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Summary. This chapter provides a brief introduction to the use of evolutionary
algorithms in the solution of problems with two or more (normally conflicting) objec-
tives (called “multi-objective optimization problems”). The chapter provides some
basic concepts related to multi-objective optimization as well as a short description
of the main features of the multi-objective evolutionary algorithms most commonly
used nowadays. In the last part of the chapter, some applications of multi-objective
evolutionary algorithms in Biology (mainly within Bioinformatics) will be reviewed.
The chapter will conclude with some promising paths for future research, aiming
to identify areas of opportunity for those interested in the intersection of these two
disciplines: multi-objective evolutionary algorithms and Biology.
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1 Introduction

Many real-world problems in most disciplines have two or more objectives
that we aim to optimize at the same time. Such problems are called “multi-
objective”, and their solution implies finding good trade-offs among the ob-
jectives. Traditionally, multi-objective optimization problems have been dealt
with using a variety of mathematical programming techniques that have been
developed over the years [34, 63]. However, in recent years, the use of meta-
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heuristics1 to solve such problems has become increasingly popular (see for
example [22, 28]).

Evolutionary algorithms (EAs) are a metaheuristic inspired on the “sur-
vival of the fittest” principle from Darwin’s evolutionary theory [39]. EAs have
become very popular as multi-objective optimizers because of their ease of use
(and implementation) and flexibility (e.g., EAs are less sensitive than mathe-
matical programming techniques to the initial search points and to the specific
features of a problem). Additionally, the fact that EAs are population-based
techniques makes it possible to simultaneously manage a set of solutions, in-
stead of one at a time, as normally happens with mathematical programming
techniques.

Multiobjective evolutionary algorithms (MOEAs) date back to the mid-
1980s [47, 83], although they became popular in the mid-1990s. Today, it is
possible to find applications of MOEAs in practically every discipline, includ-
ing biology [18].

The rest of this chapter is organized as follows. In Section 2, we provide
some basic multi-objective optimization concepts required to make the chapter
self-contained. Section 3 contains a brief description of the main MOEAs in
current use. Section 4 contains a survey of some of the most representative
applications of MOEAs in biology. Section 5 indicates some potential paths for
future research in this area. Finally, our conclusions are provided in Section 6.

2 Basic Concepts

This chapter deals with the solution of the Multiobjective Optimization

Problem (MOP) (also called multicriteria optimization, multiperformance
or vector optimization problem), which can then be defined (in words) as the
problem of finding [69]:

“a vector of decision variables which satisfies constraints and optimizes
a vector function whose elements represent the objective functions.
These functions form a mathematical description of performance cri-
teria which are usually in conflict with each other. Hence, the term
“optimize” means finding such a solution which would give the values
of all the objective functions acceptable to the decision maker.”

The decision variables are the numerical quantities for which values
are to be chosen in an optimization problem. In most optimization problems
there are always restrictions imposed by the particular characteristics of the
environment or available resources (e.g., physical limitations, time restrictions,

1 A metaheuristic is a high level strategy for exploring search spaces by using
different methods [7]. Metaheuristics have both a diversification (i.e., exploration
of the search space) and an intensification (i.e., exploitation of the accumulated
search experience) procedure.
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etc.). These restrictions must be satisfied in order to consider a certain solution
acceptable. All these restrictions in general are called constraints, and they
describe dependences among decision variables and constants (or parameters)
involved in the problem.

In multiobjective optimization, the goal is to optimize a set of objective
functions (i.e., more than two) simultaneously. Thus, in this context, the no-
tion of “optimum” changes, because in MOPs, the aim is to find good compro-
mises (or “trade-offs”) rather than a single solution as in global optimization
(in which we aim to optimize a single objective function). The notion of “opti-
mum” most commonly adopted is that originally proposed by Francis Ysidro
Edgeworth [33] and later generalized by Vilfredo Pareto [72]. Although some
authors call this notion the Edgeworth-Pareto optimum, the most commonly
accepted term is Pareto optimum.
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Fig. 1. Graphical representation of some solutions that are dominated and others
that dominate a reference point (A in this case). Note that both E and G are
nondominated with respect to A. So, A is better than B or F, but it is equally
good than E or G.

A solution is Pareto optimal if there exists no other feasible solution (i.e.,
one which satisfies all the constraints of the problem) which would decrease
some criterion without causing a simultaneous increase in at least one other
criterion (assuming minimization). The vectors corresponding to these Pareto
optimal solutions are called nondominated. Figure 1 provides a graphical
representation of solutions that dominate and solutions that are dominated by
a reference point for a problem with two objective functions. When plotted in
objective function space, these nondominated vectors are collectively known
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as the Pareto front (Figure 2 shows the graphical representation of a Pareto
front).
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Fig. 2. Pareto front of a hypothetical problem with two objectives: risk and cost.

Although it is normally assumed that a MOEA will generate the entire
Pareto front (or as many elements of it, as possible), in practice the entire
front is rarely needed. This can be easily understood with an example. In
Figure 2 the solutions lying at the extreme right of the Pareto front represent
the lowest possible cost, but with the highest risk. Conversely, solutions lying
at the top left of the Pareto front, represent the lowest possible risk, but with
the highest cost. Normally, solutions that represent the best possible trade-
offs among the objectives are the aim of the search (in the case of Figure 2,
solutions lying on the “knee” of the Pareto curve).

3 MOEAs in Current Use

Although the first reference on the use of EAs for solving multi-objective
problems dates back to the late 1960s [80], the first actual implementations was
introduced in the mid-1980s [47, 82, 83]. For several years (up to the first half
of the 1990s), most of the MOEAs developed had a relatively simple design and
were mostly based on linear aggregating functions [88], lexicographic ordering
[38], and target-vector approaches [98, 15].

However, four MOEAs are considered the most representative of this early
period: the Vector Evaluated Genetic Algorithm (VEGA) [83], the Multi-
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Objective Genetic Algorithm (MOGA) [37], the Niched-Pareto Genetic Al-
gorithm (NPGA) [42], and the Nondominated Sorting Genetic Algorithm
(NSGA) [86]. Details of these algorithms can be found in their original pub-
lications and in other sources (see for example [17]).

During the mid-1990s, elitism was formally introduced in MOEAs [104],
and became a standard mechanism for the algorithms developed since then.
In single-objective EAs, elitism simply consists of retaining the best individ-
ual from the current generation, and passing it without any changes to the
next generation. In contrast, in multi-objective optimization, elitism involves
retaining the solutions that are nondominated with respect to all the indi-
viduals that have been evaluated so far. Thus, instead of retaining only one
individual, several must be kept. This introduces additional issues that need
to be taken into account (e.g., should we bound the number of individuals to
be retained? If so, how do we decide which individuals must be removed?).
Elitism is an important mechanism, not only because it allows to keep the
globally nondominated individuals (as opposed to handling only the locally
nondominated individuals, as done with early MOEAs), but also because it is
a requirement to prove convergence [96].

Despite the high number of elitist MOEAs developed from the mid-1990s
to date (see for example [21, 24, 23, 94, 100, 102, 5]), three of them are
normally considered to be the most representative in the current literature2:

1. The Strength Pareto Evolutionary Algorithm (SPEA): Developed
by Zitzler and Thiele [104], this approach integrates ideas from the dif-
ferent MOEAs previously mentioned (i.e., MOGA [37], NPGA [42] and
NSGA [86]). SPEA incorporates elitism through the usage of an external
archive containing nondominated solutions previously found (the so-called
external nondominated set). At each generation, nondominated individ-
uals are copied to this external nondominated set, and are retained only
if they are nondominated with respect to the contents of the set. If they
dominated any individuals previously stored in the external set, such dom-
inated individuals are deleted. For each individual in this external set, a
strength value is computed. This strength is similar to the ranking value
of MOGA [37], since it is proportional to the number of solutions to which
a certain individual dominates. The fitness of each member of the current
population is computed according to the strengths of all external nondom-
inated solutions that dominate it (i.e., the external set plays a role in the
selection process). The fitness assignment process of SPEA considers both
closeness to the true Pareto front and even distribution of solutions at the
same time. However, instead of using niches based on distance (as done in
earlier MOEAs such as MOGA [37]), Pareto dominance is used to ensure
that the solutions are properly distributed along the Pareto front. SPEA

2 For more information on MOEAs, interested readers can
refer to the EMOO repository, which is located at:
http://delta.cs.cinvestav.mx/~ccoello/EMOO/
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does not require a niche radius, but its effectiveness relies on the size of the
external nondominated set. In fact, since the external nondominated set
participates in the selection process of SPEA, if its size grows too large,
it might reduce the selection pressure, thus slowing down the search. Be-
cause of this, the authors decided to adopt a technique that prunes the
contents of the external nondominated set so that its size remains below a
certain threshold. In 2001, a revised version of SPEA (called SPEA2) was
introduced. SPEA2 has three main differences with respect to its prede-
cessor [103]: (1) it incorporates a fine-grained fitness assignment strategy
which takes into account for each individual the number of individuals
that dominate it and the number of individuals by which it is dominated;
(2) it uses a nearest neighbor density estimation technique which guides
the search more efficiently, and (3) it has an enhanced archive truncation
method that guarantees the preservation of boundary solutions.
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Fig. 3. Graphical illustration of the adaptive grid used by PAES.

2. The Pareto Archived Evolution Strategy (PAES): Developed by
Knowles and Corne [52, 53], this is probably the most simple MOEA
that can be conceived. It consists of a (1+1) evolution strategy (i.e., a
single parent that generates a single offspring), combined with an ex-
ternal archive that records the nondominated solutions found along the
search. As in SPEA, this external archive is used to compare each new
individual produced. An interesting aspect of PAES is its procedure to
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maintain diversity which consists of a crowding mechanism that divides
objective space in a recursive manner. Each solution is placed in a certain
grid location based on the values of its objectives (which are used as its
“coordinates” or “geographical location”) as indicated in Figure 3. A map
of such grid is maintained, indicating the number of solutions that reside
in each grid location.

3. The Nondominated Sorting Genetic Algorithm II (NSGA-II): This
MOEA is described in Deb et al. [29, 31], and it consists of a consid-
erably improved version of the NSGA [86]. The NSGA-II estimates the
density of solutions surrounding a particular solution in the population by
computing the average distance of two points on either side of this point
along each of the objectives of the problem. This value is called crowding

distance and its computation is not only efficient, but requires no extra
parameters. During selection, the NSGA-II uses a crowded-comparison
operator which takes into consideration both the nondomination rank of
an individual in the population and its crowding distance (i.e., nondomi-
nated solutions are preferred over dominated solutions, but between two
solutions with the same nondomination rank, the one that resides in the
less crowded region is preferred). This introduces a total ordering (in-
stead of the partial ordering that traditional Pareto ranking generates),
and facilitates the selection process. That is the reason why the NSGA-II
combines the population of parents with the population of offspring and
selects the best half of them. This sort of selection scheme is implicitly
elitist and, therefore, no external archive is required in this case. Due to its
ease of use, efficacy, and efficiency, the NSGA-II has become a landmark
against which other MOEAs are often compared.

4. Coevolutionary MOEAs: In evolutionary computation, the term co-

evolution is used to refer to a change in the genetic composition of a
species (or group of species) as a response to a genetic change of another
one. In a more general sense, coevolution refers to a reciprocal evolutionary
change between species that interact with each other. The term “coevo-
lution” is usually attributed to Ehrlich and Raven who published a paper
on their studies performed with butterflies and plants in the mid-1960s
[35]. The relationships between the populations of two different species
can be described considering all their possible types of interactions. Such
interaction can be positive or negative depending on the consequences
that such interaction produces on the population. Evolutionary compu-
tation researchers have developed several coevolutionary approaches in
which normally two or more species relate to each other in different forms
[70]. The key issue in these coevolutionary algorithms is that the fitness
of an individual in a population depends on the individuals of a different
population. In fact, we can say that an algorithm is coevolutionary if it
has such property.
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There are two main classes of coevolutionary algorithms in the evolution-
ary computation literature:

a) Those based on competition relationships (called competitive co-

evolution): In this case, the fitness of an individual is the result of
a series of “encounters” with other individuals [71, 81]. This sort of
coevolutionary scheme has been normally adopted for games.

b) Those based on cooperation relationships (called cooperative co-

evolution): In this case, the fitness of an individual is the result
of a collaboration with individuals of other species (or populations)
[77, 74]. This sort of coevolutionary scheme has been normally adopted
for solving optimization problems.

A variety of coevolutionary MOEAs have been proposed in the specialized
literature (see for example [73, 61, 3, 50, 58, 90, 20, 46, 89, 51]), but a
detailed description of them is beyond the scope of this chapter. Interested
readers may refer to Chapter 3 in [19] for more information on this topic.

4 Applications of MOEAs in Biology

The use of MOEAs in Biology has raised an increasing interest in the last
few years, mainly within Bioinformatics [65, 40]. An analysis of the literature
shows five main types of applications of MOEAs in Biology:

1. System optimization: This refers to some applications in which it is
of interest to determine the degree of optimality of a certain biological
system.

2. Classification: A wide variety of problems in bioinformatics rely on per-
forming classification tasks (either supervised, unsupervised or combina-
tions of both).

3. Sequence and structure alignment: Here, the aim is to assess the
structural similarities between a certain macromolecule and a sequence
available from a database. The search is done through a series of align-
ments.

4. Structure prediction and design: In this case, the goal is to predict
the structure of a macromolecule, given that the function properties of
macromolecules derive from their three-dimensional shape. This three-
dimensional shape is, in turn, mainly determined by the sequence of bases
or amino acids.
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5. Inverse problems: These are problems in which we have certain infor-
mation that was generated by a biological process and our goal is to infer
the original system using such available information.

Next, we will briefly review some of the most representative work within
each of these types of applications.

4.1 System optimization

A single nucleotide polymorphism (SNP) is a variation that occurs at only
one single nucleotide of two deoxyribonucleic acid (DNA) sequences (e.g.,
GAACCT and GAGCCT). Geneticists carry out projects using a set of SNPs
in order to, for example, search for genes responsible for a disease. Thus,
prior to project initiation, geneticists need to select a subset of SNPs from
large databases. Hubley et al. [44] formulated this task as a bi-objective opti-
mization problem and proposed an algorithm called Multiobjective Analyzer
for Genetic Marker Acquisition (MAGMA). The desired goals of a mapping
project are to maximize the probability of locating a disease gene while min-
imizing the total project cost. However, as the authors point out, these goals
may be subjective, difficult to describe, or may require excessive computation.
To overcome this problem, the authors make use of the so called proxy objec-
tives. That is to say, objectives that only capture certain aspects of the actual
objectives [40]. In this case, the first proxy objective is to search for evenly
spaced high-quality SNPs with an average spacing. Thus, the objectives are:
minimize the average deviation from the ideal gap length between two SNPs
and maximize the average quality of the SNPs. A solution in this problem is
represented by a binary string where a bit is set to 1 only if the corresponding
SNP is in the solution. The proposed algorithm was tested using two real SNP
selection problems with a relatively small library of SNPs, and a constructed
problem with a large library containing a vast number of SNPs. The Pareto
front in all cases had a concave shape, and MAGMA was able to discover the
true Pareto front in the three problems.

In a later study, Hubley et al. [43] proposed two new proxy objectives that
reflect more precisely the actual goals of a project. Here the cost is modeled
in a straightforward manner, as the sum of the cost associated with each SNP.
The probability of project success is treated as the quality of a SNP, which
is a heuristic combination of (i) allele frequency, (ii) database reliability, and
(iii) biochemical suitability.

Lee et al. [55] formulate the probe design for DNA microarrays as a multi-
objective problem, which is then solved by the NSGA-II [31]. The resulting
problem has four objectives and one constraint. The authors use a thermo-
dynamic criteria to assist the decision maker to choose a solution from the
generated Pareto front. The melting temperature can be used to determine if a
candidate probe hybridizes to the wrong target gene or not. This way, one can
choose the set of probes which have the least mis-hybridizing probes from the
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obtained Pareto front. Based on the specificity of hybridization of each probe,
the proposed method achieved more reliable probe sets than those pre-existing
oligonucleotide microarray for HPV (human papilloma virus) detection.

4.2 Classification

Deb and Reddy [32] address the classification of two-class cancer data using
the NSGA-II [31]. Here, the authors formulate a two-objective and a three-
objective problem. The first problem consists of minimizing the size of the
gene-subset and minimizing the sum of misclassifications in the training and
test samples. In the second problem, the misclassifications in the training and
in test samples are considered as two different objectives. As some solutions
with desirable subset sizes do not belong to the Pareto front, when using the
standard Pareto domination concept, the authors introduce a variant called
biased dominance. This modified concept allows that multiple solutions lying
in parallel to a fi axis do not dominate each other. An interesting finding is
that in this problem a vector in the objective space can be produced by more
than one solution in the decision variable space. The authors modified the
NSGA-II so that it could take into account these types of solutions.

Usually, microarray data contain a large number of features (genes) from
which most of them are non essential to carry out data classification. Banerjee
et al. [1] proposed a MOEA that employs rough sets to reduce the number
of features in order to ease the classification of gene expression patterns in
a microarray. The set of genes is modeled as a rough set in such a way that
the essential features are represented by the reduct of the information system.
Thus, the objectives of this feature selection problem are: (i) to obtain a reduct
of small cardinality and simultaneously (ii) to still classify all the elements of
the universe with the same accuracy as with the entire attribute set. The fea-
ture reduction is carried out in a two stage process. The first stage generates
an initial crude redundancy reduction among features by normalizing the ex-
pression values (attributes) and eliminating constantly expressed genes and
ambiguously expressed genes (i.e., those with average expression value). In the
second stage, the crude reduced data set is optimized by the NSGA-II [31] to
achieve a refined minimal feature set. The formulation of this multi-objective
problem includes two objectives: minimization of the number of attributes
in the reduct set and maximization of the capacity to distinguish objects in
order to achieve an acceptable classification. The only variable considered is
the reduct which is represented by a binary string of length m (where m is
the number of attributes). In this string, 1 indicates that the corresponding
attribute is present in the reduct while 0 indicates the contrary. The pro-
posed method was validated using microarray data sets consisting of three
different cancer samples, namely colon cancer, lymphoma and leukemia. The
Pareto front obtained in the three data sets is a typical convex front where
the reduct cardinality decreases as the number of misclassifications increases.
The proposed MOEA was compared against other approaches which include
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a probabilistic neural network, a t-test-based feature selection with a fuzzy
neural network, a saliency analysis to support vector machines and a linear
aggregating function approach. Considering the available results, the MOEA
achieved a better correct classification percentage than the other approaches
using the three datasets.

Liu et al. [57] have proposed an entropy-based method to select genes
related to the different cancer classes, simultaneously reducing the redundancy
among the genes. This bi-objective problem is solved using an aggregation
approach solved by a greedy algorithm.

Bleuler et al. [6] proposed an evolutionary framework for bi-clustering of
gene expression data in a single-objective context. The main idea of the frame-
work is to explore the search space by an EA and refine the solutions found by
using a local search bi-clustering method. The framework was implemented
using the bi-clustering method proposed by Cheng and Church [14]. The re-
sults showed that the EA coupled with a local search performs significantly
better than the Cheng and Church’s bi-clustering algorithm alone.

Recently, Mitra and co-workers [65, 64, 2] proposed a similar framework to
that of Bleuler et al. [6] but in a multi-objective context. The two objectives
considered were the maximization of the bi-cluster size and the maximization
of the homogeneity. According to the results, this framework achieves better
results than some other methods available in the literature [14, 99, 101, 6].

Prelic et al. [78] carried out a systematic comparison of five salient bi-
clustering methods based on greedy search techniques, namely: the algorithm
of Cheng and Church [14], Samba [92], the Order Preserving Submatrix Algo-
rithm [4], the Iterative Signature Algorithm [45] and xMotif, [67]. Madeira and
Oliveira [59] provides a survey on bi-clustering methods that, besides greedy
search techniques, includes clustering methods based on strategies such as di-
vide-and-conquer, and exhaustive enumeration to mention a few. The authors
adopted only external indices to assess the performance of the algorithms. Ex-
ternal indices are based on additional data in order to validate the achieved
results. Moreover, the comparison study considered both synthetic and real
datasets. The former has the advantage that the true optimal solutions are
known a priori. As a reference algorithm, the authors proposed a fast and
exact algorithm that uses a simple data model yet reflecting the fundamental
idea of bi-clustering.

4.3 Sequence and Structure alignment

Malard et al. [60] formulate the de novo peptide identification as a constrained
multi-objective optimization problem. The objectives considered in the study
are the maximization of the similarity between portions of two peptides, and
the maximization of the likelihood ratio between the null hypothesis and the
alternative hypothesis. The former is that spectral peaks match ion frag-
ments only by chance, whereas the latter is that spectral peaks match ion
fragments because the candidate solution is in the sample. Constraints are
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treated as an objective function in a similar way as the Constrained Multi-
objective Optimization by Genetic Algorithm (COMOGA) proposed by Surry
and Radcliffe [87]. The algorithm was implemented using the island parallel
model [22, 68, 95], in which some subpopulations evolve independently of each
other, although individuals periodically migrate between neighboring islands.

Boisson et al. [8] also studied the protein sequencing using the de novo

peptide sequencing approach, although using a single-objective genetic algo-
rithm. As the evaluations of the objective function involved in problem are
time consuming, Boisson et al. [9] decided to use a parallel genetic algorithm
to discover the sequence of an experimental protein. The algorithm was im-
plemented on a grid of computers.

Calonder et al. [12] address the problem of identifying gene modules on the
basis of different types of biological data such as gene expression (GE), protein-
protein interactions (PPI) and metabolic pathways (MP). Module identifica-
tion refers to the identification of groups of genes similar with respect to its
function or regulation mechanism. The particular problem addressed in this
work is to identify the best module containing some user defined query genes
with respect to n biological data sets. Some single-objective approaches for
the identification of modules have been proposed including a co-clustering ap-
proach where a combined distance function is used as the objective function.
Another approach combines distances on the Gene Ontology graph with gene
expression data and applies a memetic algorithm3 for identifying high scoring
clusters.

The proposed multi-objective approach has some advantages over a single-
objective aggregation approach. First, it is not required to define an overall
similarity measure, which is often difficult since we need to aggregate mea-
sures (i.e., objective function values) with different scales and interpretations.
With a multi-objective approach each similarity measure can be treated as
an independent objective. Also, it offers a way to study the interactions and
conflicts between the data sets. That is, the visual inspection of the trade-offs
in the Pareto front allow us to determine, for instance, if accepting a slightly
worse similarity on one data type could increase the similarity on the other
data types substantially. Finally, as the objectives are treated independently,
it is possible to easily integrate arbitrary data types and similarity measures.

In this formulation, each data type is associated with a distinct objective
which is defined as the mean distance from all genes to the query genes on the
corresponding data set. For each objective, a suitable measure of distance is
computed. Each solution (module) is represented by a binary string of length
m (where m is the number of genes) where a value of 1 indicates that the
corresponding gene is included in the module. The MOEA employed in this
work is the indicator-based evolutionary algorithm (IBEA) [102].

3 Pablo Moscato [66] introduced the concept of “memetic algorithm” to denote the
use of local search heuristics with a population-based strategy.
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In the experimental study, the authors considered three bi-objective prob-
lems using different data types: GE-GE data on Arabidopsis, GE-MP data
on Arabidopsis, and a yeast GE-PPI data set. In the experimental study, a
local search heuristic was added to the evolutionary algorithm. However, the
results revealed that the local search imposed a noticeable bias toward one of
the objectives. The performance of the algorithm was compared against that
of a single-objective aggregation approach and that of a k-means algorithm.
In the first case, to generate the Pareto front, the single-objective optimizer
was run repeatedly with 21 different weight vectors. The comparison of the
resulting Pareto fronts using the ε-indicator [105] revealed that the multi-
objective approach achieved approximation sets better than those obtained
by the single-objective approach. In order to compare the multi-objective ap-
proach with the k-means algorithm, the authors ran the k-means using only
the GE data, and then they selected at random a query gene from one of the
clusters. For this cluster, they calculated the value of the two objectives, GE
and PPI, to get a Pareto front consisting of a single solution. The same query
gene was used as input to the EA to get the approximation set. Again, the
ε-indicator showed that the EA performs better than k-means.

Zwir et al. [106] presented a two-level methodology for the elicitation
and summarization of qualitative features in DNA sequences of Tripanosoma

cruzi. The first stage had the goal of recognizing instances of interesting fea-
tures through a multi-objective genetic-based clustering method. Here, the
clustering problem was formulated as a multi-objective problem that takes
into account, independently, the multiple measures of cluster quality. At this
stage, Pareto local dominance was adopted. That is, a solution is locally non-
dominated if there does not exist a neighboring solution that dominates it. At
the second stage, the Pareto front obtained in the first stage was summarized
in order to obtain a compact description of the set of interesting features.

4.4 Structure Prediction and Design

Lee and co-workers [56, 84] used the controlled elitist NSGA-II [30] to generate
a set of DNA sequences which can be used in microarray design or in DNA-
based computing. The desirable properties of a DNA sequence are the quality
measures achieved while satisfying certain constraints. The quality of a se-
quence can be achieved by minimizing four objectives: the similarity between
two sequences in the set, the number of bases that can be hybridized between
sequences in the set, the degree of successive occurrences of the same base and
the probability to form a secondary structure. A good sequence should have
similar physical and chemical properties. To guarantee these characteristics
the authors use as constraints the number of bases ‘G’ and ‘C’ in the sequence
and the melting temperature where more than half of the double strands start
to break into single strands. These constraints are handled with a tournament
selection that determine the winner using the following rules: a feasible solu-
tion is preferred over an infeasible solution; between two infeasible solutions



14 Antonio López Jaimes and Carlos A. Coello Coello

the solution with the smaller constraint violation is preferred; between two
feasible solutions the solution that dominates the other is preferred. The pro-
posed approach was compared against three similar algorithms [36, 27, 91]
using an instance problem of a set of 7 DNA sequences of length 20. The
comparison was based on the average values of each objective over the gen-
erated set of DNA sequences. The results showed that the proposed method
achieved smaller average values in all the objectives than the other approaches
considered.

Day et al. [26] employed the multi-objective fast messy genetic algorithm
(MO fmGA) [107] to solve the protein structure prediction problem. This
study is based on an energy minimization technique which uses the CHARMm
energy function. This function is composed of 10 major terms and in order to
utilize a multi-objective framework, it was decomposed in two minimization
objectives: (i) the sum of the connected and (ii) the sum of the non-connected
atom energies. The decision variables for this problem are the dihedral angles
for the protein being solved. The algorithm was applied to two proteins, [Met]-
Enkephelin and Polyalanine. For both problems, a convex Pareto front was
obtained. The results were compared against those obtained in a previous
study using a single-objective fmGA (SO fmGA) [62]. To do so, for each
vector of the obtained Pareto front the two objective values were added to
obtain a single value. Then, the best objective value found was compared
with the single value achieved by the SO fmGA. For [Met]-Enkephelin, the
MO fmGA found the best solution, while for Polyalanine, the MO-fmGA
compared favorably with respect to the SO fmGA.

Chen et al. [13] proposed a method to solve the structure alignment prob-
lem for homologous proteins. This problem can be formulated as a multi-
objective optimization problem where the objectives are: maximize the num-
ber of aligned atoms and minimize their distance. The proposed method relies
on a bipartite matching algorithm whose convergence is numerically stable and
is also theoretically ensured.

4.5 Inverse problems

Phylogenetic inference is the construction of trees that represent the genealog-
ical relationships between different species. Contrary to other kinds of taxon-
omy, phylogenetic classification is based on common ancestry and not mere
similarity of appearance or function [75]. The reconstruction of phylogenetic
trees relies on various types of data sets, for example nucleotide and amino
acid sequences, protein shapes, anatomical characters, or behavioral traits to
name a few.

Poladian and Jermiin [76] proposed using a multi-objective evolutionary
approach to infer phylogenetic trees integrating many types of available data.
As pointed out by the authors, MOEAs are especially suitable to obtain phylo-
genetic inferences for three reason: (i) the large combinatorial space associated
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with all possible phylogenies, (ii) the conflicting results obtained by using dif-
ferent data sets and (iii) the fact that, a single best tree may not tell the
whole story but a nearly-best trees may also reveal information about the
relationship between two species.

One of the current problems in phylogenetic inference is how to assess,
combine, modify or reject different types of data. Total evidence [75] is one
of the two main lines of thought about how to integrate information from
different data types, which advocates the use of all available data to infer
a phylogenetic tree. Instead of combining all available information, a multi-
objective approach allows us to manage each type of information as a different
objective. Thus, the multi-objective approach of Poladian and Jermiin [76]
yields a family of trees instead of the single tree obtained by a combined
analysis. The authors employed a basic MOEA where each solution encodes
the type of topology of a candidate tree and the length (inferred evolutionary
distance between species) for each edge of the tree. In this formulation each
objective of the problem corresponds to the maximization of the likelihood of
the tree given a type of information. The method was applied to a simple four-
species problem using two data sets. The authors concluded that the visual
inspection of the resulting Pareto front will help the experienced biological
practitioner to interpret the conflict between the data sets and decide a plan
of action. Furthermore, with a multi-objective approach the practitioner does
not need to determine a priori the relative importance of the data.

The inference of gene regulatory networks is other type of inverse problems.
Some gene products determine where, when and how much another gene is
expressed into proteins. Thus cellular processes like cell growth, differentiation
and reproduction are a result of complex interactions between genes instead of
an isolated reaction of few genes. Gene regulatory networks are used to repre-
sent these interactions between genes using a directed graph. The task of the
bioinformatician is to model such networks from large amounts of microarray
data.

Spieth et al. [85] address the problem of finding gene regulatory networks
using an evolutionary algorithm combined with a local search method. The
global optimizer is a genetic algorithm whereas an evolution strategy plays
the role of the local optimizer. The performance assessment showed that the
proposed memetic algorithm is superior to standard optimization approaches
found in the literature.

Recently, Keedwell and Narayanan [49] combined a genetic algorithm with
a neural network to elucidate gene regulatory networks. The genetic algorithm
has the goal of evolving a population of genes, while the neural network is used
to evaluate how well the expression of the set of genes affects the expression
values of other genes.
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5 Future Areas of Research

As we have seen, MOEAs have been applied to different problems in biology
and bioinformatics. However, there are other possible paths for future research
that may be worth exploring. For example:

• Use of Hybrid Approaches: The use of combinations of soft comput-
ing4 techniques for solving multi-objective problems arising in biology may
be an interest path of future research in the area. Currently, most appli-
cations of soft computing in areas such as bioinformatics, normally rely
on the use of a single technique [65] (e.g., artificial neural networks for
classification or evolutionary algorithms for optimization). However, the
use of combinations of techniques may introduce greater benefits. For ex-
ample, a MOEA can be used to evolve the topology of an artificial neural
network which serves as a classifier, adopting accuracy and complexity as
the optimization criteria.

• Incorporation of User’s Preferences: Most MOEAs are commonly em-
ployed under the assumption that the entire Pareto optimal set is needed.
However, in most practical applications, not all the solutions are required,
since users normally identify regions of interest within the Pareto front
[41]. There are several ways in which the user’s preferences can be incor-
porated into a MOEA such that the search is narrowed to a certain portion
of the Pareto front (see for example [19]). Although in recent years more
MOEA researchers have become interested in this topic (see for example
[16, 11, 25, 10, 97, 79]), it certainly requires much further work.

• Use of Domain Knowledge: The incorporation of domain knowledge
may improve the performance of MOEAs adopted to solve complex prob-
lems. Such knowledge may be provided either a priori (when available) or
can be extracted during the search [54, 48]. This knowledge may influence
the operators of a MOEA or can be used to design heuristic procedures
aimed to reduce the size of the search space.

6 Conclusions

In this chapter, we have explored the use of MOEAs in different biological
and bioinformatics applications. First, the most popular MOEAs in current
use were briefly described. Then, a simple taxonomy of applications was in-
troduced and representative applications within each class were described. It
is worth noting, however, that this review was presented from the perspective

4 Soft computing refers to a collection of computational techniques in computer
science which attempt to study, model, and analyze complex phenomena. Such
techniques include evolutionary algorithms, neural networks and fuzzy logic [93].
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of a computer scientist and not from a biologist’s point of view. We hope,
however, that biologists may find it useful in spite of its possible pitfalls.

Readers will also note that no attempt was made to be critical in the
review, since the aim was to provide a wide view of the field rather than
to introduce any potential bias in the current work being done in this area.
Clearly, the interest from biologists for using MOEAs is increasing and we
certainly hope that such trend is maintained in the years to come, since such
has been the main goal of this chapter.
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20 Antonio López Jaimes and Carlos A. Coello Coello

39. Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts

40. Handl J, Kell DB, Knowles J (2007). Multiobjective optimization in bioinfor-
matics and computational biology. IEEE-ACM Transactions on Computational
Biology and Bioinformatics, 4(2):279–292

41. Handl J, Knowles J (2007). An Evolutionary Approach to Multiobjective Clus-
tering. IEEE Transactions on Evolutionary Computation, 11(1):56–76

42. Horn J, Nafpliotis N, Goldberg DE (1994). A Niched Pareto Genetic Algorithm
for Multiobjective Optimization. In: Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational Intel-
ligence, vol. 1, 82–87. IEEE Service Center, Piscataway, New Jersey

43. Hubley R, Zitzler E, Roach J (2003). Evolutionary algorithms for the selection
of single nucleotide polymorphisms. BMC Bioinformatics, 4(30)

44. Hubley R, Zitzler E, Siegel A, Roach J (2002). Multiobjective Genetic Marker
Selection. In: Advances in Nature-Inspired Computation: The PPSN VII Work-
shops, 32–33. University of Reading, UK

45. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002). Re-
vealing modular organization in the yeast transcriptional network. Nat Genet,
31(4):370–7

46. Iorio AW, Li X (2004). A Cooperative Coevolutionary Multiobjective Algo-
rithm Using Non-dominated Sorting. In: et al KD (ed.) Genetic and Evolution-
ary Computation–GECCO 2004. Proceedings of the Genetic and Evolutionary
Computation Conference. Part I, 537–548. Springer-Verlag, Lecture Notes in
Computer Science Vol. 3102, Seattle, Washington, USA

47. Ito K, Akagi S, Nishikawa M (1983). A Multiobjective Optimization Approach
to a Design Problem of Heat Insulation for Thermal Distribution Piping Net-
work Systems. Journal of Mechanisms, Transmissions and Automation in De-
sign (Transactions of the ASME), 105:206–213

48. Jin Y (ed.) (2005). Knowledge Incorporation in Evolutionary Computation.
Springer, Berlin. ISBN 3-540-22902-7

49. Keedwell E, Narayanan A (2005). Discovering gene networks with a neural-
genetic hybrid. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 2(3):231–242

50. Keerativuttiumrong N, Chaiyaratana N, Varavithya V (2002). Multi-objective
Co-operative Co-evolutionary Genetic Algorithm. In: Merelo Guervós JJ,
Adamidis P, Beyer HG, nas JLFV, Schwefel HP (eds.) Parallel Problem Solv-
ing from Nature—PPSN VII, 288–297. Springer-Verlag. Lecture Notes in Com-
puter Science No. 2439, Granada, Spain

51. Kleeman MP, Lamont GB (2006). Coevolutionary Multi-Objective EAs:
The Next Frontier? In: 2006 IEEE Congress on Evolutionary Computation
(CEC’2006), 6190–6199. IEEE, Vancouver, BC, Canada

52. Knowles JD, Corne DW (1999). The Pareto Archived Evolution Strategy: A
New Baseline Algorithm for Multiobjective Optimisation. In: 1999 Congress
on Evolutionary Computation, 98–105. IEEE Service Center, Washington, D.C.

53. Knowles JD, Corne DW (2000). Approximating the Nondominated Front Using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–
172

54. Landa Becerra R, Coello Coello CA (2006). Solving Hard Multiobjective Op-
timization Problems Using ε-Constraint with Cultured Differential Evolution.



An Introduction to MOEAs and some of Their Potential Uses in Biology 21

In: Runarsson TP, Beyer HG, Burke E, Merelo-Guervós JJ, Whitley LD, Yao
X (eds.) Parallel Problem Solving from Nature - PPSN IX, 9th International
Conference, 543–552. Springer. Lecture Notes in Computer Science Vol. 4193,
Reykjavik, Iceland

55. Lee I, Kim S, Zhang B (2004). Multi-objective Evolutionary Probe Design
Based on Thermodynamic Criteria for HPV Detection. Lecture Notes in Com-
puter Science, 3157:742–750

56. Lee I, Shin S, Zhang B (2003). DNA sequence optimization using con-
strained multi-objective evolutionary algorithm. Evolutionary Computation,
2003. CEC’03. The 2003 Congress on, 4

57. Liu X, Krishnan A, Mondry A (2005). An Entropy-based gene selection method
for cancer classification using microarray data. feedback

58. Lohn JD, Kraus WF, Haith GL (2002). Comparing a Coevolutionary Ge-
netic Algorithm for Multiobjective Optimization. In: Congress on Evolutionary
Computation (CEC’2002), vol. 2, 1157–1162. IEEE Service Center, Piscataway,
New Jersey

59. Madeira S, Oliveira A (2004). Biclustering algorithms for biological data anal-
ysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 1(1):24–45

60. Malard J, Heredia-Langner A, Baxter D, Jarman K, Cannon W (2004). Con-
strained de novo peptide identification via multi-objective optimization. Par-
allel and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional

61. Mao J, Hirasawa K, Hu J, Murata J (2001). Genetic Symbiosis Algorithm
for Multiobjective Optimization Problems. In: Proceedings of the 2001 Ge-
netic and Evolutionary Computation Conference. Late-Breaking Papers, 267–
274. San Francisco, California

62. Michaud SR, Zydallis JB, Lamont GB, Pachter R (2001). Scaling a genetic
algorithm to medium-sized peptides by detecting secondary structures with an
analysis of building blocks. In: Proceedings of the First International Confer-
ence on Computational Nanoscience, 29–32

63. Miettinen KM (1999). Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, Boston, Massachusetts

64. Mitra S, Banka H (2006). Multi-objective evolutionary biclustering of gene
expression data. Pattern Recognition, 39(12):2464–2477

65. Mitra S, Banka H, Pal S (2006). A MOE framework for Biclustering of Mi-
croarray Data. Proceedings of the 18th International Conference on Pattern
Recognition (ICPR’06)-Volume 01, 1154–1157

66. Moscato P (1989). On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts. Towards Memetic Algorithms. Tech. Rep. 158–79, Cal-
tech Concurrent Computation Program, California Institute of Technology,
Pasadena, California

67. Murali T, Kasif S (2003). Extracting conserved gene expression motifs from
gene expression data. Proc. Pacific Symp. Biocomputing, 8:77–88

68. Nedjah N, Alba E, de Macedo Mourelle L (2006). Parallel Evolutionary Com-
putations. Springer-Verlag. ISBN 3-540-32837-8

69. Osyczka A (1985). Multicriteria optimization for engineering design. In: Gero
JS (ed.) Design Optimization, 193–227. Academic Press

70. Paredis J (1995). Coevolutionary computation. Artificial Life, 2(4):355–375
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