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Abstract In this chapter, we analyze the behavior of an adaptive imeraystem
when solving dynamic constrained optimization problem&Qs). Our proposed
approachis called Dynamic Constrained T-Cell (DCTC) aislan adaptation of an
existing algorithm, which was originally designed to sodtatic constrained prob-
lems. Here, this approach is extended to deal with problehishachange over time
and whose solutions are subject to constraints. Our propD€ETC is validated
with eleven dynamic constrained problems which involveftii®wing scenarios:
dynamic objective function with static constraints, statbjective function with dy-
namic constraints and, dynamic objective function with ayiic constraints. The
performance of the proposed approach is compared with cespéhat of another
algorithm that was originally designed to solve static ¢amsed problems§MES)
and which is adapted here to solve DCOPs. Besides, the paafme of our pro-
posed DCTC is compared with respect to two approaches whieh been used
to solve dynamic constrained optimization problems (RIGAl @RepairRIGA).
Some statistical analysis is performed in order to get smisiglts regarding the ef-
fect that the dynamic features of the problems have on thaviehof the proposed
algorithm.
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1 Introduction

Three are the main scenarios that we could have in dynamgtreamed optimiza-
tion problems (DCOPs): 1) we could have a dynamic objectivetion and static
constraints (if the objective function changes over tinhé tould affect the loca-
tion of the optimum, which could move, for example, from acdisnected feasible
region to another one), 2) we could have a static objectinetfan and dynamic
constraints (in this case, new local optima (or even a newaijloptimum) could

appear as the infeasible region changes) and 3) we couldahdyeamic objective
function and dynamic constraints (this is perhaps the miffatudt case, since there
are changes in both the location of the optimum and the iitfleaiegion).

Regardless of the scenario that we consider, DCOPs arelycheary difficult
problems [17]. When the objective function is moving, it &cessary to have good
mechanisms to track it. When the dynamic components of tbblgm are given
by the constraints, then the changes could vary the shajpe(wéth respect to the
entire search space) and/or structure of the feasiblenmgdiq.

DCOPs are not simply an academic challenge, since thereeserat real-
world problems with such features. For example: the cargeement problem in
metropolitan areas adjacent to marine ports. In partictilask scheduling and route
planning, where ISO (International Standards Organinattontainers need to be
transferred between marine terminals, intermodal féesljtand end customers. In
such an application, the objective is to reduce empty méled to improve customer
service. A dynamic component is given in this case for inocaiing the informa-
tion of new customers after the set of routes has been detedjiL0]. Another
example is the assembly of a schedule for transport shipsrenthe ships transport
liquified natural gas from different ports around the wodanhe destination port. In
this case, after finding a valid schedule, a recalculationlbeaneeded because some
ship got delayed (for example, due to a storm or some mechlatdmage) [14]. An-
other example are the hydro-thermal power generationmgstien which both the
hydroelectric and the thermal generating units are utllizemeet the total power
demand. The optimum power scheduling problem involves llbeation of power
to all concerned units, but the total fuel cost of thermalegation and emission
properties have to be minimized, while satisfying all thesteaints imposed by the
hydraulic and power system networks. The problem is dynaméto the chang-
ing nature of power demand over time. Thus, ideally, thenoatipower scheduling
problem should be considered as an online dynamic optimaizatoblem in which
solutions must be found when there is a change in the poweaud@rf®]. All of
these problems have a great industrial impact, and thegiezitisolution can, there-
fore, be very profitable. Surprisingly enough, however Jiteeature on the solution
of DCOPs is relatively scarce.

In this chapter, we propose the use of an algorithm based adaptive immune
system model for solving DCOPs. The proposed approachpgétson the immune
responses mediated by the T cells, and constitutes an eteofan algorithm
(developed by the authors of this chapter) that was oribyiridsigned for solving
static constrained optimization problems.
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The remainder of this chapter is organized as follows. 8e@iformally defines
the problem of our interest. In Section 3, we provide a revaéthe previous related
work. In Section 4, we describe our proposed approach.@ebtpresents the test
problems and performance measures adopted to evaluateaposed approach.
This section also describes the algorithm that we used tgaosnour results and
the experimental design that we adopted. Finally, Sectarsd 7 present the results
that we obtained from the experiments performed and ourlasions, respectively.

2 Problem Statement

We are interested in solving problems of the férm

minimize
f(X;t) 1)

subject to:
gi(Xit) <0 j=1...m 2)
hg(X;t)=0 k=1,...,p 3)
X <x <X i=1,...,n (4)

In equation (1)f designates the objective functiofi= (x1,%z,...,%,)" is a vector
containing the design variables anis a positive integer which denotes time. The
remaining functions correspond to inequality constrainfequation (2)), equality
constraintsh (equation (3)) and side constraints with lower and uppeitdinmdi-
cated by the superscriptsand u (equation (4)), respectively. Both the objective
function and the constraints could be linear or nonlinear.

When an inequality constraint takes a zero value at the qptimve say that it
is active. By definition, all equality constraints are active at allrge of the search
space.

3 Previous Related Work

The literature on the solution of DCOPs using artificial immawsystems is very
scarce and is briefly reviewed next.

1 Without loss of generality, we will assume only minimizatiproblems.
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Schiex et al. [29] defined the maintenance solution problerdyinamic con-
straint satisfaction problems (CSPs) and underlined twitérative application of
commonly used constraint satisfaction algorithms wousdiitein redundant search
and inefficiency. They also indicated that a complete dpsori of the space ex-
plored justified in terms of the set of constraints may growamentially in space.
Thus, they proposed a class of nogood recording algorithsoliee the satisfaction
problem and simultaneously offered a polynomially bounsjgate compromise be-
tween both of these approaches. They outperformed allitigms considered for
the solution maintenance problem in dynamic CSPs, and atsdded very good
results for static CSPs.

Modi et al. [16] proposed a formalization of distributedaasce allocation that,
its authors claim to be expressive enough to represent lyotdndic and distributed
aspects of the problem. They defined different categoriegfidulties of the prob-
lem and presented complexity results for them. Also, thefindd the notion of
Dynamic Distributed Constraint Satisfaction Problem (I3&P) and presented a
generalized mapping from distributed resource allocatiddyDCSP. Through both
theoretical analysis and experimental verifications, tteywed that this approach
to dynamic and distributed resource allocation is poweafull can be applied to
real-world problems such as the Distributed Sensor Netwooklem.

Mailler [11] presented two protocols for solving dynamistdibuted constraint
satisfaction problems which are based on the classicatiised Breakout Algo-
rithm (DBA) and the Asynchronous Partial Overlay (APO) altjon. These two
new algorithms are compared on a broad class of problemsggheir overall dif-
ficulty as well as the rate at which they change over time. Eselts obtained by
the author indicate that neither of the algorithms compjeteminates the other on
all problem classes, but that depending on environmentaditions and the needs
of the user, one method may be preferable over the other.

Richter and his collaborators have investigated the useadfitonary algorithms
in dynamic environments in a number of papers [19, 20, 2123224, 25, 26, 27,
28]. Some of this work will be briefly reviewed next.

In [19], Richter studied the behavior of an evolutionaryaaithm in dynamic
environments that change chaotically. Additionally, halgred the concept of dy-
namic severity when applied to chaotic changes, as welleethtionship between
severity, change frequency and predictability of the cleangichter et al. [20] pro-
posed a memory scheme based on abstraction for evolutiatgogithms with the
aim of solving dynamic optimization problems. In this sclegrthe memory does
not store good solutions as themselves but as their alistrace., their approxi-
mate location in the search space. Thus, when the enviradrchanges, the stored
abstraction information is extracted to generate new iddais into the population.
The authors argued that their results show the efficiendyesf proposed approach.
In a further paper, Richter [25] proposed a memory desigrsdbring constrained
dynamic optimization problems using an evolutionary altjon. Based on ideas
from abstract memory, Richter introduced and tested twermes: blending and
censoring. Through some experiments he showed that suclmamean be used
to solve certain types of constrained dynamic problemsteits work also involves
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a study of the automatic detection of changes through ptipotaased and sensor-
based schemes [22]. In another paper, Richter [24] emplaysehative selection
algorithm to detect changes in order to solve dynamic ogtition problems. His
numerical experiments showed that the use of an immunabgfproach can be
successfully used to solve the change detection problemyiwamic fitness land-
scapes. In Richter et al. [26], the authors proposed a métihgegnerating variable-
sized detectors in the framework of negative selectiondasiicial immune sys-
tems. The method is inspired by the idea of interpreting¢laéuire space as a poten-
tial field. The authors used a divide-and-conquer algorithorder to accelerate the
generation of detectors. They also generalized the ideaesfapping detectors by
introducing multiple detector layers compromising diffiet geometric structures
for the used detectors. In [27], Richter et al. proposed ehatefor solving the
change detection problem for constrained dynamic optitimzaising evolutionary
algorithms. The basis for this detection is the use of botte§is values and cor-
rected fithess values of the individuals, without requiramy additional data from
the fitness landscape. The fitness distribution of the iddizis of one generation is
analyzed using simple statistical measures and by hypettest based classifiers.
The authors argued that good results could be found for thstint change and
the landscape change detection, for classifiers based dfotheogorov-Smirnov
test whereas simple statistical methods failed to deteamhgbs with high robust-
ness. Richter et al. [28] considered optimization problevite a dynamic fitness
landscape and dynamic constraints that may change in apendent manner. The
authors argued that this situation can lead to asynchraritargye patterns with the
possibility of occasional synchronization points. Soytheesented a framework for
describing such a dynamical setting and for performing micakexperiments on
the algorithm’s behavior.

The DynCOAA algorithm was proposed by Mertens et al. [14]sIbased on
the Ant Colony Optimization (ACO) metaheuristic and wasigiesd for solving
DCOPs. Its authors compared this approach with respectdotier algorithms in
two different types of problems: artificial graph coloringpplems and real-world
ship scheduling problems. The main conclusions from theaatwere the follow-
ing: DynCOAA is well suited for solving DCOPs, as it beats BYC [29, 16]
in the two types of problems that they studied and DynDBA [iblpne of them.
Their second conclusion was that choosing the right algorifor a specific prob-
lem is very important because the performance of the alyostgreatly depend
on the type of problem being solved. The main difference betwDynCOAA and
the approach proposed by us in this paper resides on thegiialonetaphors they
are based on: DynCOAA is based on the behavior of ants whegifay for food
and ours is based on the behavior of the immune system wheiviregan exter-
nal attack. There is also another difference worth emphasiDynCOAA builds a
solution and then it takes the best solution as a guidelirevehchange occurs. In
contrast, our approach does not follow the direction of & Bolution found so far
but, instead, the activities of each cell are influenced byttear random cell from
the same population to which the cell belongs.
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Deb et al. [9] modified the NSGA-II so that it could track dowmew Pareto
optimal front, as soon as there was a change in the probleeadthors investigated
the introduction of a few randomly generated solutions @ve fhutated solutions.
The proposed approaches were tested and compared on a lkgroblem and
on the real-world optimization of a hydro-thermal poweresthling problem. This
systematic study was able to find a minimum frequency of caatipwed in the
problem for two dynamic EMO procedures to adequately tramkrdthe Pareto
optimal frontiers on-line. Based on their results, the atglsuggested an automatic
decision-making procedure for arriving to a single optiswlution on-line.

Nguyen et al. [17] studied the characteristics that mighkendynamic con-
strained problems difficult to solve by some of the existiygamic optimization
and constraint-handling algorithms. They also introdugest of (numerical) dy-
namic benchmark problems with the features analyzed in #pep They tested
several dynamic and constrained optimization strategigk@proposed benchmark
problems, including the use of two canonical algorithmsigmered hyper-mutation
Genetic Algorithm (GA), a random-immigrant GA named RIGAGA-€litis an al-
gorithm derivated from the GA (Genetic Algorithm), but afégplying the mutation
operator on each generation, a fraction of the populatioeptaced by randomly
generated individuals, in order to maintain diversityr)d @ GA plus repair, named
dRepairGA. The authors stated that their results confirm that dynaonsitained
problems have special characteristics that might sigtiifiely affect the perfor-
mance of the algorithms traditionally used for static peohs$. At the end of the
paper, they proposed a list of possible requirements thatgorithm should meet
to solve dynamic constrained problems effectively. Oupgtgm differs from the
ones used by Nguyen et al. [17] in the following aspects: inppoposed DCTC, the
mutation probability is not increased when a change octuitsinstead, it remains
fixed during all the search process. Additionally, any ofrdredomly generated cells
are inserted into any population, except when virgin ceksiaitializated. Finally,
our proposed DCTC works over feasible as well as over infdasiolutions and,
therefore, it does not require any repair algorithm.

Nguyen et al. [18] proposed a new approach to solving DCOBs\bining
existing dynamic optimization techniques with constrdiahdling techniques in
order to handle objective-function changes and constfaimttion changes sepa-
rately and differently. They modified an existing repair hoat to track down the
moving constraints and combined it with existing randonmiigrant and hyper-
mutation operators, in order to handle objective-functibanges. They also used
different techniques to detect objective function changied constraint-function
changes separately and differently. This proposed appneas used to derive two
new algorithms. The first of them was calldBepairGA, and is based odRepair-
RIGA, an algorithm which integrates the characteristics of a &#gpair method
(to transform infeasible solutions into feasible ones,dégible) and the dynamic
optimization strategyRIGA-€lit). The second approach was call@@enocop, and
is based on Genocop Ill. They also proposed variants of thesealgorithms.
The authors validated their algorithms using 18 test prabland argued that their
proposed algorithms were able to significantly outperforAdd”RGA/HyperM and
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GA+Repair/Genocop Il in solving DCOPs while still maimaig equal or better
overall performance in solving other groups of problemsgxdor the static cases.

4 Our Proposed Approach

Our proposed approach consists of an adaptive immune systetal based on the
immune responses mediated by the T cells. Originally, thir@ach was used to
solve static optimization problems (see [3]). Then, it waeerded to solve dynamic
(unconstrained) problemsand, later on, to solve (statiostrained problems (see
[1, 2,4, 5]).

The model that we developed is called TCELL, and it considesy of the pro-
cesses that T cells suffer from their origin in the hematepostem cells in the bone
marrow until they become memory cells. T cells belong to aigrof white blood
cells known as lymphocytes. They play a central role in peddiated immunity.
They present special receptors on their cell surface calleell receptors (TCR).
All T cells originate from hematopoietic stem cells in thenbanarrow. Hematopoi-
etic progenitor derived from hematopoietic stem cells patgthe thymus and ex-
pand by cell division to generate a large population of imuraathymocytes [30].

Several subsets of the T cells have been discovered, edth distinct function.
Thus, they can be classified in different populations adogrtb the antigen recep-
tor they express. These antigens receptors could be TCR-CR+2. Additionally,
TCR-2 cells express CD4 or C[38.

Also, T cells can be divided into three groups according ®&rtmaturation or
development level (phylogenies of the T cells [8]): virgeffector and memory
cells. Virgin cells are those which have never been activéte., they have not
suffered proliferation or differentiation). At the beging, these cells do not express
CD4 nor CD8. However, later on, they develop and express ibaitks, CD4 and
CD8. Finally, virgin cells mature and express only one maither CD4 or CD8.
Before these cells release the thymus, they are subjecthgbsitive selection [12]
and negative selection [12]. Positive selection guararttesg the only survivors are
the cells with TCRs that present a moderate affinity with eespo the self MHC.
Negative selection eliminates the cells with TCRs that geize self components
unrelated to the MHC.

Effector cells are a type of cells that express only one nfail4 or CD8. They
can be activated by co-stimulating signals plus their ghiti recognize an antigen
[7, 13]. The immune cells interact through the secretionytdkines* Cytokines al-

2 TCRs are responsible for recognizing antigens bound to mraigiocompatibility complex
(MHC) molecules.

3 Lymphocytes express a large number of surface moleculesahéae used to mark different cel-
lular populations. CD mear(Sluster Denomination and indicates the group to which lymphocytes
belong.

4 Proteins act as signal transmitters between cells, andralsee growth, differentiation, activa-
tion, etc.



8 Victoria S. Aragon, Susana C. Esquivel and Carlos A. ©aetiello

low cellular communication. Thus, an immune aglinfluences the activities (pro-
liferation and differentiation) of another cel] through the secretion of cytokines,
modulating the production and secretion of cytokinegp|8]. In order to activate
an effector cell, a co-stimulated signal is necessary. Sigrial corresponds to the
cytokines secreted from another effector cell. The adtvanf an effector cell im-
plies that it will be replicated and differentiated. Thuse proliferation process has
as its goal to replicate the cells and the differentiatiarcpss changes the clones so
that they acquire specialized functional properties.

Finally, the memory cells are those that remain in the hoshevhen the infec-
tion or danger has been overtaken, so that in the future,areegble to get stimu-
lated by the same or by a similar antigen. Usually, they redgthrough prolifer-
ation and differentiation) faster with a low dosage of amitig than the B memory
cells. It is worth noting that, although the effector and noeyrcells are replicated,
they are not subject to somatic hypermutation. For the &ffezells, the differen-
tiation process is subject to the cytokines released byhanatffector cell. In our
model, the differentiation process of the memory celleesetin their own cytokines.

The immune response consists of two phases: the first (gattednizing phase)
involves the processes that suffer only the virgin cellstaedgecond (calleeffector
phase) is related to the processes that suffer the effector andanecells. The
recognizing phase has to provide some diversity so that the next phase can peodu
a cell to eliminate the antigen. Meanwhile, tféector phaseis on charge of doing
this job.

Summarizing the features of the natural immune systemtisaired our model,
we can highlightthat TCELL considers that T cells react wihensystem is invaded
by an external pathogen as well as the presence of co-stimytagnals, sent by the
own T cells, according to the Danger Theory. Additionall¢HLL uses the Self-
Non-self concept (in theecognizing phase) in order to remove undesirable cells
which can be considered dangerous to the host. Finally, TCH#$0 considers the
interaction among the T cells through the secretion of dyied as a communication
mechanism.

4.1 Proposed Algorithm Based on TCELL

DCTC (Dynamic Constrained T-Cell) is an algorithm inspicedthe TCELL model
[4], which we propose here to solve dynamic constrainednpstion problems.
DCTC operates on four populations, corresponding to themggan which the T-
cells are divided: (1) Virgin Cells (VC), (2) Effector CeNgith cluster denomina-
tion CD4 (CD4), (3) Effector Cells with cluster denominatiGD8 (CD8) and (4)
Memory Cells (MC). Each population is composed by a set ofllE eghose char-
acteristics are subject to the population to which they tglo

Virgin Cells (VC) do not suffer the activation process. Thegve to provide
diversity. This is reached through the random acquisitioR@R receptors. Virgin
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cells are represented by: 1)TELR represented by a bitstring using Gray coding
(called TCR) and 2) aTCRrepresented by a vector of real numbers (called T)CR

Into the natural immune system, the positive and negatileetens have to re-
move the potentially harmful cells. Thus, in our proposegbéathm, positive se-
lection is in charge of eliminating the cells that recogrtize antigen with a low
matching. On the other hand, negative selection has torditmithe cells that have
a similar TCR, according to a Hamming or an Euclidean digtadepending on
whether the TCR is represented by a TR by a TCR.

Effector Cells are composed by: 1) a TEB TCR,, if they belong to CD4 or
CD8, respectively, 2) a proliferation level and 3) a diffetiation level. The goal of
this type of cell is to explore in a global way the search spa@bes, CD4 explores
the search space, taking advantage of the Gray coding piepéhere is only one
bit of difference between two consecutive numbers), whii@ises real numbers
representation (big or small jumps).

The goal of the memory cells is to explore the neighborhooithefbest found
solutions. These cells are represented by the same contp@ae@DS.

In our proposal, the TCR identifies the decision variablethefproblem, inde-
pendently of the TCR representation. The proliferatioel@wdicates the number of
clones that will be assigned to a cell and the differentratével indicates the num-
ber of bits or decision variables (depending on the TCR sspration adopted) that
will be changed, when the differentiation process is applie

The activation of an effector cell, called;, implies the random selection of a set
of potential activator (or stimulating) cells. The closestl to ce (using Hamming
or Euclidean distance), according to the TCR in the set, &seh to become the
stimulating cell, sayej. Then,ce proliferates and differentiates.

At the beginning, the proliferation level of each stimuthteell, cq, is given by
a random value within [1, 3],but then, it is determined taking into account the
proliferation level of its stimulating cellcg;). If the cg is better tharce;, thence
keeps its own proliferation level; otherwism receives a level which is 10% lower
than the level ote;.

Memory cells proliferate and differentiate according teitiproliferation level
(randomly between 1 and the size of R)@nd differentiation level (number of de-
cision variables) respectively. Both levels are independent from the othemory
cells.

In our proposed DCTC algorithm, the constraint-handlinghud needs to cal-
culate, for each cell (solution), regardless of the poparteib which it belongs, the
following: 1) the sum of constraint violations (suresf and 2) the value of the
objective function (only if the cell is feasible).

We consider that ag cell is better than ae; cell if: 1) TCR’scg is feasible and
TCR’s cgj is infeasible, 2) both cells have feasible TCRs but the dgljeéunction

5 This value was derived after numerous experiments.

6 This is an arbitrary value in order to avoid overloading thenber of required parameters.
7 This value was set thinking on performing an intensive Isealrch.

8 This is a positive value determined byx)* fori = 1,...,mand|hg(x)| fork=1,...,p.
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value ofcg is lower than the objective function value adj and 3) both cells have
infeasible TCRs but summes’ of cg is lower than sunres’ of ce;. This criterion is
used to sort the population. Each type of cell has its owrerbffitiation process,
which is blind to their representation and population:

Differentiation for CD4:  the differentiation level ofcg is determined by the
Hamming distance between the stimulated)(and stimulating ¢g;j) cells. It
indicates the number of bits to be changed. Each decisicablarand the bit to
be inverted are chosen in a random way. The bits change acsgdoda proba-
bility probgitf_cps. The pseudo-code for the proliferation and differentiatd
cell cg is shown next:

for np = 1 to Proliferation Level ofce do
cloné «— cg
for nd = 1 to Differentiation Level ofcg do
if prokyitf-cpa then
k—U(1,]vd))
| —U(1,] bits|)
Invert theltM-bit of vd of the cloné&P
end if
end for
end for
whereU (1, w) refers to a random number with a uniform distribution in thege
(1,w), | vd | is the number of decision variables of the problérits, | is the
number of bits to represent thé' decision variable andgdy indicates thekt"
decision variable.

Differentiation for CD8:  the differentiation level for celtg is related to its stim-
ulating cell Cej). If the TCR; of thece; is better than th& CR; of the stimulated
cell cg (according to the objective function value), then the Idfet ce) is a
random number within [1} dv |°]; otherwise, it is a random value within [1,
| dv| /2], where| dv | is the number of decision variables of the problem. Each
variable to be changed is chosen in a random way and it is reddificording to
equation (5):

/ U1
J _yy U@ Iu-I)
107iter

wherexandx are the original and the mutated decision variables, reéispdc|u
andll are the upper and lower boundswofespectivelyiter indicates the number
of iterations until reaching the maximum number of evaluagifor a change. At
the moment of the differentiation of a cetl), the value of the objective func-
tion of its stimulating cell e;) is taken into account. In order to determine if

_u(olu-InY©Y) il he followi .
r'= e , will be added or subtracted tq the following criteria are

considered: ite;j is better tharce and the decision variable value cdj is less

(5)

9 If the stimulating cell is better, therg, should change more decision variables



Artificial Immune System for Solving Dynamic Constrainedti@pzation Problems 11

than the value ofe, or if cg is better tharcej and the decision variable value of
ce is less than the value @gj, thenr is subtracted fronx; otherwisey is added
to x. Both criteria aim to guide the search towards the bestisalsifound so far.
The pseudo-code for the proliferation and differentiatibthe cellce with the
stimulating cellcej is shown next:

for np = 1 to Proliferation Level ofce do
cloné® — cg
for nd = 1 to Differentiation Level ofcg do
k—U(1,|vd])

re U(lo.|797||>U(0-l>

if f(cejngg,) is better tharf (cetcr, ) andcejT(;Rrk < C8TCR, O f(carcr.)

is better tharf (cejtcr, ) andcejTCRrk > CEITCR,, then
clon"PTCR,, — cercr, — 1

else if f(cejrcr ) is better thanf(cercr) and CejTCR, > C&TCR, O

f(cercr, ) is better tharf (cejrcr, ) andcejTCRrk < CeITCRy, then
clonéPTCR,, — carcr, +r

else
add or subtraat with probability 50%

end if

end for
end for

whereU (wy,w,) refers to a random number with a uniform distribution in the
range (v1,Wy), | vd | is the number of decision variables of the probléwy,and

Iy are the upper and lower boundsygfrespectivelyiter indicates the number
of iterations until reaching the maximum number of evalwadifor a change.
f(cenrcr,) is the objective function value for the TERf the cell ce,, and
CenteR,, indicates the" decision variable of the ceh. If after ten trials, the
procedure cannot find atin the allowable range, a random number with a uni-
form distribution is assigned to it.

Differentiation for MC:  the number of decision variables to be changed is deter-
mined by the differentiation level of the cell to be diffetetted. Each variable
to be changed is chosen in a random way and it is modified aicgptal equa-
tion (6):

_ u(0,1)
, i(U(O,IuX le)> ©)

X =X i
107iter

wherex andx are the original and the mutated decision variables, réispdc
U (0,w) refers to a random number with a uniform distribution in thege (Ow).
luy andlly are the upper and lower bounds»frespectivelyiter indicates the
number of iterations until reaching the maximum number afleations for a

S TN (VX
change. In a random way, we decide i (%) will be added or
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subtracted to. If after ten trials, the procedure cannot findxaim the allowable
range, then a random number with a uniform distribution sgaeed to it.

The general structure of our proposed algorithm for dynasoitstrained opti-
mization problems is given in Algorithm 1.

Algorithm 1 DCTC Algorithm

. Initialize_VC();

: EvaluateVC();

. AssignProliferation();

. Divide_CDs();// take into account feasibility of the solutions

. PositiveSelectionCD4();// eliminate the worst cells in CD4

. PositiveSelectionCD8();// eliminate the worst cells in CD8

: NegativeSelectionCDA4();// eliminate the most similar cells in CD4
. NegativeSelectionCD8();// eliminate the most similar cells in CD8
: while A predetermined number of changes has not been reatthed
10:  while A predetermined number of evaluations has not been pertbdoe
11: ProliferateCD4();

12: DifferentiateCD4();

13: SortCDA4();

14: ProliferateCD8();

15: DifferentiateCD8();

16: SortCD8();

17: InsertCDs enMC();

18: for i =1 to repuc do

19: ProliferateMC();

20: DifferentiateMC();

21: end for

22: SortCM();

23:  end while

24:  Statistics();

25:  ChangeFunction();

26:  Re-evaluaté’opulations();

27: end while

OCO~NOOOUDWNERE

The algorithm works in the following way. At the beginninigetTCR, and TCR
from the virgin cells are initialized in a random way, acdagio the TCR’s encod-
ing (step 1). Then, each TCR of a virgin cell is evaluatedp(&k In step 3, the
proliferation levels are assigned. Then, in step 4, theivieglls are divided taking
into account their feasibility. Next, the feasible cell&R, and TCR, from VC are
selected to form CD4 and CD8, respectively. If it is not pbkesio complete the
required number of cells, then the infeasible TCRs needeéach such value are
selected. Each effector cell will inherit the proliferatievel of the virgin cell which
received the TCR.

The negative and positive selections are applied to eaehteffpopulation (CD4
and CD8). The first selection eliminates 10% of the worstscatid the second se-
lection eliminates cells that are similar among them (kegphe best from them).
This mechanism works in the following way: for each effectelt, we search inside
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its population the closest cell (using Hamming or Eucliddetance according to
the TCR’s cell) and the worst from them is eliminated. Thisqass reduces the
effector’s population sizes.

The first iteration (step 9) is controlled by the number ofrades of the objective
function.

Furthermore, for each change, a maximum number of objefttivetion evalua-
tions is allowed (step 189. The steps inside the last iteration are: first, to activate
the CD4 population; in other words, to perform proliferatend differentiation of
all the cells from CD4 (steps 11 and 12). Then, these cells@ted (step 13). Next,
the CD8 population is activated. This means that we perfawtifpration and dif-
ferentiation of all the cells from CD8 (steps 14 and 15), whace sorted in (step
16).

The best solutions from CD4 and CD8 are inserted or are usegkace the 50%
of the worst solutions in MC (depending on whether or not, MErpty) (step 17).
Since the representation schemes of the TCR, for CD4 and Mjfferent, before
the insertion of the best cell from CD4 (with TgRnto MC, the receptor has to be
converted into a real-values vector (TJRFor this process, we use equation (7),
which takes as input a bitstring generated with Gray codimjreturns a real num-
ber (this process is applied as many times as decision Vasials the problem):

025 dvi(lu; —11))
-1

dvj =i+ (7)
wheredy; is the j'" decision variable witlj = 1,..., number of decision variables
of the problemL; is the number of bits for th@" decision variablelu; andll; are
the upper and lower limits for the decision variablg, respectively. Andj\/ij is
theit" bit of the bitstring that representi;. Also, equation (7) is used when a cell
from CD4 has to be decoded in order to be evaluated. Next gleefoom MC are
activated a certain (predefined) number of timesyeefsteps 19 and 20).

The algorithm is notified about the existence of a change énethvironment
(step 25), since that information is required in order t@valuate the populations
(step 26). Even when some literature about change detestists (see for example,
[22, 24, 26, 27]), dealing with this (rather difficult) togkbeyond the scope of this
chapter. Here, we only focus on the mechanisms to react tinaoyning changes.
In fact, when using metaheuristics, it is normally assunted the search engine
will be informed whenever a change has occurred.

10 Since it is not knowra priori how many clones will be assigned to each cell, it is possible t
exceed the maximum number of evaluations per changé fre&ible(CD4) | + | feasible(CD8) |
+repyc | feasible(MC) |2, where feasible(x) indicates the number of feasible solutions in popu-
lationx.
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5 Experiments

In this section, we describe our experimental setup. Tlisides a description of the
set of test problems used to validate our proposed DCTC difeqpnance measures
used to evaluate it, the corresponding parameters setiingshe description of the
algorithm chosen to compare our results. Some statisticysis is performed in
order to determine the effect of the dynamic features of tbblpms on the behavior
of the proposed algorithm.

5.1 Dynamic Constrained Benchmark

In order to validate our proposed approach, we adoptedreldueamic constrained
optimization problems from a set that was originally pragobby Nguyen et al. [17].
The subset of problems chosen present some kind of dynamitrar in the objec-
tive function, in the constraints or both. Table 1 summartbe main features of the
test problems adopted.

5.2 Performance Measures

Here, we describe the performance measures adopted foxperi@ental study.
One of them is relatively popular in the literature [6]: th#line error (oe), which
represents the average of the best error at each iteratiisnieasure is calculated
here, only for feasible solutions. If an infeasible solatie found then nothing is
added, as defined by equation (8).

%= ngi;(fj* - 1) (8)

whereN; is the total number of changes within an experimémt, is the current
iteration numberfj* is the value of the optimum solution for théh staté! and fj*i

is the current best fitness value found for jfestate.

The ideal value fooeis zero, which would mean that the optimum was found at
the very beginning of each state.

As oe is calculated only for feasible solutions, it is possiblattthis value be-
comes zero or a value close to it, but without finding any tdassolution. For this
reason, we use this measure along with the meadyrerhich calculates the per-
centage of runs in which at least one feasible solution wasddor all the changes
that took place. Thus, the ideal valuerdfis 100%, which would mean that, in all
runs, feasible solutions were found, for all changes.

1 We callgtate to the time period where objective function and constraietsain fixed.
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Table 1 Main features of the test problems adopted

Problem ObjFunc Constr. DFR  Parameters Setting

G241  f'Dynamic ¢ ¢g®Fixed 2 p2(t) = ri(t) = L;g(t) = s(t) = 0;pa(t) =
sin(knt + J)
G242 f'Dynamic d ¢?Fixed 2 if(tmod2 = 0) =
pr(t) =sn(*F + 7)

p2(t) =sin(
ri(t) = LGi(t)
G243  f!Fixed d ¢ Dynamic 2-3  pi(t) =ri(t)=1;
txzmaxsxzmln
G243b f'Dynamic ¢ ¢?Dynamic 2-3  pi(t) = sin( 2ip(t) = i) =
1;0i(t) =s1(t) = 0;5p(t) = 2 tX2M& XM
sin(
)

G244  f'Dynamic ¢ @?Dynamic 2-3  pi(t) = kit + Z)ip2(t) = ri(t)
=0;(t) = tngzmm
= 0)

G245 f'Dynamic ¢ g? Dynamic 2-3  if(tmod2
pi(t) =sn(*¢ +7)
pz(t)z{pZ(t_l) ift>0

p2(0)=0ift=0
if(tmod2 # 0) =
{pl()—sn(%“ 3)
po(t) = sin("SE + 7

)
nt) = Lgt) = sit) = O(t) =

t Xo Max—xp min

G246a f'Dynamic  §gPFixed 2 p1(t) =sin(mt+ J); po(t) =ri(t) = L;qi(t) =

s(t)=0;

G246¢c f'Dynamic  Fg*Fixed 2 p1(t) =sin(mt+ 3); pa(t) =ri(t) = L;Gi(t) =
s(t)=0;

G246d f'Dynamic g g¢PFixed 2 p1(t) =sin(mt+ J); po(t) =ri(t) = L;qi(t) =
s(t)=0;

G247  f'Fixed d ¢? Dynamic 2 pi(t) =ri(t) = Lg(t) = si(t) = O;(t) =
txzmax—xzmin

G248b P Dynamic ¢ ¢g?Fixed 2 pt)y = -Ligt) = —(14706 +
0.85%cos(kmt));oz(t) = (3442 +

0.85%in(kmt));ri(t) =1;5(t) =0

Fixed - There is no change
Dynamic - The function is dynamic
1= —(Xa(xq;t) + Xo(x2;1))

= 73exp<7 \/\/(Xl(xl;t))z + (Xz(xz;t))z)

2Y1 (x1;t)4 +8Y1(x1, )3 —8Y1 (X1;1)2 + Ya(xo5t) — 2
—AYy (x1; t) +32Y1(xa; t) — 88Y1(X1;t)2+96Y1(X1;t) +Ya(x2;t) — 36
2Y1(x1;t) + 3Y2(x2;t) — 9

Lif(0<VYi(xq;t) <1)or(2<Yi(xg;t) <3)
{1 otherwise

g
g
g
o =

—1if(0<Yi(x;t) <0.5)0r (2 <Yi(xs;t) <2.5)

1 otherwise

—1if[(0<Yi(xq;t) <1)and (2 < Yo(xp;t) < 3)]or (2 <VYi(xq;t) < 3)
{ otherwise

whereX; (x;t) = pi(t)(X+qi(t)), i(xt) =ri(t)(X+si(t)), 0<x <3,0< % < 4, pi(t), Gi(t), ri(t)
ands (t) are the dynamic parameters. The first two of them determimethe objective function
changes over time and the rest determine how the constuaiations change

DFR - Number of Disconnected Feasible Regions

In all problems, except for G28 and G247, the global optimum switches between disconnected
regions

Only in problem G243 a new optimum appears without changing the existing one.



16 Victoria S. Aragon, Susana C. Esquivel and Carlos A. IBd&bello

From [17], we took the measurd&RR andRR, which indicate how quickly does
the algorithm converge to the global optimum before the beinge occurs, and
how quickly does the algorithm recover from an environmecitiange and starts
converging to a new solution before a change occurs, respciARR andRR are
defined by equations (9) and (10).

pi) g% *
ARR= L 72".:1“3 — fjf]
Ne & p(i)[f — fi]

_1e Z,Pg)l[fi’ﬁ— f1)]
Ne 15 p(D)[ i) — fil

wherefjj is the objective function value of the best feasible sotutmund since the
last change until theth iteration of the algorithm of the stateN; is the number
of changesp(i) is the maximum number of iterations performed by the algarit
for the statd and f;* is the optimum value for the staieBoth, ARR andRR have
their ideal values in 1. BotARR andRR would be 1 when the algorithm is able to
recover and converge to a solution (the optimal solutiorARIR) immediately after
a change, and would be equal to zero in case the algorithmmipletely unable to
recover from the change.

Nguyen et al. [17] proposed how to analyze the convergenicaviier/recovery
speed of an algorithm through a plot of tRB/ARR scores. If a point is:

9)

RR (10)

1. on the thick diagonal line, the algorithm has recoveretifzas converged to the
optimum;

2. at the top right corner, the algorithm has recovered dyi@id is having a good
performance;

3. at the bottom right corner, it is likely that the algoritlivas converged to a local
optimum;

4. at the bottom left corner, the algorithm has recoveredlgland has not con-
verged yet.

5.3 Parameters Settings

Since the literature on dynamic constrained optimizatisimgi artificial immune
systems is scarce, in order to validate our proposed approgcdecided to adapt
an algorithm that was originally proposed to solve (stat@r)strained optimization
problems. This approach was proposed in [15], and it cansisa simple multi-
membered evolution strategy, callSMES. This approach does not require the use
of penalty factors (or a penalty function at all). Insteadses a diversity mechanism
based on allowing infeasible solutions to remain in the petmn. It also uses a
comparison mechanism based on feasibility to guide thegsstowards the feasible
region of the search space. Also, the initial step size o&tlwdution strategy is re-
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duced in order to perform a finer search and a combined (dégorermediate) pan-
mictic recombination technique improves its exploitatapabilities. The approach
was tested with a well-known benchmark, obtaining very cetitige results. Its
source code was taken fronttp://www.cs.cinvestav.mx/"EVOCINV/
SES/principal.html . We modified this code by adding a mechanism for re-
evaluating populations after a change occurs. We calledniiv versiorSVIESD.
Table 2 highlights the main differences between DCTC &8d&SD. Additionally,
our results are indirectly compared to two approaches waietknown to perform
well in dynamic optimization, namelRIGA-elit anddRepair RIGA [18].

Table 2 Differences and similarities between DCTC éMESD

DCTC SMESD
Search engine Artificial Immune System based olldltimembered Evolution Strategy
cells behavior
Population size 4 1
No. of mutation opera3 1
tors
Mutation rate Fixed It is decreased during the search pro-
cess
Recombination operator No Yes
Constraint-handling ~ Discrimination between feasible amiscrimination between feasible and
mechanism infeasible solutions. infeasible solutions.
It uses the sum of constraint viol#- uses the sum of constraint viola-
tions. tions.
No penalty function is required. No penalty function is regd.
Extra diversity mechaNo It allows that the best infeasible solu-
nism tion which is closest to the boundary

with the feasible region remains into
the population with some probability
(given by the user).

The following experiments were performed for our proposeédT and for
SMESD for validation purposes and in order to compare the perfoneaf these
two approaches. Both algorithms were implemented in C amé@xtiperiments were
performed on a PC having an Intel Pentium P6000 processuriirg at 1.87 GHz,
and with 3 GB in RAM.

5.3.1 Benchmark Problems Setting

Table 3 indicates the parameters settings adopted for apoped DCTC, for
SMESD, for RIGA-€elit and for dRepairRIGA. The dynamic parameters were set
as follows:

e Number of runs: 50
e Number of changes: k/
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e Change frequency: 250, 500 and 1000 objective functioruevians per change

e Objective function severity of the changéd:(0.25 (small), 0.5 (medium) and
1.0 (large). For G24a, G246c and G246d only,k=1.0

e Constraints severity of the chang&}:(10 (small), 20 (medium) and 50 (large)

It is worth noting that optimal values (necessary to caleuthe offline errors),
for each period through functions, were not provided in [TTHjus, we obtained
them by executing DCTC an8MESD with a budget of 350000 objective function
evaluations pro period (for each dynamic parameters ggttirhen, we took the
best solution for each period (choosing from the union ofdblkitions obtained
by both DCTC andBMESD). Therefore, the offline errors for DCTC aisIESD
were calculated using these optimal values. Since the cosopeof the results of
DCTC with respect to those &l GA-€lit anddRepairRIGA are indirect and, con-
sidering that in [18], the authors do not describe how thégdtvalues were found,
we cannot guarantee that we used the same values adopteenbyAdditionally,
in [18], only the results for medium severity and when usi@f@objective function
evaluations pro period are reported.

Table 3 Parameters settings for DCTEVIESD, RIGA-€lit anddRepairRIGA
Parameter DCTC  ParametSMESD  ParameterRIGA-elit Parameter dRepairRIGA

VC 20 parents 10 popsize 25 popsize 20
CD4/CD8 10 children 20 elitism Yes elitism Yes
CM 5 Apply Yes selection non-linear selection non-linear
diversity method ranking method ranking
mecha-
nism
repvc 2 Selection 0.97 mutation uniform  mutation uniform
ratio operator (P=0.15) operator (P=0.15)
probnt 0.9 crossover arithmetic crossover arithmetic
operator (P=0.1) operator (P=0.1)
clones 3 rand- rate rand- rate (P=0.3)

inming  (P=0.3) inming
reference 5
popsize
replace 0
rate

In order to statistically determine if when we increase thange frequency, the
objective function severity, the constraints severity fowhen vary the dynamic
features of the problems, our proposed DCTC produces sagittt significant dif-
ferences, we performed an analysis of variance (ANOVA)rigknto account the
offline errors attained by our proposed DCTC from each rurlldha experiments
performed. Thus, the hypotheses considered were the fioljpw

Null Hypothesis : there is no significant difference among #verages of the
offline errors 6e). If there are differences, they are due to random effects.
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Alternative Hypothesis : there is a combination of factduea for which the av-
erages of the offline errors€) are significatively different and these differences
are not due to random effects.

As the results (offline errors) do not follow a normal distitibn, we applied the
Kruskal-Wallis test, to perform the ANOVA and then the Turkaethod in order to
determine the experimental conditions for which signiftadifferences exist. The
results obtained by the ANOVA proved the Null Hypothesis $everal combina-
tions of parameters. However, the Alternative Hypothesis proved, too. Tables 9
to 11 summarize the values of severity for which significaffecent results were
detected.

6 Discussion of Results

The running time depends on the number of objective funai@iuations and the
test function itself. For instance, for G24 the running time taken by one run ranges
from 9 to 200 milliseconds when 250 and 1000 objective fuorcévaluations pro
period are performed, respectively. For G24the execution time taken by one run
ranges from 12 to 243 milliseconds when 250 and 1000 obgétinction evalua-
tions pro period are performed, respectively. Finally, &4 3b, the running time
taken by one run ranges from 12 to 239 milliseconds when 280.8A0 objective
function evaluations are performed, respectively.

Table 4 shows the results obtained for problems with bothreadhyc objective
function and dynamic constraints. If we fix the number of chyje function evalu-
ations pro period as well as the constraint severity valuddrecrease the objective
function severity values, we can see how for G&3 in general, the offline errors
deteriorate. But there are significant differences onlyveen the results produced
when adopting low and medium valuesloWith respect to those obtained whkn
is large. Furthermore, when the constraint severity isdatige results which show
significant differences are those produced with low valddswaith respect to those
obtained with medium and large valueskof

For G244, an increase in the objective function severity valuegige to worse
offline errors with our proposed DCTC. In this case, we obtasults with signif-
icant differences when the number of objective functiones@ons pro period is
equal to 250 and the constraint severity value is low. For & 1000 evalua-
tions, the results that show significant differences arsetmroduced with low and
medium values ok with respect to those obtained with large valuek.of

For G245, an increase in the objective function severity value dist@riorates
the offline errors produced by our proposed DCTC. In this caseobtain signifi-
cant differences when, in general, the constraint seveaityes are low and medium
andk grows from low to medium. In general, when the constraineséyvalue is
large, the results show significant differences only betwtbese obtained with low
and medium valuels and those corresponding to large valuek.of
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Table 4 Offline errors (the standard deviation is shown in parem$)e®r problems with dynamic
objective function and dynamic constraints

Ev.

Probl.

Alg.

S=10

Dynamic Parameters
k=0.25 k=0.5 k=1.0
S$=20 S50 S10 S=20 S50 SF10 S=20  SS50

250

G243b

DCTC

SMESD

0.59
(0.15)

0.85
(0.00)

054 056 055 057 1.151.67 1.09 168
(0.15) (0.14) (0.13) (0.13) (0.13) (0.26) (0.29) 2@).

0.85 087 078 083 144 1.49 1.31 240
(0.00) (0.00) (0.00) (0.04) (0.00) (0.25) (0.14) OQ).

250

G244

DCTC

SMESD

0.43
(0.07)

0.82
(0.00)

041 028 071 062 028 153 133 1.33
(0.05) (0.04) (0.08) (0.05) (0.06) (0.13) (0.09) 1().

0.80 069 1.05 099 068 1.91 217 214
(0.00) (0.00) (0.00) (0.01) (0.00) (0.15) (0.00) OQ).

250

G245

DCTC

SMESD

0.21
(0.02)

0.38
(0.01)

018 011 034 031 012046 028 031
(0.02) (0.02) (0.04) (0.04) (0.04) (0.08) (0.11) 0Q).

0.44 045 0.68 053 022043 024 0.35
(0.11) (0.03) (0.10) (0.03) (0.00) (0.00) (0.01) OQ).

500

G243b

DCTC

SMESD

0.54
(0.16)

0.84
(0.00)

049 049 049 051 103 159 093 154
(0.13) (0.10) (0.14) (0.11) (0.10) (0.23) (0.18) 1@).

081 082 074 081 140 172 179 236
(0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.06) OQ).

500

G244

DCTC

SMESD

0.36
(0.05)

0.81
(0.00)

035 023 063 055 020 141 126 1.20
(0.02) (0.03) (0.05) (0.04) (0.04) (0.06) (0.08) 0.

088 067 08% 094 061 223 205 203
(0.02) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) OQ).

500

G245

DCTC

SMESD

0.18
(0.01)

0.47
(0.08)

015 007 028 026 007038 020 025
(0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.05) 0.

058 052 047 045 017032 037 0.73
(0.19) (0.16) (0.02) (0.03) (0.00) (0.00) (0.28) OQ.

1000 G243b

DCTC

SMESD

0.47
(0.12)

0.87
(0.03)

043 039 041 045 098 144 083 1.45
(0.08) (0.06) (0.12) (0.09) (0.09) (0.18) (0.14) Of).

08% 082 073 081 149 223 165 2.00
(0.02) (0.03) (0.00) (0.00) (0.09) (0.00) (0.01) 2.

1000 G244

DCTC

SMESD

0.32
(0.02)

0.81
(0.00)

032 019 057/ 050 015 1.36 117 1.13
(0.02) (0.01) (0.02) (0.02) (0.02) (0.05) (0.05) Of).

086 068 1.069 087A! 061 207 157 201
(0.02) (0.02) (0.06) (0.09) (0.00) (0.22) (0.22) OQ.

1000 G245

DCTC

SMESD

0.17
(0.02)

0.56
(0.15)

012 006 025 023 003 034 015 0.20
(0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) OQ).

073 1.00 057 072 083 078 064 0.72
(0.07) (0.17) (0.30) (0.24) (0.05) (0.12) (0.00) OQ.

1rf=32.0-2rf=68.0 -3 rf=44.0 - r{=6.0-5rf=30.0 -6 rf=70.0 -" rf=46.0 -8 r {=80.0 -°
rf=60.0-1°rf=54.0 -1 r {=68.0
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On the other hand, if we fix the number of objective functioalastions pro pe-
riod as well as the objective function severity values andngesase the constraint
severity value, we can see how G248 offline errors with lovk improve but without
significant differences. If we use medium value&ahe results get worse but show
significant differences only between the results producih lww and mediuns
with respect to those obtained wh8is large. In general, with large valueslgfthe
best results are obtained with medium valueSshowing significant differences
with respect to the results obtained with low and mediumesiofS.

For G244, if we adopt either a low or a large valuelofin increase ddimproves
the results but not with significant differences. With a nuedivalue ofk, the results
also improve, showing significant differences only betwé®n results produced
with low and medium values @& with respect to those obtained wh8is large.

For G245, an increase ir§ improves the results produced by our proposed
DCTC. For low values o, the results show significant differences only between the
results produced with either a low or a larf§d-or medium values di, the results
show significant differences between the results produdéd law and medium
values ofSwith respect to those obtained with large valueS.dfor large values of
k, the best results are obtained with medium values showing significant differ-
ences only with respect to those obtained with low valu€es§ bfit not with respect
to those produced with large values®f

An increase in the number of objective function evaluatipeischange does not
produce results with significant differences for G24 and G244. For G245, the
results obtained for 250 evaluations present significdfgreinces with respect to
those found for 1000 evaluations with a large valuk aifd either a low or a medium
S

Our proposed DCTC always outperfor®4ESD, when compared on problems
with dynamic objective function and dynamic constrainig;ept for four cases as
shown in Table 4. Furthermore, in one case, (the eleventbrarpnt) SMESD fails
to find feasible solutions in all changes for all runs, while proposed DCTC had
success in the same task.

Tables 5 and 6 show the results obtained for problems withhamiyc objective
function and fixed constraints. If we fix the number of objeefunction evaluations
pro period and we increase the objective function sevedatye;, we can see how
for G241 and G242 the offline errors get worse. But the results show significan
differences only between the results produced when usingia large values of
k, for 250 and 500 evaluations per change.

For G246a, G246¢ and G248b, in general, offline errors get worse whien
grows. But the results show significant differences only nvaee produced with
low values ofk with respect to those produced with medium and large valfigs o

For G246d, an increase in the objective function severity valueri@tates the
offline errors but not with significant differences.

An increase in the number of objective function evaluatiorsperiod wherk is
fixed produces better results with significant differences.

Our proposed DCTC always outperfor®dESD, when compared on problems
with dynamic objective function and static constraintgept for one case, as shown
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Table 5 Offline errors (the standard deviation is shown in parem$)e®r problems with dynamic
objective function and fixed constraints

Dynamic Parameters

Ev. Probl. Alg. k=0.25 k=0.5 k=1.0
DCTC 0.03(0.01) 0.05(0.03) 0.12(0.04)
250 G24l
SMESD 1.66 (0.00) 1.58 (0.00) 2.39 (0.03)
DCTC 0.08(0.03) 0.12(0.03) 0.18 (0.10)
250 G242 SMESD 0.77 (0.01) 0.38(0.00) 0.16(0.00)
DCTC 0.11(0.04) 0.25(0.08) 0.58(0.19)
250 G248b SMESD 0.55 (0.01) 0.74 (0.00) 0.76 (0.00)
DCTC 0.00(0.00) 0.01(0.01) 0.03(0.02)
500 G24l
SMESD 1.65 (0.00) 1.58 (0.01) 1.74 (0.00)
DCTC 0.05(0.02) 0.06(0.03) 0.12(0.07)
500 G242 SMESD 0.84 (0.08) 0.26 (0.07) 0.57 (0.00)
DCTC 0.04(0.02) 0.12(0.06) 0.29(0.13)
500 G248b SMESD 0.51 (0.00) 0.69 (0.09) 1.07 (0.00)
DCTC 0.00(0.00) 0.00(0.00) 0.00(0.00)
1000 G24l SMESD 1.65 (0.00) 1.57 (0.00) 2.32 (0.00)
DCTC 0.03(0.01) 0.03(0.02) 0.04(0.04)
1000 G242 SMESD 1.31(0.12) 0.79 (0.12) 0.49 (0.20)
DCTC 0.01(0.01) 0.03(0.02) 0.07(0.07)
1000 G248b

SVESD  0.51(0.00) 0.72(0.01)  1.03(0.00)

Table 6 Offline errors (the standard deviation is shown in parem$)e®r problems with dynamic
objective function and fixed constraints

Algorithms

Ev. Probl. DCTC SMESD
250 G246a 0.26(0.38) 1.76 (0.00)
250 G246¢ 0.12 (0.05) 0.11(0.00)
250 G246d 0.14(0.18) 0.55 (0.00)
500 G246a 0.06(0.12) 1.75 (0.00)
500 G246¢ 0.06(0.03) 0.10 (0.04)
500 G246d 0.04(0.14) 0.50 (0.00)
1000 G246a 0.02(0.02) 1.75 (0.00)
1000 G246¢ 0.04(0.03) 0.13 (0.00)

1000  G246d 0.00(0.00) 0.13 (0.00)
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in Table 5. In these problems both approaches found, fouad,rfeasible solutions,
for all changes.

Table 7 shows the results obtained for problems with a stéjiective function
and dynamic constraints. If we fix the number of objectivection evaluations
pro period and increase the constraint severity value wesearhow, for G248,
the offline errors improve. In general, the results showigant differences only
between the results produced with low valuesSafith respect to those obtained
with medium and large values &f

Table 7 Offline errors (the standard deviation is shown in parermseor problems with static
objective function and dynamic constraints

Dynamic Parameters

Ev.  Probl. Alg. s=10 $=20 S=50
DCTC 0.16(0.15)  0.15(0.21)  0.12(0.07)
250 G243 SMESD 0.12(0.00)  0.04(0.01)  0.01(0.00)
DCTC 0.15(0.02)  0.11(0.03)  0.10 (0.03)
250 G247 SMESD 0.14(0.00)  0.03(0.01)  0.08(0.05)
DCTC 0.13(0.14)  0.10(0.13) _ 0.10 (0.11)
500 G243 SMESD 0.101 (0.00)  0.02(0.00)  0.00(0.00)
DCTC 0.12(0.02) _ 0.07(0.02) _ 0.06 (0.02)
500 G247 SMESD 0.12(0.01)  0.04(0.03)  0.00(0.00)
DCTC 0.11(0.03)  0.05(0.03)  0.05 (0.04)
1000 G243 SMESD 0.09(0.01)  0.02(0.00)  0.00(0.00)
DCTC 0.10(0.02) _ 0.05(0.01) _ 0.04(0.01)
1000 G247

SMESD 0.11 (0.01) 0.02(0.00) 0.00(0.00)

1rf=44.0

Finally, an increase in the number of objective functionleations per change
produces results with significant differences for G24nd medium values & as
well as for a number of evaluations of 250 and 1000. For @2the results that
present significant differences are those found for 250 &8 kvaluations with
low values ofS, as well as the results produced with 250 evaluations wipeet to
those obtained with 500 and 1000 evaluations, using a medilune ofS. For those
two problems, the results show significant differences whisrarge.

SMESD outperforms our proposed DCTC in all problems with statieotive
function and dynamic constraints, except for one case arahdther case (see Ta-
ble 7),SMESD fails to find feasible solutions in all changes for some ruvisgreas
our proposed DCTC found feasible solutions for all changealli the runs per-
formed.

Table 8 shows the results for DCTC ®RGA-€elit and dRepairRIGA. Here we
can note thaRIGA-€lit outperforms DCTC only in one test case while DCTC is
superior to dRepairRIGA in seven of the eleven test casgstado
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Table 8 Offline errors (the standard deviation is shown in paremefor DCTC vsRIGA-€lit
and dRepairRIGA

Algorithms
Probl. DCTC RIGA-€lit dRepairRIGA
G241 0.00(0.00) 0.40 (0.04) 0.08 (0.01)
G242 0.03(0.02) 0.28 (0.02) 0.16 (0.02)
G243 0.05 (0.03) 0.34 (0.04)  0.02(0.00)
G24.3b 0.45 (0.09) 0.47 (0.05)  0.05(0.00)
G244 0.50 (0.02) 0.49 (0.07)  0.14(0.02)
G245 0.23 (0.01) 0.25(0.03)  0.15(0.01)
G24.6a 0.02(0.02) 0.45 (0.05) 0.36 (0.03)
G24.6¢ 0.04(0.03) 0.41 (0.04) 0.32 (0.03)
G24.6d 0.00(0.00) 0.42 (0.02) 0.31 (0.02)
G247 0.05(0.01) 0.45 (0.05) 0.15 (0.03)
G248b 0.03(0.02) 1.08 (0.11) 0.34 (0.05)

In order to determine if DCTC is able to recover and converga solution
immediately after a change, we analyze the ploRBIARR scores displayed in
Figures 1, 2, 3,4 and 5.

For G241 and G242 (see Figures 1 (a) and (b)), our proposed DCTC found, on
the median run, solutions close to the optimum. As the nummbaljective function
evaluations grows, the algorithm recovers faster and ¢egeicto the new optimum.
Also, objective function severity has a negative impact onvergence when it is
increased.

For those problems in which only the constraints changeRspees 1 (¢c) and 3),
the algorithm found solutions close to the optimum when thestraint severity was
larger. When constraint severity was low, the algorithmrmmalty converged to local
optima.

For G246a, G246¢ and G246d with 500 and 1000 evaluations per change (see
Figure 2 (a)) the algorithm had a perfect and an almost pgpréormance regard-
ing convergence behavior and recovery speed. But, with 28ldiations per change
it presents moderate convergence behavior and recovesy spe

For G24.3b and G244, with 250 evaluations per change (see Figures 3 (a) and 4
(a)), our proposed DCTC presented relatively moderateeg@nce behavior and
recovery speed.

For G243b with 500 and 1000 evaluations per change and_&24ith 250
and 500 evaluations per change (see Figures 3 (b) and (c)igaceE 5 (b) and
(c)), our proposed DCTC presented good convergence beteavdaecovery speed.
Particularly, for G245, with 250 evaluations per change, the larger the objective
function severity, the better becomes the convergencevimha

For G244 with 500 evaluations per change (see Figure 4 (b)), in génitre
algorithm presented a fast recovery speed but the solufensd were not very
close to the optimum.
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For G244 and G245, with 1000 evaluations per change (see Figures 4 (c) and 4
(c)), the convergence behavior of our proposed DCTC is veogd@nd the recovery
speed is high.

In order to compare the effect that different features ofdyaeamic constrained
problems had on performance, Nguyen et al. [17] proposedntrast the offline
errors produced over pairs of problems. In this work, thifeihg comparison were
made:

e Static constraints versus dynamic constraints - a4 G244 and G242 vs
G245.

e Moving constraints that do not expose better optima versodmg constraints
that expose better optima - G34vs G243b.

e Connected feasible regions versus disconnected feasiglens - G246¢ vs
G24.6d.

e Optima in the constraints boundary versus optima that arértbe constraints
boundary - G244 vs G245.

The offline errors produced by our proposed DCTC for problestis static con-
straints and dynamic constraints (see Figures 6 (a) to ig)ly show the negative
impact on performance when constraints change over timéatistcal analysis of
variance indicates that the offline errors obtained for G2#ave significant differ-
ences with respect to the offline errors obtained for @2Klote that for G244, the
larger the constraint severity, the better the performance

For G242 versus G254, the offline errors also deteriorate when the problem
changes its constraints over time (see Figures 6 (d) ta{ij)the statistical analysis
of variance indicates that the offline errors obtained fo4 G2with a medium value
of S, are not significatively different from the offline errorstaimed for G242,
regardless of the number of evaluations between changes.

The algorithm had better performance when the optimum waisdrconstraint
boundary than when it was not (see Figure 7 (a)), showing sigiyificant differ-
ences with large values &fand a few evaluations per change. The opposite situation
occurs when we compare the results obtained for &2shd G245 (see Figures 7
(b) to (d)). Also, they always presented significant differes.

When the algorithm had only a few evaluations to perform peteqor change),
moving inside the connected feasible regions was easiarttwwving between dis-
connected feasible regions. But, if we could perform mogdweations per change,
moving between disconnected regions became easier (seeefdga)), showing
significant differences in the offline errors for all the tebtases.

The exposition of better optima when the constraints chamage a negative im-
pact on the performance of our proposed DCTC, showing sigmifidifferences for
all the tested cases (see Figures 8 (b) to (d)).
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Table 9 Summary of the ANOVA results. - indicates that significaritedlences were detected

Probl. Eval. Pairs of severity values for the results hagiggificant differences
250 low k and high k
G241 500 low k and high k
1000 -
250 low k and high k
G242 500 low k and high k / medium k and high k
1000 -
250 low S and medium S
G243 500 low S and high S/low S and medium S
1000 low S and high S/low S and medium S
250 low k and medium k / low k and high k
G24.6a 500 low k and medium k
1000 low k and medium k / low k and high k
250 low k and medium k / low k and high k
G246¢c 500 low k and medium k / low k and high k
1000 low k and medium k / low k and high k
250 -
G24.6d 500 -
1000 -
250 low S and high S/low S and medium S
G247 500 low S and high S/low S and medium S
1000 low S and high S/low S and medium S
250 low k and medium k / low k and high k / medium k and high k
G248b 500 low k and medium k / low k and high k/ medium k and high k
1000 low k and high k

Table 10 Summary of ANOVA results. - indicates that significant diéieces were detected

Probl.  Eval. k Pairs of severity values for the results hgilgnificant dif-
ferences
250/500/1000  small -

G24.3b 250/500/1000  medium low S and high S/ medium S and high S
250/500/1000 large low S and medium S / medium S and high S
250/500/1000  small -

G244 250/500/1000  medium low S and high S/ medium S and high S
250/ 500/1000 large -

250/500/1000  small low S and high S

G245 250/500/1000  medium low S and high S/ medium S and high S

250/500/1000 large low S and medium S/ low S and high S
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Fig. 6 The effect of two different problem features on the perfanoeaof DCTC. G241 versus
G24.4 and G242 versus G24= Static constraints versus dynamic constraints. Pedoo® is
evaluated based on the offline error

6.1 Increasing the number of changes pro run

In order to determine if the performance of DCTC é8MESD gets affected when
more than five changes occur, in the case in which severitygis tk= 0.01 and
S= 50) and the minimum time pro period is granted (only 25@ctbje function
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Fig. 7 The effect of two different problem features on the perfamoeof DCTC. G241 versus
G242 and G244 versus G24b= Optimum in the constraint boundary versus Optimum nolhé t
constraint boundary. Performance was evaluated basecaffline error

evaluations), we ran these two algorithms allowing fiftyroges (in 50 independent
runs) for each test problem. The results of these expergrartshown in Table 12.

First, it can be seen that DCTC outperfor8MESD in all the test cases, except
for G24.7 but here SMESD could not find feasible solutions for every periad &
62.0). It is worth noting that, for G248 and G243b, even when the offline errors
of SMESD are zero, their f values are zero, as well. This means t84ESD could
not find, in any run, a feasible solution for each period wbiteéTC could do it.

On the other hand, when we consider the results obtained Byd¥@r 5 against
50 changes (with the highest severity), in general (8 frorodsks) the offline errors
improved when more changes were allowed, whilst, regar8igSD, on 6 of the
11 test cases the results were worst. Thus, we can thinlSKhBEED loses its abil-
ity to react to changes when these are increased, while DC®Qedy maintains
diversity during the search process.
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Table 11 Summary of ANOVA results for G24 vs G244, G242 vs G245, G244 vs G245,
G241 vs G242 and G246¢ vs G246d. - indicates that significant differences were detected

First function vs Second Function Eval. Did the results iotatd for the first function have sig-
nificant differences with respect to the results obtained
for the second function with any dynamic parameter?

250 Always
G24.1vs G244 500 Always
1000 Always
250 Yes, when S is small and when S is medium
G242 vs G245 500 Yes, when S is small and when S is medium
1000 Always
250 Always
G244 vs G245 500 Always
1000 Always
250 Always
G243 vs G243b 500 Always
1000 Always
250 Yes, when k is small and when k is medium
G24.1vs G242 500 Always
1000 Always
250 Always
G24.6¢ vs G246d 500 Always
1000 Always

Table 12 Offline errors (the standard deviation is shown in parem$efor dynamic constrained
problems performing 50 changes

Algorithms

Probl. DCTC SMESD

G241 0.06(0.02) 2.32(0.00)
G242 0.20(0.04) 0.55 (0.04)
G243 0.19(0.05) 0.00 (0.00)
G24.3b 0.49(0.17) 0.86 (0.09
G244 0.16(0.04) 1.03 (0.0P)
G245 0.11(0.02) 0.32 (0.03)
G24.6a 0.08(0.04) 1.80 (0.02)
G24.6c 0.09(0.02) 0.23 (0.00)
G24.6d 0.08(0.06) 0.97 (0.00)
G247 0.05 (0.01) 0.00(0.00f
G248b 0.20(0.07) 0.64 (0.13)

1rf=0.0-2rf=0.0- 3 rf=54.0- 4 rf=62.0
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Fig. 8 The effect of four different problem features on the perfance of DCTC. G24c ver-
sus G246d = Connected feasible regions versus disconnected feasijions and G248 versus
G24.3b= Moving constraints do not expose a better optimum versam&ng constraints expose a
better optimum. Performance was evaluated based on theeoéfiror

7 Conclusions and Future Work

In this chapter, we have analyzed the behavior of an adaptiveine system called
Dynamic Constrained T-Cell (DCTC) for solving dynamic coaged optimization
problems. One of the strengths we can highlight about DCTtGeigew number of
parameters that it requires. Furthermore, and analogtusther techniques that do
not rely on a penalty function to handle constraints, DCT€uot need to define a
penalty factor, which normally has to take a specific valueech problem at hand.

An adaptation of an existing algorithm, which was origiyaised to solve static
constrained optimization problems, was used to compareethigts obtained by
our proposed DCTC on eleven constrained optimization rablwhich present
several forms of dynamism (both in the objective functiod anthe constraints).
Additionally, DCTC was also indirectly compared to two apaches used to solve
dynamic constrained optimization probler®GA-elit and dRepairRIGA.

For problems with a dynamic objective function and dynangostraints, an
increase in the objective function severity produces a g@operformance of our
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proposed DCTC. However, in general, the results that shgmifgiant differences
are those found with low severity with respect to those fowitt large severity.
An increase in the constraints severity improves the offlimers, showing, in some
cases, significant differences, generally between thedtsdsund with low severity
with respect to those found with a large severity. In genaralncrease in the num-
ber of evaluations per change improves the offline errorsbtiwith significant
differences.

For those problems in which the objective function is dyraamd the constraints
are static, in general, an increase in the severity has dinegapact on the behav-
ior of our proposed DCTC. In this case, there are significéfgrénces between the
results obtained with low severity with respect to thosewtatd with a large sever-
ity. In this type of problems, an increase in the number ofu@tions per change
improves the offline errors with significant differences.

In problems in which the objective function is static and tleastraints change
over time, an increase in the severity improves the redulthis case, there are sig-
nificant differences when using a low severity with respedhe use of a medium
and a large severity. An increase in the number of evaluafen change improves
the offline errors but significant differences are detectedesults found with low
severity, with respect to those obtained with a large sgveriegarding the poor
behavior of DCTC in problems that present dynamic condisaour hypothesis is
the following. When the constraint severity is low, it isdli that many of the feasi-
ble solutions found so far keep their feasibility. Howewethis case, the algorithm
has converged to a local optimum and it remains trapped.ter¢he other hand,
when the constraint severity is large, feasible solutioitisbh@come infeasible and
viceversa. This causes the search to be redirected to thésasible regions. This
situation can be observed in both DCTC é&MESD.

When a global optimum switches between disconnected feasibions and the
constraints change, for our proposed DCTC it is more diffimugolve the problem
than when the constraints are static.

For all the test problems adopted, we could see, in the mediarthat a larger
number of objective function evaluations allowed us to kegproving the solutions
in that period.

When the problem presented a dynamic objective functiondymémic con-
straints and the number of objective function evaluatiogisghange was low, the
results obtained were not very good. But, we could see thakiincreased this
number, the results improved, showing significant diffeemnin some cases. This
leads us to believe that our proposed approach is able td a@digo dynamic en-
vironments but requires a minimum number of evaluationsr@deoto reach some
stability.

Our proposed DCTC was found to be superiolSMESD in problems with a
dynamic objective function and dynamic constraints andrisbfems with a dy-
namic objective function and static constraints. Thereavesly five cases in which
SMESD outperformed our proposed DCTC when using such types of@ma On
the other handSMESD showed a better behavior than our proposed DCTC in prob-
lems having a static objective function and dynamic coingsaWwhen we compared
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our results again®l GA-elit we could note the superior performance of DCTC in all
but one test case. On the other hand, DCTC showed to be caivgetith respect
to dRepairRIGA, overcoming it in seven of the eleven test cases adopted.

As part of our future work, we aim to improve the mechanismm#intain di-
versity of our approach, mainly when dealing with problemsaihich a change
in the constraints gives rise to a new optimum. It is alsordé$e to improve the
exploratory capabilities of our proposed algorithm so thaan be more effective
in the test problems in which it was outperformed 8YESD. Thus, taking into
account the performed experiments and the results obt&imedthem, we can sug-
gest that DCTC should be suitable for solving problems fggidynamic objective
function and either static or dynamic constraints. Howgweraim is to improve the
behavior of our proposed DCTC in problems having a statiecibje function and
dynamic constraints. Finally, we would also like to extend approach for solving
multi-objective dynamic constrained optimization prahke
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