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Abstract Optimization problems in many industrial applications arevery hard to
solve. Many examples of them can be found in the design of aeronautical systems.
In this field, the designer is frequently faced with the problem of considering not
only a single design objective, but several of them, i.e., the designer needs to solve
a Multi-Objective Optimization Problem (MOP). In aeronautical systems design,
aerodynamics plays a key role in aircraft design, as well as in the design of propul-
sion system components, such as turbine engines. Thus, aerodynamic shape opti-
mization is a crucial task, and has been extensively studiedand developed. Multi-
Objective Evolutionary Algorithms (MOEAs) have gained popularity in recent years
as optimization methods in this area, mainly because of their simplicity, their ease of
use and their suitability to be coupled to specialized numerical simulation tools. In
this chapter, we will review some of the most relevant research on the use of MOEAs
to solve multi-objective and/or multi-disciplinary aerodynamic shape optimization
problems. In this review, we will highlight some of the benefits and drawbacks of
the use of MOEAs, as compared to traditional design optimization methods. In the
second part of the chapter, we will present a case study on theapplication of MOEAs
for the solution of a multi-objective aerodynamic shape optimization problem.
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1 Introduction

There are many industrial areas in which optimization processes help to find new
solutions and/or to increase the performance of an existingone. Thus, in many cases
a research goal can be translated into an optimization problem. Optimal design in
aeronautical engineering is, by nature, a multiobjective,multidisciplinary and highly
difficult problem. Aerodynamics, structures, propulsion,acoustics, manufacturing
and economics, are some of the disciplines involved in this type of problems. In
fact, even if a single discipline is considered, many designproblems in aeronautical
engineering have conflicting objectives (e.g., to optimizea wing’s lift and drag or
a wing’s structural strength and weight). The increasing demand for optimal and
robust designs, driven by economics and environmental constraints, along with the
advances in computational intelligence and the increasingcomputing power, has
improved the role of computational simulations, from beingjust analysis tools to
becoming design optimization tools.

In spite of the fact that gradient-based numerical optimization methods have been
successfully applied in a variety of aeronautical/aerospace design problems,2 [30,
16, 42] their use is considered a challenge due to the following difficulties found in
practice:

1. The design space is frequently multimodal and highly non-linear.
2. Evaluating the objective function (performance) for thedesign candidates is usu-

ally time consuming, due mainly to the high fidelity and high dimensionality
required in the simulations.

3. By themselves, single-discipline optimizations may provide solutions which not
necessarily satisfy objectives and/or constraints considered in other disciplines.

4. The complexity of the sensitivity analyses in Multidisciplinary Design Optimiza-
tion (MDO3) increases as the number of disciplines involved becomes larger.

5. In MDO, a trade-off solution, or a set of them, are searchedfor.

Based on the previously indicated difficulties, designers have been motivated
to use alternative optimization techniques such as Evolutionary Algorithms (EAs)
[31, 20, 33]. Multi-Objective Evolutionary Algorithms (MOEAs) have gained an
increasing popularity as numerical optimization tools in aeronautical and aerospace
engineering during the last few years [1, 21]. These population-based methods
mimic the evolution of species and the survival of the fittest, and compared to tradi-
tional optimization techniques, they present the following advantages:

(a) Robustness:In practice, they produce good approximations to optimal sets of
solutions, even in problems with very large and complex design spaces, and are
less prone to get trapped in local optima.

2 It is worth noting that most of the applications using gradient-based methods have adopted them
to find global optima or a single compromise solution for multi-objective problems.
3 Multidisciplinary Design Optimization, by its nature, canbe considered as a multi-objective
optimization problem, where each discipline aims to optimize a particular performance metric.
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(b) Multiple Solutions per Run:As MOEAs use a population of candidates, they are
designed to generate multiple trade-off solutions in a single run.

(c) Easy to Parallelize:The design candidates in a MOEA population, at each gen-
eration, can be evaluated in parallel using diverse paradigms.

(d) Simplicity:MOEAs use only the objective function values for each designcan-
didate. They do not require a substantial modification or complex interfacing for
using a CFD (Computational Fluid Dynamics) or CSD/M (Computational Struc-
tural Dynamics/Mechanics) code.

(e) Easy to hybridize:Along with the simplicity previously stated, MOEAs also
allow an easy hybridization with alternative methods, e.g., memetic algorithms,
which additionally introduce specifities to the implementation, without influenc-
ing the MOEA simplicity.

(f) Novel Solutions:In many cases, gradient-based optimization techniques con-
verge to designs which have little variation even if produced with very different
initial setups. In contrast, the inherent explorative capabilities of MOEAs allow
them to produce, some times, novel and non-intuitive designs.

An important volume of information has been published on theuse of MOEAs
in aeronautical engineering applications (mainly motivated by the advantages previ-
ously addressed). In this chapter, we provide a review of some representative works,
dealing specifically with multi-objective aerodynamic shape optimization.

The remainder of this chapter is organized as follows: In Section 2, we present
some basic concepts and definitions adopted in multi-objective optimization. Next,
in Section 3, we review some of the work done in the area of multi-objective aerody-
namic shape optimization. This review covers:surrogate based optimization, hybrid
MOEA optimization, robust design optimization, multidisciplinary design optimiza-
tion, anddata mining and knowledge extraction. In Section 4 we present a case
study and, finally, in Section 5. we present our conclusions and final remarks.

2 Basic Concepts

A Multi-Objective Optimization Problem (MOP) can be mathematically defined as
follows4:

minimizef(x) := [ f1(x), f2(x), . . . , fk(x)] (1)

subject to:

gi(x)≤ 0 i = 1,2, . . . ,m (2)

hi(x) = 0 i = 1,2, . . . , p (3)

4 Without loss of generality, minimization is assumed in the following definitions, since any max-
imization problem can be transformed into a minimization one.
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wherex = [x1,x2, . . . ,xn]
T is the vector of decision variables, which are bounded

by lower (xl
i ) and upper (xu

i ) limits which define the search spaceS , fi : IRn→ IR,
i = 1, ...,k are the objective functions andgi ,h j : IRn→ IR, i = 1, ...,m, j = 1, ..., p
are the constraint functions of the problem.

In other words, we aim to determine from among the setF ⊆S (F is the feasi-
ble region of the search spaceS ) of all vectors which satisfy the constraints, those
that yield the optimum values for all thek objective functions, simultaneously. The
set of constraints of the problem definesF . Any vector of variablesx which satis-
fies all the constraints is considered a feasible solution. In their original version, an
EA (and also a MOEA) lacks a mechanism to deal with constrained search spaces.
This has motivated a considerable amount of research regarding the design and im-
plementation of constraint-handling techniques for both EAs and MOEAs [10, 29].

2.1 Pareto dominance

Pareto dominance is an important component of the notion of optimality in MOPs
and is formally defined as follows:

Definition 1. A vector of decision variablesx ∈ IRn dominates another vector of de-
cision variablesy ∈ IRn, (denoted byx � y) if and only if x is partially less thany,
i.e.∀i ∈ {1, . . . ,k}, fi(x)≤ fi(y)∧∃i ∈ {1, . . . ,k} : fi(x) < fi(y).

Definition 2. A vector of decision variablesx ∈X ⊂ IRn is nondominated with
respect toX , if there does not exist anotherx′ ∈X such thatf(x′)� f(x).

In order to say that a solution dominates another one, it needs to be strictly better
in at least one objective, and not worse in any of them.

2.2 Pareto optimality

The formal definition ofPareto optimalityis provided next:

Definition 3. A vector of decision variablesx∗ ∈F ⊆S ⊂ IRn is Pareto optimal
if it is nondominated with respect toF .

In words, this definition says thatx∗ is Pareto optimal if there exists no feasible
vectorx which would decrease some objective without causing a simultaneous in-
crease in at least one other objective (assuming minimization). This definition does
not provide us a single solution (in decision variable space), but a set of solutions
which form the so-calledPareto Optimal Set(P∗), whose formal definition is given
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by:

Definition 4. ThePareto optimal setP∗ is defined by:

P
∗ = {x ∈F |x is Pareto optimal}

The vectors that correspond to the solutions included in thePareto optimal set
are said to benondominated.

2.3 Pareto front

When all nondominated solutions are plotted in objective function space, the non-
dominated vectors are collectively known as thePareto front(PF ∗).

Definition 5. ThePareto front PF ∗ is defined by:

PF
∗ = {f(x) ∈ IRk|x ∈P

∗}
The goal on a MOP consists on determiningP∗ fromF of all the decision variable
vectors that satisfy (2) and (3). Thus, when solving a MOP, weaim to find not one,
but a set of solutions representing the best possible trade-offs among the objectives
(the so-called Pareto optimal set).

3 Multi-Objective Aerodynamic Shape Optimization

3.1 Problem definition

Aerodynamics is the science that deals with the interactions of fluid flows and ob-
jects. This interaction is governed by conservation laws which are mathematically
expressed by means of theNavier-Stokesequations, which comprise a set of partial
differential equations, being unsteady, nonlinear and coupled among them. Aero-
dynamicists are interested in the effects of this interaction, in terms of their aero-
dynamic forces and moments, which are the result of integrating the pressure and
shear stresses distributions that the flow excerses over theobject with which it is in-
teracting. In its early days, aerodynamic designs were doneby extensive use of ex-
perimental facilities. Nowadays, the use of ComputationalFluid Dynamics (CFD)
technology to simulate the flow of complete aircraft configurations, has made it
possible to obtain very impressive results with the help of high performance com-
puters and fast numerical algorithms. At the same time, experimental verifications
are carried out in scaled flight tests, avoiding many of the inherent disadvantages
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and extremely high costs of wind tunnel technology. Therefore, we can consider
aerodynamics as a mature engineering science.

Thus, current aerodynamic research focuses on finding new designs and/or im-
proving current ones, by using numerical optimization techniques. In the case of
multi-objective optimization, the objective functions are defined in terms of aero-
dynamic coefficients and/or flow conditions. Additionally,design constraints are
included to render the solutions practical or realizable interms of manufacturing
and/or operating conditions. Optimization is accomplished by means of a more or
less systematic variation of the design variables which parameterize the shape to be
optimized. A variety of optimization algorithms, ranging from gradient-based meth-
ods to stochastic approaches with highly sophisticated schemes for the adaptation of
the individual mutation step sizes, are currently available. From them, MOEAs have
been found to be a powerful but easy-to-use choice. Next, we will briefly review
some of the most representative works on the use of MOEAs for aerodynamic de-
sign. The review comprises the following dimensions that are identified as the most
relevant, from a practical point of view, for the purposes ofthis chapter:

• Surrogate-based optimization,
• Hybrid MOEA optimization,
• Robust design optimization,
• Multidisciplinary design-optimization, and
• Data-mining and knowledge extraction.

3.2 Surrogate-based optimization

Evolutionary algorithms, being population-based algorithms, often require popula-
tion sizes, and a number of evolution steps (generations) that might demand tremen-
dous amounts of computing resources. Examples of these conditions are presented
by Benini [4], who reported computational times of 2000 hrs.in the multi-objective
re-design of a transonic turbine rotor blade, using a population with 20 design can-
didates, and 100 generations of evolution time, in a four-processors workstation.
Thus, when expensive function evaluations are required, the required CPU time may
turn prohibitive the application of MOEAs, even with today’s available computing
power.

For tackling the above problem, one common technique adopted in the field of
aerodynamic shape optimization problems, is the use of surrogate models. These
models are built to approximate computationally expensivefunctions. The main ob-
jective in constructing these models is to provide a reasonably accurate approxima-
tion to the real functions, while reducing by several ordersof magnitude the com-
putational cost. Surrogate models range form Response Surface Methods (RSM)
based on low-order polynomial functions, Gaussian processes or Kriging, Radial
Basis Funcions (RBFs), Artificial Neural Networks (ANNs), to Support Vector Ma-
chines (SVMs). A detailed description of each of these techniques is beyond the
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scope of this chapter, but the interested reader is referredto Jin [19] for a compre-
hensive review of these and other approximation techniques.

In the context of aerodynamic shape optimization problems,some researchers
have used surrogates models to reduce the computational time used in the optimiza-
tion process. The following is a review of some representative research that has been
conducted in this area:

• Lian and Liou [26] addressed the multi-objective optimization of a three-dimen-
sional rotor blade, namely the redesign of the NASA rotor 67 compressor blade,
a transonic axial-flow fan rotor. Two objectives were considered in this case:
(i) maximization of the stage pressure rise, and (ii) minimization of the entropy
generation. Constraints were imposed on the mass flow rate tohave a difference
less than 0.1% between the new one and the reference design. The blade ge-
ometry was constructed from airfoil shapes defined at four span stations, with a
total of 32 design variables. The authors adopted a MOEA based on MOGA [14]
with real numbers encoding. The optimization process was coupled to a second-
order RSM, which was built with 1,024 design candidates using the Improved
Hypercube Sampling (IHS) algorithm. The authors reported that the evaluation
of the 1,024 sampling individuals took approximately 128 hours (5.33 days) us-
ing eight processors and a Reynolds-Averaged Navier-Stokes CFD simulation. In
their experiments, 12 design solutions were selected from the RSM-Pareto front
obtained, and such solutions were verified with a high fidelity CFD simulation.
The objective function values slightly differed from thoseobtained by the ap-
proximation model, but all the selected solutions were better in both objective
functions than the reference design.

• Song and Keane [46] performed the shape optimization of a civil aircraft en-
gine nacelle. The primary goal of the study was to identify the trade-off between
aerodynamic performance and noise effects associated withvarious geometric
features for the nacelle. For this, two objective functionswere defined: i) scarf
angle, and ii) total pressure recovery. The nacelle geometry was modeled us-
ing 40 parameters, from which 33 were considered design variables. In their
study, the authors implemented the NSGA-II [12] as the multi-objective search
engine, while a commercial CFD software was used for evaluation of the three-
dimensional flow characteristics. A kriging-based surrogate model was adopted
in order to keep the number of designs being evaluated with the CFD tool to
a minimum. In their experiments, the authors reported difficulties in obtaining
a reliable Pareto front (there were large discrepancies between two consecutive
Pareto front approximations). They attributed this behavior to the large number
of variables in the design problem, and also to the associated difficulties to ob-
tain an accurate kriging model for these situations. In order to alleviate this, they
performed an analysis of variance (ANOVA) test to find the variables that con-
tributed the most to the objective functions. After this test, they presented results
with a reduced surrogate model, employing only 7 decision variables. The au-
thors argued that they obtained a design similar to the previous one, but requiring
a lower computational cost because of the use of a reduced number of variables
in the kriging model.
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• Arabnia and Ghaly [2] presented the aerodynamic shape optimization of turbine
stages in three-dimensional fluid flow, so as to minimize the adverse effects of
three-dimensional flow features on the turbine performance. Two objectives were
considered: (i) maximization of isentropic efficiency for the stage, and (ii) mini-
mization of the streamwise vorticity. Additionally, constraints were imposed on:
(1) inlet total pressure and temperature, (2) exit pressure, (3) axial chord and
spacing, (4) inlet and exit flow angles, and (5) mass flow rate.The blade geom-
etry, both for rotor and stator blades, was based on the E/TU-3 turbine which
is used as a reference design to compare the optimization results. The multi-
objective optimization consisted of finding the best distribution of 2D blade sec-
tions in the radial and circumferential directions. The authors adopted NSGA
[47] as their search engine. Both objective functions were evaluated using a 3D
CFD flow simulation, taking an amount of time of 10 hours per design candidate.
The authors adopted an artificial neural network (ANN) basedmodel. The ANN
model with backpropagation, contained a single hidden layer with 50 nodes, and
was trained and tested with 23 CFD simulations, sampling thedesign space us-
ing the Latin Hypercubes technique. The optimization process was undertaken
by using the ANN model to estimate both the objective functions, and the con-
straints. Finally, the nondominated solutions obtained were evaluated with the
actual CFD flow simulation. The authors indicated that they were able to obtain
design solutions which were better than the reference turbine design.

3.2.1 Comments regarding surrogate-based optimization

The accuracy of the surrogate model relies on the number and on the distribution
of samples provided in the search space, as well as on the selection of the appropri-
ate model to represent the objective functions and constraints. One important fact is
that Pareto-optimal solutions based on the computationally cheap surrogate model
do not necessarily satisfy the real CFD evaluation. So, as indicated in the previ-
ous references, it is necessary to verify the whole set of Pareto-optimal solutions
found from the surrogate, which can render the problem very time consuming. If
discrepancies are large, this condition might atenuate thebenefit of using a surro-
gate model. The verification process is also needed in order to update the surrogate
model. This latter condition raises the question of how often in the design process it
is necessary to update the surrogate model. There are no general rules for this, and
many researchers rely on previous experiences and trial anderror guesses.

CFD analyses rely on discretization of the flow domain and in numerical models
of the flow equations. In both cases, some sort of reduced model can be used as
fitness approximation methods, which can be further used to generate a surrogate
model. For example, Lee et al. [24] use different grid resolutions for the CFD sim-
ulations. Coarse grids are used for global exploration, while fine grids are used for
solution exploitation purposes.

Finally, many of the approaches using surrogates, build them, relating the design
variables with the objective functions. However, Leifssonand Koziel [25], have re-
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cently proposed the use of physics-based surrogate models in which, they are built
relating the design variables with pressure distributions(instead of objective func-
tions). The premise behind this approach is that in aerodynamics, the objective func-
tions are not directly related with the design variables, but with the pressure distribu-
tions. The authors have presented successful results usingthis new kind of surrogate
model for global transonic airfoil optimization. Its extension to multiobjective aero-
dynamic shape optimization is straightforward and very promising.

3.3 Hybrid MOEA optimization

One of the major drawbacks of MOEAs is that they are very demanding (in terms
of computational time), due to the relatively high number ofobjective function
evaluations that they typically require. This has motivated a number of approaches
to improve their efficiency. One of them consists in hybridizing a MOEA with a
gradient-based method. In general, gradient-based methods converge quickly for
simple topologies of the objective functions but will get trapped in a local optimum
if multi-modal objective functions are considered. In contrast, MOEAs can nor-
mally avoid local minima and can also cope with complex, noisy objective function
topologies. The basic idea behind this hybridization is to resort to gradient-based
methods, whenever the MOEA convergence is slow. Some representative works us-
ing this idea are the following:

• Lian et al. [27] deal with a multi-objective redesign of the shape blade of a single-
stage centrifugal compressor. The objectives are: (i) to maximize the total head,
and (ii) to minimize the input power at a design point. These objectives are con-
flicting with each other. In their hybrid approach, they couple a gradient-based
method that uses a Sequential Quadratic Programming (SQP) scheme, with a
GA-based MOEA. The SQP approach works in a confined region of the design
space where a surrogate model is constructed, and optimizedwith gradient-based
methods. In the hybrid approach of this example, the MOEA is used as a global
search engine, while the SQP model is used as a local search mechanism. Both
mechanisms are alternatively used under a trust-region framework until Pareto
optimal solutions are obtained. By this hybridization approach, favorable char-
acteristics of both global and local search are maintained.

• Chung et al. [9] address a multidisciplinary problem involving supersonic busi-
ness jet design. The main objective of this particular problem was to obtain a
trade-off design having good aerodynamic performances while minimizing the
intensity of the sonic boom signature at the ground level. Multiobjective opti-
mization was used to obtain trade-offs among the objective functions of the prob-
lem which were to minimize: (i) the aircraft drag coefficient, (ii) initial pressure
rise (boom overpressure), and (iii) ground perceived noiselevel. In this study,
the authors proposed and tested the Gradient Enhanced Multiobjective Genetic
Algorithm (GEMOGA). The basic idea of this MOEA is to enhancethe non-
dominated solutions obtained by a genetic algorithm with a gradient-based local
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search procedure. One important feature of this approach was that the gradient
information was obtained from the Kriging model. Therefore, the computational
cost was not considerably increased.

• Ray and Tsai [38] considered a multiobjective transonic airfoil shape design
optimization problem with two objectives to be minimized: (i) the ratio of the
drag to lift squared coefficients, and (ii) the squared moment coefficient. Con-
straints were imposed on the flow Mach number and angle of attack. The MOEA
used is a multi-objective particle swarm optimizer (MOPSO). This MOEA was
also hybridized with a gradient-based algorithm. Contraryto standard hybridiza-
tion schemes where gradient-based algorithms are used to improve the nondom-
inated solutions obtained (i.e., as a local search engine),in this approach the
authors used the gradient information to repair solutions not satisfying the equal-
ity constraints defined in the problem. This repairing algorithm was based on
the Marquardt-Levenberg algorithm. During the repairing process, a subset of
the design variables was used, instead of the whole set, in order to reduce the
dimensionality of the optimization problem to be solved.

3.3.1 Comments on hybrid MOEA optimization

Experience has shown that hybridizing MOEAs with gradient-based techniques can,
to some extent, increase their convergence rate. However, in the examples presented
above, the gradient information relies on local and/or global surrogate models. For
this, one major concern is how to build a high-fidelity surrogate model with the ex-
isting designs in the current population, since, their distribution in the design space
can introduce some undesired bias in the surrogate model. Additionally, there are
no rules for choosing the number of points for building the surrogate model, nor
for defining the number of local searches to be performed. These parameters are
emprirically chosen. Another idea that has not been explored in multi-objective
evolutionary optimization, is to use adjoint-based CFD solutions to obtain gradi-
ent information. Adjoint-based methods are also mature techniques currently used
for single objective aerodynamic optimization [28], and gradient information with
these techniques can be obtained with as much of an additional objective function
evaluation.

3.4 Robust design optimization

In aerodynamic optimization, uncertainties in the environment must be taken into
account. For example, the operating velocity of an aircraftmay deviate from the
normal condition during the flight. This change in velocity can be so high that it
changes the Mach and/or Reynolds number for the flow. The variation of these pa-
rameters can substantially change the aerodynamic properties of the design. In this
case, a robust optimal solution is desired, instead of the optimal solution found for
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ideal operating conditions. By robustness, it is meant in general that the perfor-
mance of an optimal solution should be insensitive to small perturbations of the
design variables or environmental parameters. In multiobjective optimization, the
robustness of a solution can be an important factor for a decision maker in choos-
ing the final solution. Search for robust solutions can be treated as a multiobjective
task, i.e., to maximize the performance and the robustness simultaneously. These
two tasks are very likely conflicting, and therefore, MOEAs can be employed to
find a number of trade-off solutions. In the context of multi-objective aerodynamic
shape optimization problems, we summarize next some work onrobust design.

• Yamaguchi and Arima [51] dealt with the multi-objective optimization of a tran-
sonic compressor stator blade in which three objectives were minimized: (i) pres-
sure loss coefficient, (ii) deviation outflow angle, and (iii) incidence toughness.
The last objective function can be considered as a robust condition for the de-
sign, since it is computed as the average of the pressure losscoefficients at two
off-design incidence angles. The airfoil blade geometry was defined by twelve
design variables. The authors adopted MOGA [14] with real-numbers encoding
as their search engine. Aerodynamic performance evaluation for the compressor
blade was done using Navier-Stokes CFD simulations. The optimization process
was parallelized using 24 processors in order to reduce the computational time
required.

• Rai [37] dealt with the robust optimal aerodynamical designof a turbine blade
airfoil shape, taking into account the performance degradation due to manufac-
turing uncertainties. The objectives considered were: (i)to minimize the vari-
ance of the pressure distribution over the airfoil’s surface, and (ii) to maximize
the probability of constraint satisfaction. Only one constraint was considered, re-
lated to the minimum thickness of the airfoil shape. The author adopted a multi-
objective version of the differential evolution algorithmand used a high-fidelity
CFD simulation on a perturbed airfoil geometry in order to evaluate the aerody-
namic characteristics of the airfoil generated by the MOEA.The geometry used
in the simulation was perturbed, following a probability density function that is
observed for manufacturing tolerances. This process had a high computational
cost, which the author reduced using a neural network surrogate model.

• Shimoyama et al. [44] applied a design for multi-objective six-sigma (DFMOSS)
[43] for the robust aerodynamic airfoil design of a Mars exploratory airplane.
The aim is to find the trade-off between the optimality of the design and its ro-
bustness. The idea of the DFMOSS methodology was to incorporate a MOEA to
simultaneously optimize the mean value of an objective function, while minimiz-
ing its standard deviation due to the uncertainties in the operating environment.
The airfoil shape optimization problems considered two cases: a robust design of
(a) airfoil aerodynamic efficiency (lift to drag ratio), and(b) airfoil pitching mo-
ment constraint. In both cases, only the variability in the flow Mach number was
taken into account. The authors adopted MOGA [14] as their search engine. The
airfoil geometry was defined with 12 design variables. The aerodynamic perfor-
mance of the airfoil was evaluated by CFD simulations using the Favre-Averaged
compressible thin-layer Navier-Stokes equations. The authors reported computa-
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tional times of about five minutes per airfoil, and about 56 hours for the total
optimization process, using a NEC SX-6 computing system with 32 processors.
Eighteen robust nondominated solutions were obtained in the first test case. From
this set, almost half of the population attained the 6σ condition. In the second test
case, more robust nondominated solutions were found, and they satisfied a sigma
level as high as 25σ .

• Lee et al. [24] presented the robust design optimization of an ONERA M6 Wing
Shape. The robust optimization was based on the concept of the Taguchi method
in which the optimization problem is solved considering uncertainties in the de-
sign environment, in this case, the flow Mach number. The problem had two ob-
jectives: (i) minimization of the mean value of an objectivefunction with respect
to variability of the operating conditions, and (ii) minimization of the variance
of the objective function of each candidate solution, with respect to its mean
value. In the sample problems, the wing was defined by means ofits planform
shape (sweep angle, aspect ratio, taper ratio, etc.) and of the airfoil geometry, at
three wing locations (each airfoil shape was defined with a combination of mean
lines and camber distributions), using a total of 80 design variables to define the
wing designs. Geometry constraints were defined by upper andlower limits of
the design variables. The authors adopted the HierarchicalAsynchronous Paral-
lel Multi-Objective Evolutionary Algorithm (HAPMOEA) algorithm [15], which
is based on evolution strategies, incorporating the concept of Covariance Matrix
Adaptation (CMA). The aerodynamic evaluation was done witha CFD simula-
tion. 12 solutions were obtained in the robust design of the wing. All the nondom-
inated solutions showed a better behavior, in terms of aerodynamic performance
(lift-to-drag ratio) with a varying Mach number, as compared to the baseline de-
sign. During the evolutionary process, a total of 1100 individuals were evaluated
in approximately 100 hours of CPU time.

3.4.1 Comments on robust design optimization

As can be seen form the previous examples, robust solutions can be achieved in
evolutionary optimization in different ways. One simple approach is to add pertur-
bations to the design variables or environmental parameters before the fitness is
evaluated, which is known as implicit averaging [50]. An alternative to implicit av-
eraging is explicit averaging, which means that the fitness value of a given design
is averaged over a number of designs generated by adding random perturbations to
the original design. One drawback of the explicit averagingmethod is the number of
additional quality evaluations needed, which can turn the approach impractical. In
order to tackle this problem, metamodeling techniques havebeen considered [32].
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3.5 Multi-disciplinary design optimization

Multi-disciplinary design optimization (MDO) aims at incorporating optimization
methods to solve design problems, considering not only one engineering discipline,
but a set of them. The optimum of a multidisciplinary problemmight be a compro-
mise solution from the multiple disciplines involved. In this sense, multi-objective
optimization is well suited for this type of problems, sinceit can exploit the interac-
tions between the disciplines, and can help to find the trade-offs among them. Next,
we present some work in which MOEAs have been used for aerodynamic shape
optimization problems, coupled with another discipline.

• Chiba et al. [8] addressed the MDO problem of a wing shape for atransonic
regional-jet aircraft. In this case, three objective functions were minimized: (i)
block fuel for a required airplane’s mision, (ii) maximum take-off weight, and
(iii) difference in the drag coefficient between transonic and subsonic flight con-
ditions. Additionally, five constraints were imposed, three of which were related
to the wing’s geometry and two more to the operating conditions in lift coeffi-
cient and to the fuel volume required for a predefined aircraft mission. The wing
geometry was defined by 35 design variables. The authors adopted ARMOGA
[40]. The disciplines involved included aerodynamics and structural analysis and
during the optimization process, an iterative aeroelasticsolution was generated
in order to minimize the wing weight, with constraints on flutter and strength
requirements. Also, a flight envelope analysis was done, obtaining high-fidelity
Navier-Stokes solutions for various flight conditions. Although the authors used
very small population sizes (eight individuals), about 880hours of CPU time
were required at each generation, since an iterative process was performed in or-
der to optimize the wing weight, subject to aeroelastic and strength constraints.
The population was reinitialized at every 5 generations forrange adaptation of
the design variables. In spite of the use of such a reduced population size, the au-
thors were able to find several nondominated solutions outperforming the initial
design. They also noted that during the evolution, the wing-box weight tended to
increase, but this degrading effect was redeemed by an increase in aerodynamic
efficiency, given a reduction in the block fuel of over one percent, which would
be translated in significant savings for an airline’s operational costs.

• Sasaki et al. [41] used MDO for the design of a supersonic wingshape. In this
case, four objective functions were minimized: (i) drag coefficient at transonic
cruise, (ii) drag coefficient at supersonic cruise, (iii) bending moment at the wing
root at supersonic cruise condition, and (iv) pitching moment at supersonic cruise
condition. The problem was defined by 72 design variables. Constraints were
imposed on the variables ranges and on the wing section’s thickness and camber,
all of them being geometrical constraints. The authors adopted ARMOGA [40],
and the aerodynamic evaluation of the design soutions, was done by high-fidelity
Navier-Stokes CFD simulations. No aeroelastic analysis was performed, which
considerably reduced the total computational cost. The objective associated with
the bending moment at wing root was evaluated by numerical integration of the
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pressure distribution over the wing surface, as obtained bythe CFD analysis. The
authors indicated that among the nondominated solutions there were designs that
were better in all four objectives with respect to a reference design.

• Lee et al. [23] utilized a generic Framework for MDO to explore the improve-
ment of aerodynamic and radar cross section (RCS) characteristics of an Un-
manned Combat Aerial Vehicle (UCAV). In this application, two disciplines were
considered, the first concerning the aerodynamic efficiency, and the second re-
lated to the visual and radar signature of an UCAV airplane. In this case, three
objective functions were minimized: (i) inverse of the lift/drag ratio at ingress
condition, (ii) inverse of the lift/drag ratio at cruise condition, and (iii) frontal
area. The number of design variables was of approximately 100 and only side
constraints were considered in the design variables. The first two objective func-
tions were evaluated using a Potential Flow CFD Solver (FLO22) [17] coupled to
FRICTION code to obtain the viscous drag, using semi-empirical relations. The
authors adopted the Hierarchical Asynchronous Parallel Multi-Objective Evolu-
tionary Algorithm (HAPMOEA) [15]. The authors reported a processing time
of 200 hours for their approach, on a single 1.8 GHz processor. It is important
to consider that HAPMOEA operates with different CFD grid levels (i.e. ap-
proximation levels): coarse, medium, and fine. In this case,the authors adopted
different population sizes for each of these levels. Also, solutions were allowed
to migrate from a low/high fidelity level to a higher/lower one in an island-like
mechanism.

3.5.1 Comments on multidisciplinary design optimization

The increasing complexity of engineering systems has raised the interest in multidis-
ciplinary optimization, as can be seen from the examples presented in this section.
For this task, MOEAs facilitate the integration of several disciplines, since they do
not require additional information other than the evaluation of the corresponding
objective functions, which is usually done by each discipline and by the use of sim-
ulations. Aditionally, an advantage of the use of MOEAs for MDO, is that they can
easily manage any combination of variable types, coming from the involved disci-
plines i.e., from the aerodynamic discipline, the variables can be continuous, but
for the structural optimization, it can happen that the variables are discrete. Kuhn
et al. [22] presented an example of this condition for the multi-disciplinary design
of an airship. However, one challenge in MDO is the increasing dimensionality at-
tained in the design space, as the number of disciplines alsoincreases.

3.6 Data mining and knowledge extraction

Data mining tools, along with data visualization using graphical methods, can help
to understand and extract information from the data contained in the Pareto opti-
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mal solutions found using any MOEA. In this sense, Multi-Objective Design Ex-
ploration (MODE), proposed by Jeong et al. [18] is a framework to extract design
knowledge from the obtained Pareto optimal solutions such as trade-off informa-
tion between contradicting objectives and sensitivity of each design parameter to
the objectives. In the framework of MODE, Pareto-optimal solutions are obtained
by a MOEA and knowledge is extracted by analyzing the design parameter values
and the objective function values of the obtained Pareto-optimal solutions using data
mining approaches such as Self Organizing Maps (SOMs) and analysis of variance
(ANOVA). They also propose to use rough sets theory to obtainrules from the Pareto
optimal solutions. MODE has been applied to a wide variety ofdesign optimization
problems as summarized next:

• Jeong et al. [18] and Chiba et al. [7, 6] explored the trade-offs among four aero-
dynamic objective functions in the optimization of a wing shape for a Reusable
Launch Vehicle (RLV). The objective functions were: (i) Theshift of the aero-
dynamic center between supersonic and transonic flight conditions, (ii) Pitching
moment in the transonic flight condition, (iii) drag in the transonic flight condi-
tion, and (iv) lift for the subsonic flight condition. The first three objectives were
minimized while the fourth was maximized. These objectiveswere selected for
attaining control, stability, range and take-off constraints, respectively. The RLV
definition comprised 71 design variables to define the wing planform, the wing
position along the fuselage and the airfoil shape at prescribed wingspan stations.
The authors adopted ARMOGA [40], and the aerodynamic evaluation of the RLV
was done with a Reynolds-Averaged Navier-Stokes CFD simulation. A trade-
off analysis was conducted with 102 nondominated individuals generated by the
MOEA. Data mining with SOM was used, and some knowledge was extracted
in regards to the correlation of each design variable to the objective functions
in [7]; with SOM, Batch-SOM, ANOVA and rough sets in [6]; and with SOM,
Batch-SOM and ANOVA in [18]. In all cases, some knowledge wasextracted in
regards to the correlation of each design variable to the objective functions.

• Oyama et al. [35] applied a design exploration technique to extract knowledge in-
formation from a flapping wing MAV (Micro Air Vehicle). The flapping motion
of the MAV was analyzed using multi-objective design optimization techniques
in order to obtain nondominated solutions. Such nondominated solutions were
further analyzed with SOMs in order to extract knowledge about the effects of the
flapping motion parameters on the objective functions. The conflicting objectives
considered were: (i) maximization of the time-averaged lift coefficient, (ii) max-
imization of the time-averaged thrust coefficient, and (iii) minimization of the
time-averaged required power coefficient. The problem had five design variables
and the geometry of the flying wing was kept fixed. Constraintswere imposed
on the averaged lift and thrust coefficients so that they werepositive. The authors
adopted a GA-based MOEA. The objective functions were obtained by means of
CFD simulations, solving the unsteady incompressible Navier-Stokes equations.
Objective functions were averaged over one flapping cycle. The purpose of the
study was to extract trade-off information from the objective functions and the
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flapping motion parameters such as plunge amplitude and frequency, pitching
angle amplitude and offset.

• Tani et al. [49] solved a multiobjective rocket engine turbopump blade shape op-
timization design which considered three objective functions: (i) shaft power, (ii)
entropy rise within the stage, and (iii) angle of attack of the next stage. The first
objective was maximized while the others were minimized. The design candi-
dates defined the turbine blade aerodynamic shape and consisted of 58 design
variables. The authors adopted MOGA [14] as their search engine. The objective
function values were obtained from a CFD Navier-Stokes flow simulation. The
authors reported using SOMs to extract correlation information for the design
variables with respect to each objective function.

3.6.1 Comments on data mining and knowledge extraction

When adopting the data mining techniques used in the above examples, in which
analyses are done, correlating the objective functions values, with the design param-
eter values of the Pareto optimal solutions, some valuable information is obtained.
However, in many other cases, for aerodynamic flows, the knowledge required is
more related to the physics, rather than to the geometry, given by the design vari-
ables. For example, for understanding the relation betweenthe generation of shock
wave formation and aerodynamic characteristics in a transonic airfoil optimization.
For this, Oyama et al. [34], have recently proposed a new approach to extract useful
design information from one-dimensional, two-dimensional, and three-dimensional
flow data of Pareto-optimal solutions. They use a flow data analysis by Proper Or-
thogonal Decomposition (POD), which is a statistical approach that can extract
dominant features in the data by decomposing it into a set of optimal orthogonal
base vectors of decreasing importance.

4 A Case Study

Here, we present a case study of evolutionary multi-objective optimization for an
airfoil shape optimization problem. The test problem chosen corresponds to the air-
foil shape of a standard-class glider. The optimization problem aims at obtaining
optimum performance for a sailplane. In this study the trade-off among three aero-
dynamic objectives is evaluated using a MOEA.

4.1 Objective functions

Three conflicting objective functions are defined in terms ofa sailplane average
weight and operating conditions [48]. They are formally defined as:
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(i) Minimize CD/CL subject toCL = 0.63,Re= 2.04·106, M = 0.12

(ii) Minimize CD/CL subject toCL = 0.86,Re= 1.63·106, M = 0.10

(iii) Minimize CD/C3/2
L subject toCL = 1.05,Re= 1.29·106, M = 0.08

In the above definitions,CD/CL andCD/C3/2
L correspond to the inverse of the

glider’s gliding ratio and sink rate, respectively. Both are important performance
measures for this aerodynamic optimization problem.CD andCL are the drag and
lift coefficients. In the above objective function definitions, the aim is to maximize
the gliding ratio for objectives (i) and (ii), while minimizing the sink rate in objective
(iii). Each of these objectives is evaluated at different prescribed flight conditions,
given in terms of Mach and Reynolds numbers.

4.2 Geometry parameterization

Finding an optimum representation scheme for aerodynamic shape optimization
problems is an important step for a successful aerodynamic optimization task. Sev-
eral options can be used for airfoil shape parameterization.

(a)The representation used needs to be flexible to describe any general airfoil shape.
(b)The representation also needs to be efficient, in order that the parameterization

can be achieved with a minimum number of parameters. Inefficient representa-
tions may result in an unnecesarily large design space which, in consequence,
can reduce the search efficiency of an evolutionary algorithm.

(c)The representation should allow the use of any optimization algorithm to perform
local search. This requirement is important for refining thesolutions obtained by
the global search engine in a more efficient way.

In the present case study, the PARSEC airfoil representation [45] is used. Fig. 1
illustrates the 11 basic parameters used for this representation: r le leading edge
radius,Xup/Xlo location of maximum thickness for upper/lower surfaces,Zup/Zlo

maximum thickness for upper/lower surfaces,Zxxup/Zxxlo curvature for upper/lower
surfaces, at maximum thickness locations,Zte trailing edge coordinate,∆Zte trail-
ing edge thickness,αte trailing edge direction, andβte trailing edge wedge angle.
For the present case study, the modified PARSEC geometry representation adopted
allows us to define independently the leading edge radius, both for upper and lower
surfaces. Thus, 12 variables in total are used. Their allowable ranges are defined in
Table 1.

The PARSEC airfoil geometry representation uses a linear combination of shape
functions for defining the upper and lower surfaces. These linear combinations are
given by:
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r leup r lelo αte βte Zte ∆Zte Xup Zup Zxxup Xlo Zlo Zxxlo

min 0.00850.002 7.0 10.0 -0.0060.00250.41 0.11 -0.9 0.20 -0.023 0.05
max 0.01260.00410.0 14.0 -0.0030.00500.46 0.13 -0.7 0.26 -0.015 0.20

Table 1 Parameter ranges for modified PARSEC airfoil representation

Fig. 1 PARSEC airfoil parameterization
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In the above equations, the coefficientsan, andbn are determined as function
of the 12 described geometric parameters, by solving the following two systems of
linear equations:
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It is important to note that the geometric parametersr leup/r lelo, Xup/Xlo, Zup/Zlo,
Zxxup/Zxxlo, Zte, ∆Zte, αte, andβte are the actual design variables in the optimization
process, and that the coeficientsan, bn serve as intermediate variables for interpolat-
ing the airfoil’s coordinates, which are used by the CFD solver (we used the Xfoil
CFD code [13]) for its discretization process.
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4.3 Constraints

For this case study, five constraints are considered. The first three are defined in
terms of flight speed for each objective function, namely theprescribedCL values,
CL = 0.63 for objective (i),CL = 0.86 for objective (ii), andCL = 1.05 for objective
(iii), enable the glider to fly at a given design speed, and to produce the necessary
amount of lift to balance the gravity force for each design condition being analyzed.
It is important to note that prescribing the requiredCL, the corresponding angle of
attackα for the airfoil is obtained as an additional variable. For this, the flow solver,
given the design candidate geometry, solves the flow equations with a constraint on
theCL value, i.e., it additionally determines the operating angle of attackα. Two ad-
ditional constraints are defined for the airfoil geometry. First, the maximum airfoil
thickness range is defined by 13.0%≤ t/c≤ 13.5%. For handling this constraint,
every time a new design candidate is created by the evolutionary operators, its max-
imum thickness is checked and corrected before being evaluated. The correction is
done by scaling accordingly the design parametersZup andZlo, which mainly define
the thickness distribution in the airfoil. In this way, onlyfeasible solutions are eval-
uated by the simulation process. The final constraint is the trailing edge thickness,
whose range is defined by 0.25%≤ ∆Zte≤ 0.5%. This constraint is directly handled
in the lower and upper bounds by the corresponding∆Zte design parameter.

4.4 Evolutionary algorithm

For solving the above case study, we adopted MODE-LD+SS [3] as our search algo-
rithm. Additionaly, and for comparison purposes, we also used an implementation
of the SMS-EMOA algorithm [5]. This algorithm is based on thehypervolume per-
formance measure [53] and has also been used in the context ofairfoil optimization
problems.
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Algorithm 1 MODE-LD+SS
1: INPUT:

P[1, . . . ,N] = Population
N = Population Size
F = Scaling factor
CR= Crossover Rate
λ [1, . . .,N] = Weight vectors
NB = Neighborhood Size
GMAX = Maximum number of generations

2: OUTPUT:
PF = Pareto front approximation

3: Begin
4: g← 0
5: Randomly createPg

i , i = 1, . . . ,N
6: EvaluatePg

i , i = 1, . . . ,N
7: while g < GMAX do
8: {LND} = {⊘}
9: for i = 1 to N do

10: DetermineLocalDominance(Pg
i ,NB)

11: if Pg
i is locally nondominatedthen

12: {LND} ← {LND}∪Pg
i

13: end if
14: end for
15: for i = 1 to Ndo
16: Randomly selectu1, u2, andu3 from {LND}
17: v← CreateMutantVector(u1,u2,u3)
18: Pg+1

i ← Crossover(Pgi ,v)

19: EvaluatePg+1
i

20: end for
21: Q← Pg∪Pg+1

22: Determinez∗ for Q
23: for i = 1 to Ndo
24: Pg+1

i ← MinimumTchebycheff(Q,λ i ,z∗)
25: Q←Q\Pg+1

i
26: end for
27: PF← {P}g+1

28: end while
29: ReturnPF
30: End

The Multi-objective Evolutionary Algorithm MODE-LD+SS (see Algorithm 1) [3]
adopts the evolutionary operators from differential evolution [36]. In the basic DE
algorithm, and during the offspring creation stage, for each current vectorPi ∈ {P},
three parents (mutually different among them)u1,u2,u3 ∈ {P} (u1 6= u2 6= u3 6= Pi)
are randomly selected for creating a mutant vectorv using the following mutation
operation:

v← u1 +F · (u2−u3) (8)
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F > 0, is a real constantscaling factorwhich controls the amplification of the
difference(u2−u3). Using this mutant vector, a new offspringP

′
i (also called trial

vector in DE) is created by crossing over the mutant vectorv and the current solution
Pi , in accordance to:

P
′
j =

{ v j if (randj(0,1)≤CRor j = jrand

Pj otherwise
(9)

In the above expression, the indexj refers to thejth component of the decision
variables vectors.CR is a positive constant andjrand is a randomly selected integer
in the range[1, . . . ,D] (whereD is the dimension of the solution vectors) ensuring
that the offspring is different at least in one component with respect to the current so-
lution Pi . The above DE variant is known asRand/1/bin, and is the version adopted
here. Additionally, the proposed algorithm incorporates two mechanisms for im-
proving both the convergence towards the Pareto front, and the uniform distribution
of nondominated solutions along the Pareto front. These mechanisms correspond to
the concept of local dominance and the use of an environmental selection based on
a scalar function. Below, we explain these two mechanisms inmore detail.

As for the first mechanism, local dominance concept, in Algorithm 1, the solu-
tion vectorsu1,u2,u3, required for creating the trial vectorv (in equation (8)), are
selected from the current population, only if they are locally nondominated in their
neighborhoodℵ. Local dominance is defined as follows:

Definition 6. Pareto Local DominanceLet x be a feasible solution,ℵ(x) be a
neighborhood structure forx in the decision space, andf(x) a vector of objective
functions.

- We say that a solutionx is locally nondominated with respect toℵ(x) if and only
if there is nox

′
in the neighborhood ofx such thatf(x

′
)≺ f(x)

The neighborhood structure is defined as theNB closest individuals to a par-
ticular solution. Closeness is measured by using the Euclidean distance between
solutions in the design variable space. The major aim of using the local dominance
concept, as defined above, is to exploit good individuals’ genetic information in cre-
ating DE trial vectors, and the associated offspring, whichmight help to improve
the MOEA’s convergence rate toward the Pareto front. From Algorithm 1, it can
be noted that this mechanism has a stronger effect during theearlier generations,
where the portion of nondominated individuals is low in the global population, and
progressively weakens, as the number of nondominated individuals grows during
the evolutionary process. This mechanism is automaticallyswitched off, once all
the individuals in the population become nondominated, andhas the possibility of
being switched on, as some individuals become dominated.

As for the second mechanism,selection based on a scalar function, it is based
on the Tchebycheff scalarization function given by:

g(x|λ ,z∗) = max
1≤i≤m

{λ i| fi(x)−z∗i |} (10)
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In the above equation,λ i , i = 1, . . . ,N represents the set of weight vectors used
to distribute the solutions along the entire Pareto front. In this case, this set is cal-
culated using the procedure described in [52].z∗ corresponds to a reference point,
defined in objective space and determined with the minimum objective values of the
combined populationQ, consistent on the actual parents and the created offspring.
This reference point is updated at each generation, as the evolution progresses. The
procedureMinimumTchebycheff(Q,λ i,z∗) finds, from the setQ, (the combined pop-
ulation consistent on the actual parents and the created offspring), the solution vector
that minimizes equation (10) for each weight vectorλ i and the reference pointz∗.

The second MOEA adopted is the SMS-EMOA, which is a steady-state algorithm
based on two basic characteristics: (1) non-dominated sorting is used as its ranking
criterion and (2) the hypervolume5 is applied as its selection criterion to discard that
individual, which contributes the least hypervolume to theworst-ranked front.

The basic algorithm is described in Algorithm 2. Starting with an initial pop-
ulation of µ individuals, a new individual is generated by means of randomised
variation operators. We adopted simulated binary crossover (SBX) and polynomial-
based mutation as described in [11]. The new individual willbecome a member of
the next population, if replacing another individual leadsto a higher quality of the
population with respect to the hypervolume.

Algorithm 2 SMS-EMOA
1: Po← init () /* initialize random population ofµ individuals */
2: t← 0
3: repeat
4: qt+1← generate(Pt ) /* generate offspring by variation*/
5: Pt+1← reduce(Pt

⋃{qt+1}) /* selectµ best individuals */
6: until termination condition is fulfilled

The procedureReducedescribed in Algorithm 2 selects theµ individuals of the
subsequent population. The algorithm fast-nondominated-sortused in NSGA-II [12]
is applied to partition the population intov setsR1, . . . ,Rv. The subsets are called
fronts and are provided with an index representing a hierarchical order (the level
of domination) whereas the solutions within each front are mutually nondominated.
The first subset contains all nondominated solutions of the original setQ. The sec-
ond front consists of individuals that are nondominated in the set (Q\R1), e.g. each
member ofR2 is dominated by at least one member ofR1. More general, theith
front consists of individuals that are nondominated if the individuals of the frontsj
with j < i were removed fromQ.

The value of∆S (s,Rv)] can be interpreted as the exclusive contribution ofs to
the hypervolume value of its appropriate front. By definition of ∆S (s,Rv)], an in-
dividual, which dominates another is always kept and a nondominated individual
is replaced by a dominated one. This measure keeps those individuals which maxi-

5 TheHypervolume (also known as theS-metric or the Lebesgue Measure) of a set of solutions
measures the size of the portion of objective space that is dominated by those solutions collectively.
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Algorithm 3 Reduce(Q)
1: {R1, . . .,Rv}← f ast nondominatedsort(Q) /* all v fronts ofQ*/
2: r ← argmins∈Rv [∆S (s,Rv)] /* s∈Rv with lowest∆S (s,Rv)*/
3: return (Q\r)

mize the population’s S-Metric value, which implies that the covered hypervolume
of a population cannot decrease by application of theReduceoperator. Thus, for
Algorithm 1 the following invariant holds:

S (Pt)≤S (Pt+1) (11)

Due to the high computational effort of the hypervolume calculation, a steady
state selection scheme is used. Since only one individual iscreated, only one has to
be deleted from the population at each generation. Thus, theselection operator has
to compute at mostµ + 1 values of the S-Metric (exactlyµ + 1 values in case all
solutions are nondominated). These are the values of the subsets of the worst ranked
front, in which one point of the front is left out, respectively. A (µ + λ ) selection
scheme would require the calculation of

(µ+λ
µ

)

possible S-Metric values to identify
an optimally composed population, maximising the S-Metricnet value.

The parameters used for solving the present case study, and for each algorithm
were set as follows:N = 120 (population size) for both MOEAs,F = 0.5 (mutation
scaling factor for MODE-LD+SS),CR= 0.5 (crossover rate for MODE-LD+SS),
NB= 5 (neighborhood size for MODE-LD+SS),ηm = 20 (mutation index for SBX
in SMS-EMOA), andηc = 15 (crossover index for SBX in SMS-EMOA).

4.5 Results

Both, MODE-LD+SS and SMS-EMOA were run for 100 generations.The simula-
tion process in each case took approximately 8 hrs of CPU time. Five independent
runs were executed for extracting some statistics. Figs. 2 to 3 show the Pareto front
approximations (of the median run) at different evolution times. For comparison
purposes, in these figures the corresponding objective functions of a reference air-
foil (a720o [48]) are plotted. Att = 10 generations (the corresponding figure is not
shown due to space constraints), the number of nondominatedsolutions is 26 for
SMS-EMOA and 27 for MODE-LD+SS. With this small number of nondominated
solutions is difficult to identify the trade-off surface forthis problem. However, as
the number of evolution steps increases, the trade-off surface is more clearly re-
vealed. Att = 50 generations (see Fig. 2), the number of nondominated solutions
is 120 for SMS-EMOA, and 91 for MODE-LD+SS. At this point, thetrade-off sur-
face shows a steeper variation of objective (iii) toward thecompromise region of
the Pareto front. Also, the trade-off shows a plateau where the third objective has a
small variation with respect to the other objectives. Finally, at t = 100 generations
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(see Fig. 3), the shape of the trade-off surface is more clearly defined, and a clear
trade-off between the three objectives are evidenced. It isimportant to note in Fig.
3, that the trade-off surface shows some void regions. This condition is captured by
both MOEAs and is attributed to the constraints defined in theairfoil geometry. Ta-
ble 2 summarizes the maximum possible improvement with respect to the reference
solution, that can be attained for each objective and by eachMOEA.

MOEA
SMS-EMOA MODE-LD+SS

Gen∆Ob j1(%) ∆Ob j2(%) ∆Ob j3(%) ∆Ob j1(%) ∆Ob j2(%) ∆Ob j3(%)
10 11.43 10.19 5.43 11.93 10.38 5.47
50 12.84 10.67 6.06 13.22 10.67 6.21
100 12.75 10.79 6.28 13.63 10.80 6.40

Table 2 Maximum improvement per objective for the median run of eachMOEA used

In the context of MOEAs, it is common to compare results on thebasis of some
performance measures. Next, and for comparison purposes between the algorithms
used, we present the hypervolume values attained by each MOEA, as well as the val-
ues of the two set coverage performance measure C-M(A,B) between them. Next,
we present the definition for these two performance measures:

Hypervolume (Hv): Given a Pareto approximation setPFknown, and a reference
point in objective spacezre f , this performance measure estimates theHypervolume
attained by it. Such hypervolume corresponds to the non-overlaping volume of all
the hypercubes formed by the reference point (zre f ) and every vector in the Pareto
set approximation. This is mathematically defined as:

HV = {∪ivoli |veci ∈ PFknown} (12)

veci is a nondominated vector from the Pareto set approximation,andvoli is the
volume for the hypercube formed by the reference point and the nondominated vec-
tor veci . Here, the reference point (zre f ) in objective space for the 3-objective MOPs
was set to (0.007610 , 0.005895 , 0.005236 ), which corresponds to the objective
values of the reference airfoil. High values of this measureindicate that the solu-
tions are closer to the true Pareto front and that they cover awider extension of it.

Two Set Coverage (C-Metric):This performance measure estimates the cover-
age proportion, in terms of percentage of dominated solutions, between two sets.
Given the setsA andB, both containing only nondominated solutions, the C-Metric
is mathematically defined as:

C(A,B) =
|{u∈ B|∃v∈ A : v dominates u}|

|B| (13)
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This performance measure indicates the portion of vectors in B being dominated
by any vector inA. The setsA andB correspond to two different Pareto approxima-
tions, as obtained by two different algorithms. Therefore,the C-Metric is used for
pairwise comparisons between algorithms.

For the hypervolume measure, SMS-EMOA attains a value ofHv = 1.5617·
10−10 with a standard deviation ofσ = 2.4526·10−12, while MODE-LD+SS attains
a value ofHv = 1.6043· 10−10 with a standard deviation ofσ = 1.2809· 10−12.
These results are the average of five independent runs executed by each algorithm.

As for the C-Metric, the corresponding values obtained are:C−M(SMS−
EMOA,MODE− LD + SS) = 0.07016 with a standard deviation ofσ = 0.03134,
andC−M(MODE−LD + SS,SMS−EMOA) = 0.3533 with a standard deviation
of σ = 0.0510. These latter results are the average of all the pairwise combinations
of the five independent runs executed by each algorithm. Our results indicate that
MODE-LD+SS converges closer to the true Pareto front, and provides more non-
dominated solutions than SMS-EMOA.

Finally, in Figure 4 are presented the geometries of the reference airfoil, a720o,
and two selected airfoils from the trade-off surface of thisproblem and obtained by
SMS-EMOA and MODE-LD+SS att = 100 generations. These two latter airfoil are
selected as those with the closest distance to the origin of the objective space, since
they are considered to represent the best trade-off solutions.

5 Conclusions and final remarks

In this chapter we have presented a brief review of the research done on multi-
objective aerodynamic shape optimization. The examples presented cover a wide
range of current applications of these techniques in the context of aeronautical en-
gineering design, and in several design scenarios. The approaches reviewed include
the use of surrogates, hybridizations with gradient-basedtechniques, mechanisms
to search for robust solutions, multidisciplinary approaches, and knowledge extrac-
tion techniques. It can be observed that several Pareto-based MOEAs have been
successfully integrated in industrial problems. It can be anticipated that in the near
future, an extended use of these techniques will be a standard practice, as the com-
puting power available continues to increase each year. It is also worth noting that
MOEAs are flexible enough as to allow their coupling to both engineering models
and low-order physics-based models without major changes.They can also be easily
parallelized, since MOEAs normally have low data dependency.

From an algorithmic point of view, it is clear that the use of Pareto-based MOEAs
remains as a popular choice in the previous group of applications. It is also evident
that, when dealing with expensive objective functions suchas those of the above ap-
plications, the use of careful statistical analysis of parameters is unaffordable. Thus,
the parameters of such MOEAs were simple guesses or taken from values suggested
by other researchers. The use of surrogate models also appears in these costly ap-
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plications. However, the use of other simpler techniques such as fitness inheritance
or fitness approximation [39] seems to be uncommon in this domain and could be
a good alternative when dealing with high-dimensional problems. Additionally, the
authors of this group of applications have relied on very simple constraint-handling
techniques, most of which discard infeasible individuals.Alternative approaches ex-
ist, which can exploit information from infeasible solutions and can make a more
sophisticated exploration of the search space when dealingwith constrained prob-
lems (see for example [29]) and this has not been properly studied yet. Finally, it is
worth emphasizing that, in spite of the difficulty of these problems and of the evi-
dent limitations of MOEAs to deal with them, most authors report finding improved
designs when using MOEAs, even when in all cases a fairly small number of fit-
ness function evaluations was allowed. This clearly illustrates the high potential of
MOEAs in this domain.
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