTC for 5 against
50 changes (with the highest severity), in general (8 from 11cases) the offline errors
improved when more changes were allowed, whilst, regardingSMESD, on 6 of the
11 test cases the results were worst. Thus, we can think thatSMESD loses its abil-
ity to react to changes when these are increased, while DCTC properly maintains
diversity during the search process.
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Table 11 Summary of ANOVA results for G241 vs G244, G242 vs G245, G244 vs G245,
G24 1 vs G242 and G246c vs G246d. - indicates that significant differences were detected

First function vs Second Function Eval. Did the results obtained for the first function have sig-
nificant differences with respect to the results obtained
for the second function with any dynamic parameter?

250 Always
G24 1 vs G244 500 Always

1000 Always
250 Yes, when S is small and when S is medium

G24 2 vs G245 500 Yes, when S is small and when S is medium
1000 Always
250 Always

G24 4 vs G245 500 Always
1000 Always
250 Always

G24 3 vs G243b 500 Always
1000 Always
250 Yes, when k is small and when k is medium

G24 1 vs G242 500 Always
1000 Always
250 Always

G24 6c vs G246d 500 Always
1000 Always

Table 12 Offline errors (the standard deviation is shown in parentheses) for dynamic constrained
problems performing 50 changes

Algorithms
Probl. DCTC SMESD

G24 1 0.06(0.02) 2.32 (0.00)
G24 2 0.20(0.04) 0.55 (0.04)
G24 3 0.19(0.05) 0.00 (0.00)1

G24 3b 0.49(0.17) 0.86 (0.01)2

G24 4 0.16(0.04) 1.03 (0.07)3

G24 5 0.11(0.02) 0.32 (0.03)
G24 6a 0.08(0.04) 1.80 (0.02)
G24 6c 0.09(0.02) 0.23 (0.00)
G24 6d 0.08(0.06) 0.97 (0.00)
G24 7 0.05 (0.01) 0.00(0.00)4

G24 8b 0.20(0.07) 0.64 (0.13)

1 rf=0.0 - 2 rf=0.0 - 3 rf=54.0 - 4 rf=62.0
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a b - ev=250

c - ev=500 d - ev=1000

Fig. 8 The effect of four different problem features on the performance of DCTC. G246c ver-
sus G246d = Connected feasible regions versus disconnected feasible regions and G243 versus
G24 3b= Moving constraints do not expose a better optimum versusmoving constraints expose a
better optimum. Performance was evaluated based on the offline error

7 Conclusions and Future Work

In this chapter, we have analyzed the behavior of an adaptiveimmune system called
Dynamic Constrained T-Cell (DCTC) for solving dynamic constrained optimization
problems. One of the strengths we can highlight about DCTC isthe few number of
parameters that it requires. Furthermore, and analogouslyto other techniques that do
not rely on a penalty function to handle constraints, DCTC does not need to define a
penalty factor, which normally has to take a specific value for each problem at hand.

An adaptation of an existing algorithm, which was originally used to solve static
constrained optimization problems, was used to compare theresults obtained by
our proposed DCTC on eleven constrained optimization problems which present
several forms of dynamism (both in the objective function and in the constraints).
Additionally, DCTC was also indirectly compared to two approaches used to solve
dynamic constrained optimization problems:RIGA-elit and dRepairRIGA.

For problems with a dynamic objective function and dynamic constraints, an
increase in the objective function severity produces a poorer performance of our
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proposed DCTC. However, in general, the results that show significant differences
are those found with low severity with respect to those foundwith large severity.
An increase in the constraints severity improves the offlineerrors, showing, in some
cases, significant differences, generally between the results found with low severity
with respect to those found with a large severity. In general, an increase in the num-
ber of evaluations per change improves the offline errors butnot with significant
differences.

For those problems in which the objective function is dynamic and the constraints
are static, in general, an increase in the severity has a negative impact on the behav-
ior of our proposed DCTC. In this case, there are significant differences between the
results obtained with low severity with respect to those obtained with a large sever-
ity. In this type of problems, an increase in the number of evaluations per change
improves the offline errors with significant differences.

In problems in which the objective function is static and theconstraints change
over time, an increase in the severity improves the results.In this case, there are sig-
nificant differences when using a low severity with respect to the use of a medium
and a large severity. An increase in the number of evaluations per change improves
the offline errors but significant differences are detected on results found with low
severity, with respect to those obtained with a large severity. Regarding the poor
behavior of DCTC in problems that present dynamic constraints, our hypothesis is
the following. When the constraint severity is low, it is likely that many of the feasi-
ble solutions found so far keep their feasibility. However,in this case, the algorithm
has converged to a local optimum and it remains trapped there. On the other hand,
when the constraint severity is large, feasible solutions will become infeasible and
viceversa. This causes the search to be redirected to the newfeasible regions. This
situation can be observed in both DCTC andSMESD.

When a global optimum switches between disconnected feasible regions and the
constraints change, for our proposed DCTC it is more difficult to solve the problem
than when the constraints are static.

For all the test problems adopted, we could see, in the medianrun, that a larger
number of objective function evaluations allowed us to keepimproving the solutions
in that period.

When the problem presented a dynamic objective function anddynamic con-
straints and the number of objective function evaluations per change was low, the
results obtained were not very good. But, we could see that ifwe increased this
number, the results improved, showing significant differences in some cases. This
leads us to believe that our proposed approach is able to adapt well to dynamic en-
vironments but requires a minimum number of evaluations in order to reach some
stability.

Our proposed DCTC was found to be superior toSMESD in problems with a
dynamic objective function and dynamic constraints and in problems with a dy-
namic objective function and static constraints. There were only five cases in which
SMESD outperformed our proposed DCTC when using such types of problems. On
the other hand,SMESD showed a better behavior than our proposed DCTC in prob-
lems having a static objective function and dynamic constraints. When we compared
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our results againstRIGA-elit we could note the superior performance of DCTC in all
but one test case. On the other hand, DCTC showed to be competitive with respect
to dRepairRIGA, overcoming it in seven of the eleven test cases adopted.

As part of our future work, we aim to improve the mechanisms tomaintain di-
versity of our approach, mainly when dealing with problems in which a change
in the constraints gives rise to a new optimum. It is also desirable to improve the
exploratory capabilities of our proposed algorithm so thatit can be more effective
in the test problems in which it was outperformed bySMESD. Thus, taking into
account the performed experiments and the results obtainedfrom them, we can sug-
gest that DCTC should be suitable for solving problems having a dynamic objective
function and either static or dynamic constraints. However, our aim is to improve the
behavior of our proposed DCTC in problems having a static objective function and
dynamic constraints. Finally, we would also like to extend our approach for solving
multi-objective dynamic constrained optimization problems.
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