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México, D.F. 07360, MEXICO

Key Words: multiobjective optimization, evolutionary algorithms

∗E-mail address: alopez@computacion.cs.cinvestav.mx
†E-mail address: zapoteca@computacion.cs.cinvestav.mx
‡E-mail address: ccoello@cs.cinvestav.mx
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1. Introduction

A wide variety of problems in engineering, industry, and many other fields, involve the
simultaneous optimization of several objectives. In many cases, the objectives are defined
in incomparable units, and they present some degree of conflict among them (i.e., one
objective cannot be improved without deterioration of at least another objective). These
problems are calledMultiobjective Optimization Problems(MOPs). Let us consider, for
example, a shipping company which is interested in minimizing the total duration of its
routes to improve customer service. On the other hand, the company also wants to minimize
the number of trucks used in order to reduce operating costs.Clearly, these objectives are in
conflict since adding more trucks reduces the duration of theroutes, but increases operation
costs. In addition, the objectives of this problem are expressed in different measurement
units.

In single-objective optimization, it is possible to determine between any given pair of
solutions if one is better than the other. As a result, we usually obtain a single optimal
solution. However, in multiobjective optimization there does not exist a straightforward
method to determine if a solution is better than other. The method most commonly adopted
in multiobjective optimization to compare solutions is theone calledPareto dominance re-
lation [1] which, instead of a single optimal solution, leads to a set of alternatives with
different trade-offs among the objectives. These solutions are calledPareto optimal solu-
tionsor non-dominated solutions.

Although there are multiple Pareto optimal solutions, in practice, only one solution has
to be selected for implementation. For instance, in the example of the shipping company
presented above, only one route from several alternatives generated will be selected to de-
liver the packages for a given day. Therefore, in the multiobjective optimization process we
can distinghish two tasks, namely: i) find a set of Pareto optimal solutions, and ii) choose
the most preferred solution out of this set. Since Pareto optimal solutions are mathemati-
cally equivalent, the latter task requires a Decision Maker(DM) who can provide subjective
preference information to choose the best solution in a particular instance of the multiob-
jective optimization problem.

We can distinguish two main approaches to solve multiobjective optimization prob-
lems. The first is called the Multi-Criteria Decision Making(MCDM) approach which can
be characterized by the use of mathematical programming techniques and a decision mak-
ing method in an intertwined manner. In most of the MCDM’s methods the decision maker
plays a major role in providing information to build a preference model which is exploited
by the mathematical programming method to find solutions that better fit the DM’s pref-
erences [2]. Evolutionary Multiobjective Optimization (EMO) is another approach useful
to solve multiobjective optimization problems. Since evolutionary algorithms use a popu-
lation based approach, they usually find an approximation ofthe whole Pareto front in one
run. Although in the EMO community the decision making task has not received too much
attention in the past, in recent years a considerable numberof works have addressed the
incorporation of preference in Multi-Objective Evolutionary Algorithms (MOEAs).

In the following, we present some general concepts and notations used in the remainder
of this chapter.
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Definition 1 (Multiobjective Optimization Problem). Formally, a Multiobjective Optimiza-
tion Problem (MOP) is defined as:

“Minimize” f(x) = [f1(x), f2(x), . . . , fk(x)]T

subject to x ∈ X .
(1)

The vectorx ∈ Rn is formed byn decision variablesrepresenting the quantities for
which values are to be chosen in the optimization problem. The feasible setX ⊆ Rn is
implicitly determined by a set of equality and inequality constraints. The vector function
f : Rn → Rk is composed byk scalarobjective functionsfi : Rn → R (i = 1, . . . , k; k ≥
2). In multiobjective optimization, the setsRn andRk are known asdecision variable space
andobjective function space, respectively. The image ofX under the functionf is a subset
of the objective function space denoted byZ = f(X ) and referred to as thefeasible set in
the objective function space.

f : Rn → Rk

Z ⊆ RkX ⊆ Rn

f2

x2

f3

x1

f1

Objective function spaceDecision variable space

Figure 1. Search spaces in multiobjective optimization problems.

2. Notions of Optimality in MOPs

In order to define precisely the multiobjective optimization problem stated in definition (1)
we have to establish the meaning of minimization inRk. That is to say, it is required
to define how vectorsf(x) ∈ Rk have to be compared for different solutionsx ∈ Rn.
In single-objective optimization is used the relation “less than or equal” (≤) to compare
the values of the scalar objective functions. By using this relation there may be different
optimal solutionsx ∈ X , but only one optimal valuefmin = min{fi(x)|x ∈ X}, for each
function fi, since the relation≤ induces a total order inR (i.e., every pair of solutions is
comparable, and thus, we can sort solutions from the best to the worst one). In contrast, in
multiobjective optimization problems, there is no canonical order onRk, and thus, we need
weaker definitions of order to compare vectors inRk.
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In multiobjective optimization, it is usually adopted thePareto dominance relationorig-
inally proposed by Francis Ysidro Edgeworth in 1881 [3], butgeneralized by the french-
italian economist Vilfredo Pareto in 1896 [1].

Definition 2 (Pareto Dominance relation). We say that a vectorz1 Pareto-dominates vector
z2, denoted byz1 ≺pareto z2, if and only if1:

∀i ∈ {1, . . . , k} : z1
i ≤ z2

i (2)

and
∃i ∈ {1, . . . , k} : z1

i < z2
i (3)

z2

z3

z1

f1

f2

z4

Figure 2. Illustration of the concept of Pareto dominance relation.

Figure 2 illustrates the Pareto dominance relation with an example with four 2-
dimensional vectors. Vectorz3 is strictly less thanz2 in both objectives, therefore
z3 ≺pareto z2. Vectorz3 also Pareto-dominatesz1 since with respect tof1 those vectors are
equal, but inf2, z3 is strictly less thanz1. Since≺pareto is not a total order some elements
can be incomparable like is the case withz1 andz4, i.e.,z1 ⊀pareto z4 andz4 ⊀pareto z1.
Similarly, z3 ≺pareto z4, z1 ≺pareto z2, andz4 ≺pareto z2.

Thus, to solve a MOP we have to find those solutionsx ∈ X whose images,z = f(x),
are not Pareto-dominated by any other vector in the feasiblespace. In the example shown
in Figure 2, no vector dominatesz3, and, therefore, we say thatz3 is nondominated.

Definition 3 (Pareto Optimality). A solutionx∗ ∈ X is Pareto optimal if there does not
exist another solutionx ∈ X such thatf(x) ≺pareto f(x∗).

Definition 4 (Weak Pareto Optimality). A solutionx∗ ∈ X is weakly Pareto optimal if there
does not exist another solutionx ∈ X such thatf(x) < f(x∗) for all i = 1, . . . , k.

1Without loss of generality, we will assume only minimization problems.
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The set of Pareto optimal solutions and its image in objective space is defined in the
following.

Definition 5 (Pareto optimal set). The Pareto optimal set,P∗, is defined as:

P∗ = {x ∈ X |∄y ∈ X : f(y) � f(x)}. (4)

Definition 6 (Pareto front). For a Pareto optimal setP∗, the Pareto front,PF∗, is defined
as:

FP∗ = {f(x) = (f1(x), . . . , fk(x)) | x ∈ P∗}. (5)

Figure 3 illustrates the concept of Pareto optimal set and its image in the objective
space, the Pareto front. Darker points denote Pareto optimal vectors. In variable space,
these vectors are referred to as Pareto optimal decision vectors, while in objective space,
are called Pareto optimal objective vectors. As we can see inthe figure, the Pareto front is
only composed by nondominated vectors.

Pareto front

x1
f1

x2
f2

Decision variable space Objective function space

f : Rn → Rk

X ⊆ Rn

Pareto frontPareto optimal set

Z ⊆ Rk

Figure 3. Illustration of the Pareto optimal set and its image, the Pareto front.

On some optimization techniques is useful to know the lower and upper bounds of the
Pareto front. The ideal point represents the lower bounds and is defined byz⋆

i = minz∈Z zi

for all i = 1, . . . , k. In turn, the upper bounds are defined by the nadir point, which is given
by znad

i = maxz∈Z zi for all i = 1, . . . , k.
As we mentioned before, Pareto dominance is the most common preference relation

used in multiobjective optimization. However, it is only one of the possible preference
relations available. The interested reader is referred to [4] (Chap. 6) and [5] (Chap. 5),
where other preference relations are presented.

As indicated by some authors (see e.g., [5] and [6]), in general, a MOP can be defined
completely by(X , Rk, f ,R), whereX is the feasible set,Rk is the objective function space,
f is the objective function vector, andR is the preference relation, which induces an ordered
set onRk.
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3. Mathematical Programming Techniques

The mathematical programming techniques are classified regarding how and when to in-
corporate preferences from the DM into the search process. Avery important issue is the
moment at which the DM is required to provide preference information. There are three
ways of doing this [4, 7]:

1. Prior to the search (a priori approaches).

2. During the search (interactive approaches).

3. After the search (a posteriori approaches).

In this section we present some of the most popular MCDM’s techniques accordign to
the above classification.

3.1. A Priori Preference Articulation

3.1.1. Goal Programming

Charnes and Cooper [8] are credited with the devolopment of the goal programming method
for a linear model, and played a key role in applying it to industrial problems. In this
method, the DM has to assign targets or goals that wishes to archieve for each objective.
These values are incorporated into the problem as additional constraints. The objective
function then tries to minimize the absolute deviations from the targets to the objectives.
The simplest form of this method may be formulated as follows:

minimize
k
∑

i=1

|fi(x)− Ti|

subject to x ∈ X ,

(6)

whereTi denotes the target or goal set by the decision maker for theith objective function
fi(x), andX represents the feasible region. The criterion, then is to minimize the sum of
the absolute values of the differences between target values and actually achieved values. A
more general formulation of the goal programming objectivefunction is a weighted sum of
thepth power of the deviation|fi(x)− Ti|. Such a formulation has been calledgeneralized
goal programming[9].

In equation 6, the objective function is nonlinear and the simplex method can be applied
only after transforming this equation into a linear form, thus reducing goal programming to
a special type of linear programming. In this transformation, new variablesδ+

i andδ−i are
defined such that:

δ+
i =

1

2
{|fi(x)− Ti|+ [fi(x− Ti)]} (7)

δ−i =
1

2
{|fi(x)− Ti| − [fi(x− Ti)]} (8)

This means that the absolute value signs can be dropped from problem (6) by introduc-
ing the underachievement and the overachievement variables. Adding and subtracting the
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equations (7) and (8), the resulting equivalent linear formulation may be found:

minimize
k
∑

i=1

(δ+
i + δ−i )

subject to f(x)− δ+
i + δ−i = Ti, i = 1. . . . , k

δ+
i , δ−i ≥ 0, i = 1. . . . , k,

x ∈ X ,

(9)

Since it is not possible to have both under and overachievements of the goal simultane-
ously, then at least one of the deviational variables must bezero. In other words:

δ+
i · δ

−
i = 0 (10)

Fortunately, this constraint is automatically fulfilled bythe simplex method beacuse the
objective function drives eitherδ+

i or δ−i or both variables simultaneously to zero for alli.
Some times it may be desirable to express preference for overor under achievement of a
goal. Thus, it may be more desirable to overachieve a targeted reability figure than to under-
achieve it. To express preference for deviations, the DM canassign relative weightsw+

i and
w−

i to positive and negative deviations, respectively, for each targetTi. If a minimization
problem is considered, choosing thew+

i to be larger thanw−
i would be expressing prefer-

ence for underachievement of a goal. In addition, goal programming provides the flexibility
to deal with cases that have conflicting multiple goals. Essentially, the goals may be ranked
in order of importance to the problem solver. That is, a priority factor, pi (i = 1, . . . , k) is
assigned to the deviational variables associated with the goals. This is called “lexicographic
ordering”. These factorspi are conceptually different from weights, as it is explained, for
example, in [7]. The resulting optimization model becomes

minimize
k
∑

i=1

pi(w
+
i δ+

i + w−
i δ−i )

subject to f(x)− δ+
i + δ−i = Ti, i = 1. . . . , k

δ+
i , δ−i ≥ 0, i = 1. . . . , k,

x ∈ X ,

(11)

Note that this technique yields a nondominated solutions ifthe goal point is chosen in
the feasible domain. The following theorem is presented andproved in [7]:

Theorem 1. The solution of a weighted or a lexicographic goal programming problem (9)
is Pareto optimal if either the aspiration levels form a Pareto optimal reference point or
all the deviational variablesδ+

i for functions to be minimized andδ−i for functions to be
maximized have positive values at the optimum.

3.1.2. Goal-Attainment Method

Similar to the goal programming method, in this approach thedecision maker must provide
a goal vectorzref. In addition, the decision maker must provide a vector of weightsw =
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[w1, w2, . . . , wk] relating the relative under- or over-attainment of the desired goals. In
order to find the best-compromise solutionx⋆, the following problem is solved [10, 11]:

Minimize α

subject to zref
i + α · wi ≥ fi(x); i = 1, . . . , k,

x ∈ X ,

(12)

whereα is a scalar variable unrestricted in sign and the weightsw1, w2, . . . , wk are
normalized so that

k
∑

i=1

|wi| = 1 (13)

Figure 4. Illustration of the goal attainment method with two objective functions.

If somewi = 0 (i = 1, . . . , k), it means that the maximum limit of objectivesfi(x)
is zref

i . It can be easily shown [12] that every Pareto optimal solution can be generated
by varying the weights, withwi ≥ 0 (i = 1, . . . , k) even for nonconvex problems. The
mechanism by which this method operates is illustrated in Figure 4. The vectorzref is
represented by the decision goal of the DM, who also decides the direction ofw. Given
vectorsw andzref, the direction of the vectorzref+α·w can be determined, and the problem
stated by equation (12) is equivalent to finding a feasible point on this vector in objective
space which is closest to the origin. It is obvious that the optimal solution of equation (12)
is the first point at whichzref + α · w intersects the feasible region in the objective space
(denoted byZ in Figure 4). If this point of intersection exist, then it would clearly be a
Pareto optimal solution. It should be pointed out that the optimum value ofα informs the
DM of whether the goals are attainable or not. A negative value ofα implies that the goal of
the decision maker is attainable and an improved solution isthen to be obtained. Otherwise,
if α > 0, then the DM’s goal is unattainable.
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3.1.3. Lexicographic Method

In this method, the objectives are ranked in order of importance by the decision maker
(from best to worst). The optimal valuef⋆

i (i = 1, . . . , k) is then obtained by minimizing
the objective functions sequentially, starting with the most important one and proceeding
according to the order of importance of the objectives. Additionally, the optimal value
found of each objective is added as a constraint for subsequent optimizations. This way,
it is preserved the optimal value of the most important objectives. Only in the case of
several optimal solutions in the single optimization of thecurrent objective, the rest of
the objectives are considered. Therefore, in the worst case, we have to carry outk single
objective optimizations.

Let the subscripts of the objectives indicate not only the objective function number, but
also the priority of the objective. Thus,f1(x) andfk(x) denote the most and least important
objective functions, respectively. Then, the first problemis formulated as

Minimize f1(x)

subject to x ∈ X .
(14)

We have to note that, although only one optimal valuef⋆
1 = min{f1(x)|x ∈ X} is

generated for this single-objective problem, it might be possible to obtain many different
optimal solutionsx⋆ ∈ X . Nonetheless, regarding the original multiobjective problem,
only one of these solutions is Pareto optimal. For this reason, we should consider two
situations after the optimization of each objectivefi (i = 1, . . . , k). If we obtain a unique
optimal solution, then this solution is the optimal solution of the original multiobjective
problem, and, therefore, we stop the optimization process.Otherwise, we have to optimize
the next objective. In general, we have to solve the single objective optimization problem
(i = 2, . . . , k) given by

Minimize fi(x)

subject to x ∈ X ,

fl(x) = f⋆
l , l = 1, . . . , i− 1.

(15)

If several optimal solutions were obtained in each optimization problem (15) until ob-
jectivefk−1, then the unique optimal solution obtained forfk, i.e.,x⋆

k, is taken as the desired
solution of the original problem.

In [7, 13] it is proved that the optimal solution obtained by the lexicographic problem is
Pareto optimal. For this reason, the lexicographic method is usually adopted as an additional
optimization approach in methods that can only guarantee weak optimality by themselves.
For example, in theε-constraint method (see Section 3.2.3.), or in methods based on the
Tchebycheff achievement function (see Sections 3.3.2. and3.3.3.).

3.2. A Posteriori Preference Articulation

3.2.1. Linear Combination of Weights

In this method, the general idea is to associate each objective function with a weighting
coefficient and minimize the weighted sum of the objectives.In this way, the multiobjec-
tive problem is transformed into a single objective problem. Thus, the new optimization
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problem is defined as:

minimize
k
∑

i=1

wifi(x)

subject to x ∈ X .

(16)

wherewi ≥ 0 and is strictly positive for at least one objective, such that
∑k

i=1 wi = 1.
The set of nondominated solutions can be generated by parametrically varying the weights
wi in the objective function. This was initially demonstratedby Gass and Saaty for a two-
objective problem. The following implications are consequences of this formulation and
their corresponding proofs can be found in [7]:

Theorem 2. The solution of weighting problem (16) is weakly Pareto optimal.

Theorem 3. The solution of weighting problem (16) is Pareto optimal if the weighting
coefficients are positive, that iswi > 0 for all i = 1, . . . , k.

Theorem 4. The unique solution of the weighting problem (16) is Pareto optimal.

Theorem 5. Let the multiobjecive optimization problem be convex. Ifx∗ ∈ X is Pareto
optimal, then there exists a weighting vectorw (wi ≥ 0, i = 1, . . . , k,

∑k
i=1 wi = 1)

which is a solution to the weighting problem (16).

3.2.2. Normal Boundary Intersection

Das and Dennis [14] proposed this novel method for generating Pareto optimal solutions
evenly distributed. The main idea in the Normal Boundary Intersection (NBI) method, is
to intersect the feasible objective region with a normal to the convex combinations of the
columns of thepay-offmatrix. For undestanding this method let’s see the next definition.

Definition 7. Let x∗
i be the respective global minimizers offi(x), i = 1, . . . , k over x ∈

X . Let F ∗
i = F (x∗

i ), i = 1, . . . , k. Let Φ be thek × k matrix whoseith column is
F ∗

i − F ∗ sometimes known as the pay-off matrix. Then the set of pointsin Rk that are
convex combinations ofF ∗

i − F ∗, i.e. {Φβ : β ∈ Rn,
∑k

i=1 βi = 1, βi ≥ 0}, is referred to
as the Convex Hull of Individual Minima (CHIM).

The set of the attainable objective vectors,{F (x) : x ∈ X} is denoted byF , thusX is
mapped ontoF by F. The spaceRk which containsF is referred to as theobjective space.
The boundary ofF is denoted by∂F .

Figure 5 illustrates theCHIM for a two-objective problem. In the example we show
the shadow minimum orutopian pointF ∗ defined byF ∗ = {f∗

1 , . . . , f∗
k}, the area in gray

describes the objective spaceF and the black line describes the complete boundary∂F of
F .

NBI is a method designed to find the portion of∂F which contains the Pareto optimal
points. The main idea behind this approach is that the intersection point between the bound-
ary∂F and the normal pointing towards the origin emanating from any point in the CHIM
is a point on the portion of∂F containing the efficient points. This point is guaranteed tobe
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a Pareto optimal point if the trade-off surface in the objective space is convex. Therefore,
the original multiobjective problem is traslated into the following new problem.

Given a convex weightingβ, Φβ represents a point in the CHIM. Letn̂ denote the unit
normal to the CHIM simplex towards the origin; thenΦβ + tn̂ represents the set of points
on that normal. The point of intersection of the normal and the boundary ofF closest to
the origin is the global solution of the following problem:

Maximizex,t t

subject to Φβ + tn̂ = F (x),

x ∈ X

(17)

The vector constraintΦβ + tn̂ = F (x) ensures that the pointx is actually mapped by
F to a point on the normal, while the remaining constraints ensure feasibility ofx in X .
This approach considers that the shadow minimumF ∗ is in the origin. Otherwise, the first
set of constraints should beΦβ + tn̂ = F (x)− F ∗.

As many scalarization methods, for variousβ, a number of points on the boundary of
F are obtained thus, effectively, constructing the Pareto surface.

A quasi-normal direction is used instead of a normal direction, such that it represents
an equally weighted linar combination of columns ofΦ, multiplied by−1 to ensure that it
points towards the origin. That is,

n̂ = −Φv

wherev is a fixed vector with strictly positive components. Commonly, n̂ is chosen to be
n̂ = −Φe, wheree is the column vector of all ones.

Figure 5. Illustration of theCHIM for a two-objective problem.
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3.2.3. ε-Constraint Method

Theε-constraint method is one of best known scalarization techniques to solve multiobjec-
tive problems. In this approach one of the objectives is minimized while the others are used
as constraints bound by some allowable levelsεi.

The multiobjective optimization problem is transformed into the followingε-constraint
problem

Minimize fl(x)

subject to fi(x) ≤ εi ∀i = 1, . . . , k i 6= l,

x ∈ X .

(18)

Figure 6 illustrates the application of theε-constraint method in a bicriterion problem.
In the example we show three different constraint values forf1 and their respective optimum
values forf2. It is worth noting that for some values ofεi, the constraint imposed might be
active or inactive. For example, the constraint forε1 andε3 is active, whereas that forε2 is
inactive.

Figure 6. Illustration of theε-constraint method.

In order to find several Pareto optimal solutions, we need to solve problem (18) using
multiple different values forεi. In this iterative optimization process the user needs to pro-
vide the range of the reference objective,fl. In addition, it must be provided the increment
for the constraints imposed byε. This increment determines the number of Pareto opti-
mal solutions generated. In Algorithm 3.2.3. it is shown thepseudo code of the iterative
ε-constraint optimization for the case of two objectives.

In [13] and [7] are presented an proved the following important theorems related to the
optimality of the solutions generated by theε-constraint problem.

Theorem 6. The optimal solution of theε-constraint problem (18) is weakly Pareto optimal.
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Algorithm 1 Pseudocode of an iterative optimization process using theε-constraint method.
Input:

fmin
1 , fmax

1 ∈ R: Lower and upper bounds for objectivef1.
δ ∈ R: Increment for constraintε.

PFapprox← ∅
ε← fmax

1

while ε ≥ fmin
1 do

x← ε-M INIMIZE (f , ε) � Minimize using problem (18)
PFapprox← PFapprox∪ {x}
ε← ε− δ

end while
Return the approximation of the Pareto frontPFapprox

Theorem 7. The solutionx⋆ ∈ X is Pareto optimal if and only ifεi = fi(x
⋆) for all i =

1, . . . , k, i 6= l, andx⋆ is an optimal optimal solution of problem (18) for alll = 1, . . . , k.

Theorem 8. If x⋆ is the unique optimal solution of problem (18) for somel = 1, . . . , k,
thenx⋆ is Pareto optimal.

As pointed out by Ehrgott [13], Theorem 7 only provides a method to check Pareto
optimality instead of a method to find Pareto optimal solutions since the values forε must
be equal to the nondominated vectorf(x⋆).

Therefore, in order to generate Pareto optimal solutions only, we need to solvek single
objective problems, or less thank if we obtain a unique optimal solution in one of the prob-
lems. One possibility to avoid weakly Pareto optimal solutions is the use of lexicographic
optimization (see Section 3.1.3.) in problem (18). That is,if f1 has multiple optimal solu-
tions, then select the best solution with respect to objective f2 an so on.

3.2.4. Method of Weighted Metrics

The idea behind this method is to find the closest feasible solution to a reference point,
which usually is the ideal point. Some authors, such as Duckstein [15] and Zeleny [16], call
this method compromise programming. The most common metrics to measure the distance
between the reference point and the feasible region are those derived from theLp-metric,
which is defined by

||y||p =

(

p
∑

i=1

|yk|
p

)1/p

, (19)

for 1 ≤ p ≤ ∞. The value ofp indicates the type of metric. Forp = 1 we obtain the
Manhattan metric, while forp = ∞ we obtain the so-called Tchebycheff metric. From the
Lp-metrics is derived the following compromise problem

Minimize

(

p
∑

i=1

|fi(x)− z⋆
i |

p

)1/p

subject to x ∈ X .

(20)



14 A. López Jaimes, S. Zapotecas Martı́nez, C.A. Coello Coello

In order to obtain different (weakly) Pareto optimal solutions we must allow weights in
problem (20). The resulting weighted compromise programming problem is

Minimize

(

p
∑

i=1

wi|fi(x)− z⋆
i |

p

)1/p

subject to x ∈ X .

(21)

For p = 1, all deviations fromz⋆
i are taken into account. Ehrgott [5] shows that

the method of linear combination of weights (see Section 3.2.1.) is a special case of the
weighted compromise problem withp = 1. For p = ∞, i.e, using the Tchebycheff met-
ric, the largest deviation is the only one taken into consideration. The resulting weighted
Tchebycheff problem is defined by

Minimize max
i=1,...,k

{wi|fi(x)− z⋆
i |}

subject to x ∈ X .
(22)

This problem presents the most interesting theoretical result, and is one of the most
commonly employed. Depending on the properties of the metric employed, we obtain
different results regarding the optimality of the solutions generated.

In [7] and [13] is shown that the solution of the weighted compromise programming
problem (21) with1 ≤ p <∞ is Pareto optimal if one the following conditions holds:

1. The optimal solution of (21) is unique.

2. wi > 0 for all i = 1, . . . , k.

It is important to note, however, that for1 ≤ p < ∞, although problem (21) can
generate Pareto optimal solutions, it does not necessarilyfind all of them. In constrast,
the weighted Tchebycheff problem is able to generate every Pareto optimal solution [7, 5].
Unfortunately, if the solution of the Tchebycheff problem is not unique, some of the solu-
tions generated are weakly Pareto optimal. In order to identify the Pareto optimal solutions,
Miettinen [7] suggests two possible approaches: use lexicographic ordering to solve the
Tchebycheff problem, or modify the original problem. In thelatter approach, Steuer and
Choo [17] suggest aggregating an augmentation term to the original problem. Thus, it is
obtained the augmented weighted Tchebycheff problem

Minimize max
i=1,...,k

{wi|fi(x)− z⋆
i |}+ ρ

k
∑

i=1

|fi(x)− z⋆
i |

subject to x ∈ X ,

(23)

whereρ is a sufficiently small positive scalar. However, it is worthnoting that using
this approach it may be possible that some Pareto optimal solutions cannot be found. Nev-
ertheless, every properly Pareto optimal solution can be obtained by this approach. The set
of properly Pareto optimal solutions is a subset of the Pareto optimal solutions in which
unbounded tradeoffs are not allowed.
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3.3. Interactive Preference Articulation

3.3.1. Method of Geoffrion-Dyer-Feinberg (GDF)

This interactive method developed by Geoffrion et al. [18] is based on the maximization
of a value function (utility function) using a gradient-based method. The value function is
only implicitly known, but is assumed to be differentiable and concave. The gradient-based
method employed is the Frank-Wolfe method [19], however, asindicated by the authors,
other methods could be used in an interactive fashion. The Frank-Wolfe method assumes
that the feasible set,X ⊆ Rn, is compact and convex. The direction-finding problem of the
Frank-Wolfe method is the following:

Maximize ∇xU(f(xh)) · y

subject to y ∈ X ,
(24)

whereU : Rk → R is the value function,xh is the current point, andy is the new
variable of the problem. Using the chain rule it is obtained

∇xU(f(xh)) =
k
∑

i=1

(

∂U

∂fi

)

∇xfi(x
h). (25)

Dividing this equation by∂U
∂f1

we obtain the following reformulation of the Frank-Wolfe
problem

Maximize

(

k
∑

i=1

−mh
i∇xfi(x

h)

)

· y

subject to y ∈ X ,

(26)

wheremh
i = (∂U/∂fi)/(∂U/∂f1) for all i = 1, . . . , k, i 6= 1 are the marginal rates

of substitution (or indifference tradeoff) atxh between objectivesf1 andfi. The marginal
rate of substitution is the amount of loss on objectivefi that the decision maker is willing to
tolerate in exchage of one unit of gain in objectivef1, while the value of the other objectives
remain unchanged.

The prodecedure of the GDF method is the following:

Step 0: Provide an initial pointx1 ∈ X . Seth = 1.

Step 1: The decision maker must provide marginal rates of substitution betweenf1 (the
reference objective) and the other objectives at the current pointxh.

Step 2: Find the optimal solutionyh of problem (26). Set the new search direction
dh = yh − xh. If dh = 0, go toStep 5.

Step 3: The decision maker must determine the best step-size,th, to compute the new
solutionxh. Then, setxh+1 = xh + thdh.

Step 4: If xh+1 = xh, go toStep 5, else seth = h + 1 and go toStep 1.
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Step 5: Returnxh as the final solution.

The most important steps of this procedure are the steps 1 and3. One possibility to
estimate the marginal rates is to compare the solutions

[f1(x
h), f2(x

h), . . . , fj(x
h), . . . , fk(x

h)],

and
[f1(x

h)−∆1, f2(x
h), . . . , fj(x

h) + ∆j, . . . , fk(x
h)],

where∆j is an small amount added tofj in compensation of a decrement inf1 by
a small amount∆1, while the other values remain unaltered. The idea is to modified the
quantities∆j and∆1 until the two solutions are indifferent to the decision maker. Thus,
mh

i ≈
∆1

∆j
. Regarding the selection of the optimal step-size, Geoffrion et al. proposed a

graphical procedure that presents to the decision maker several alternative vectors varying
t in the interval[0, 1]. That is, the vectorszi = fi(x

h + td) for i = 1, . . . , k using different
values oft ∈ [0, 1].

3.3.2. Tchebycheff Method

The Tchebycheff method proposed in [17], is an iterative method which was designed to be
user-friendly, thus, complicated information is not requiered. This method is based on the
minimization of a function value, assuming that the global ideal objective vector (utopian
vector) is known. The metric to be used for measuring the distances to a utopian objective
vector is the weighted Tchebycheff metric. Thus, the multiobjective optimization problem
is transformed into a single-objective optimization problem, defined by

Minimize max
i=1,...,k

[wi(fi(x)− z∗i )]

subject to x ∈ X ,
(27)

wherew ∈ W = {w ∈ Rk|0 < wi < 1,
∑k

i=1 wi = 1} andz∗ is the utopian objective
vector.

Theorem 9. Letx∗ ∈ X be Pareto optimal. Then there exists a weighting vector0 < w ∈
Rk such thatx∗ is a solution of the weighted Tchebycheff problem (27), where the reference
point is the utopian objective vectorz∗.

Thus, from the above theorem, every Pareto optimal solutionof any multiobjective op-
timization problem can be found by solving problem (27). However, with this approach,
some of the solutions may be weakly Pareto optimal solutions. For solving this negative as-
pect, the Tchebycheff method can be stated formulating the distance minimization problem
as alexicographic weighted Tchbycheffapproach, as follows:

Minimize max
i=1,...,k

[wi(fi(x)− z∗i )],

k
∑

i=1

(fi(x)− z∗i )

subject to x ∈ X ,

(28)
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The following theorems are consequences of the connection between the lexicographic
weighted Tchebycheff problem and the Pareto optimal solutions.

Theorem 10. The solution of lexicographic weighted Tchebycheff problem (28) is Pareto
optimal.

Theorem 11. Letx ∈ X be Pareto optimal. Then there exists a weighting vector0 < w ∈
Rk such thatx is a unique solution of lexicographic weighted Tchebycheffproblem (28).

At each iteration, the Tchebycheff method provides different subsets of nondominated
solutions. These solutions consist ofP (≈ n) representative points, generated by using
an augmented weighted Tchebycheff problem (for example, the lexicographic weighted
Tchebycheff problem (28)), from which the DM is required to select one as his most pre-
ferred. Below, we describe the complete Tchebycheff method.

Step 0: Calculate the ideal pointz∗ and letz∗∗ = z∗ + ǫ, whereǫ is a vector of arbitrarily

small positive values. LetW 1 = {w ∈ Rk : wi ∈ [0, 1],
k
∑

i=1

wi = 1} be the initial

set of weighting vectors. Seth = 1.

Step 1: Generate a large number (50n) of weighting vectors fromW h.

Step 2: Find the optimal solutions of problem (28). Filter the2P resulting nondominated
points to obtainP solutions.

Step 3: Show theP compromise solutions to the DM and ask him to select the one hemost
prefers. Letzh be the selected point.

Step 4: i. If h = t thenStopwith zh as the preferred solution (wheret is a prespecified
number of iterations); else

ii. Let wh be the weighting vector which generatedzh in step 2. Its components
are given by:

wh
i =

1

z∗∗i − zh
i





k
∑

j=1

1

z∗∗j − zh
j



 (i = 1, . . . , k)

Determine the reduced set of weighting vectors:

W h+1 = {w ∈ Rk : wi ∈ [li, ui],

k
∑

i=1

wi = 1}

where

[li, ui] =











[0, rh] if wh
i ≤ rh/2,

[1− rh, 1] if wh
i ≥ 1− rh/2,

[wh
i − rh/2, wh

i + rh/2] otherwise,

andrh is a prespecified “convergence factor”r raised to thehth power.
Seth = h + 1 and go toStep 1.
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3.3.3. Reference Point Methods

The proposed preference relation is based on the reference point method proposed by
Wierzbicki [20, 21], and thus, this section presents a summary of this method.

The reference point approach is an interactive multiobjective optimization technique
based on the definition of a scalarization achievement function. The basic idea of this
technique is the following. First, the DM is asked to give a reference point. This point
represents the aspiration levels for each objective. Then,the solutions that better satisfy
the aspiration levels are computed using an achievement scalarization function, which is a
type of utility function based on a reference point. If the DMis satisfied with the current
solution, the interactive process ends. Otherwise, the DM must provide another reference
point.

Definition 8 (Achievement scalarizing function). An achievement scalarizing function is a
parameterized functions

z
ref(z) : Rk → R, wherezref ∈ Rk is a reference point representing

the decision maker’s aspiration levels. Thus, the multiobjective problem is transformed into
the following scalar problem:

Minimize s
z

ref(z)

subject to z ∈ Z.
(29)

Most of the achievement scalarization functions are based on the Tchebycheff metric
(L∞ metric). Based on the Tchebycheff distance we can define an appropriate achievement
scalarizing function.

Definition 9 (Augmented Tchebycheff scalarizing function). The augmented weighted
Tchebycheff scalarizing function is defined by

s∞(z, zref) = max
i=1,...,k

{λi(zi − zref
i )}+ ρ

k
∑

i=1

λi(zi − zref
i ), (30)

wherezref is a reference point,ρ > 0 is an augmentation coefficient sufficiently small,
and λ = [λ1, . . . , λk] is a vector of weights such that∀i λi ≥ 0 and, for at least onei,
λi > 0.

The (weighted) Tchebycheff scalarizing function poses some convenient properties over
other scalarizing functions. As proved in [7] and [13], by using the augmented version of
this function we can find any Pareto optimal solution.

In most of the reference points methods the exploration of the objective space is made
by moving the reference point at each iteration. In contrast, the weights are kept unaltered
during the interactive optimization process. That is, weights do not define preferences, but
they are mainly used for normalizing each objective function. Usually, the weights are set
for all i = 1, . . . , k as

λi =
1

znad
i − z⋆

i

It is important to mention that the DM can provide both feasible and infeasible reference
points. On the one hand, if the reference point is infeasible, then the minimum of (30) is
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the closest feasible point to the aspiration levels. On the other hand, ifzref is feasible, the
solution generated by (30) improves the aspiration levels.

3.3.4. Light Beam Search

The Light Beam Search (LBS) method proposed by Jaszkiewicz and Slowinski [22], is
an iterative method which combines the reference point ideaand tools of Multi-Attribute
Decision Analysis (MADA). At each iteration, a finite sampleof nondominated points is
generated. The sample is composed of a current point calledmiddle point, which is obtained
in previous iteration, andJ nondominated points from its neighborhood. A local preference
model in the form of anoutranking relationS is used to define the neighborhood of the
middle point. It is said thata outranksb (aSb), if a is considered to be at least as good asb.
The outranking relations is defined by DM, which specify three preference thresholds for
each objective. They areindifference threshold, preference thresholdandveto threshold.
The DM has the possibility to scan the inner area of the neighborhood along the objective
function trajectories between any two characteristic neighbors or between a characteristic
neighbor and the middle point. Below, the general scheme of the LBS procedure is shown.

Step 0: Ask the DM to specify the starting aspiration and reservation points.

Step 1: Compute the starting middle point.

Step 2: Ask the DM to specify the local preferential information to be used to build an
outranking relation.

Step 3: Present the middle point to the DM.

Step 4: Calculate the charateristic neighbors of the middle point and present them to the
DM.

Step 5: If DM is satisfied thenStop, else

i. ask the DM to choose one of the neighboring points to be the new middle point,
or

ii. update the preferential information, or

iii. define a new aspiration point and/or a reservation point.

Go toStep 4.

4. Evolutionary Algorithms

Currently, there is a large variety of traditional mathematical programming methods (see for
example [7, 5]) to solve MOPs. However, some researchers [23, 24, 25, 26] have identified
several limitations of traditional mathematical programming approaches to solve MOPs.
Some of them are the following:

1. We need to run many times those algorithms to find several elements of the Pareto
optimal set.
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2. Many of them require domain knowledge about the problem tobe solved.

3. Some of those algorithms are sensitive to the shape or continuity of the Pareto front.

These complexities call for alternative approaches to dealwith certain types of MOPs.
Among these alternative approaches, we can find Evolutionary Algorithms (EAs), which
are stochastic search and optimization methods that simulate the natural evolution process.
At the end of 1960s, Rosenberg [27] proposed the use of genetic algorithms to solve MOPs.
However, it was until 1984, when David Schaffer [28] introduced the first actual implemen-
tation of what it is now called a Multi-Objective Evolutionary Algorithm (MOEA). From
that moment on, many researchers [29, 30, 31, 32, 33, 34] haveproposed a wide variety of
MOEAs.

As other stochastic search strategies (e.g., simulated annealing, ant colony optimization,
or particle swarm optimization), MOEAs do not guarantee to find the true Pareto optimal set
but, instead, aim to generate a good approximation of such set in a reasonable computational
time. On the other hand, MOEAs are particularly well-suitedto solve MOPs because they
operate over a set of potential solutions (i.e., the population). This feature allows them to
generate several elements of the Pareto optimal set (or a good approximation of them) in
a single run. Furthermore, MOEAs are less susceptible to theshape or continuity of the
Pareto front than traditional mathematical programming techniques, require little domain
information and are relatively easy to implement and use.

Single objective EAs and MOEAs share a similar structure. The major difference is
the fitness assignment mechanism since a MOEA deals with fitness vectors of dimensionk
(k ≥ 2). As pointed out by different authors [31, 4], finding an approximation to the Pareto
front is by itself a bi-objective problem whose objectives are:

• minimize the distance of the generated vectors to the true Pareto front, and

• maximize the diversity of the achieved Pareto front approximation.

Therefore, the fitness assignment scheme must consider these two objectives. Algo-
rithm 2 describes the basic structure of a MOEA.

Algorithm 2 Pseudocode of a MOEA.
1: t← 0
2: Generate an initial populationP (t)
3: while the stopping criterion is not fulfilleddo
4: Evaluate the objective vectorf for each individual inP (t)
5: Assign a fitness for each individual inP (t)
6: Select fromP (t) a group of parentsP ′(t) preferring the fitter ones
7: Recombine individuals ofP ′(t) to obtain a child populationP ′′(t)
8: Mutate individuals inP ′′(t)
9: CombineP (t) andP ′′(t) and select the best individuals to getP (t + 1)

10: t← t + 1
11: end while
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Usually, the initial population is generated in a random manner. However, if we have
some knowledge about the characteristics of a good solution, it is wise to use this informa-
tion to create the initial population. The fitness assignment scheme requires a ranking of
the individuals according to a preference relation and then, assigning a scalar fitness value
to each individual using such rank. The selection for reproduction (line 6) is carried out as
in the single objective case, for instance, using tournament selection. In contrast, the selec-
tion for survival (line 9), intended to maintain the best solutions so far (i.e., elitism), uses
a preference relation to remove some solutions and maintainthe population size constant.
To ensure diversity of the approximation set, the selectionmechanism is also based on a
density estimator of the objective function space.

4.1. MOGA

Carlos M. Fonseca and Peter J. Fleming [33] proposed the Multi-Objective Genetic Algo-
rithm (MOGA), which was one of the first in using Pareto dominance to rank individuals.
In MOGA, the rank of a certain individual corresponds to the number of individuals in the
current population by which it is dominated. That is, the rank of invidual xi at generation
t is given by rank(xi, t) = 1 + pi, wherepi is the number of individuals that dominatexi

in the current generation. Note that all nondominated individuals in the population receive
rank 1, while dominated ones are penalized according to the population density of the cor-
responding region of the trade-off surface.N refers to the population size,g is the specific
generation,fj(x

k) is thej-th objective function,xk is thek-th individual,P the population.
Fitness assignment is performed in the following way:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank
n ≤ N ) in the way proposed by David E. Goldberg [35] according to some function,
usually linear, but not necessarily.

3. Average the fitnesses of individuals with the same rank, sothat all of them will be
sampled at the same rate. This procedure keeps the global population fitness constant
while maintaining appropriate selective pressure, as defined by the function used.

As Goldberg and Deb [36] indicate, this type of blocked fitness assignment is likely to
produce a large selection pressure that might produce premature convergence. In order to
avoid this, MOGA adopts a fitness sharing scheme [37] that “penalizes” solutions lying too
close from others in some space (e.g., objective function space).

4.2. NSGA and NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA) was proposed by Srinivas and
Deb [30] and is another variation of Goldberg’s approach [35]. The NSGA is based on
several layers of classifications of the individuals. Before selection is performed, the pop-
ulation is ranked on the basis of nondomination: all nondominated individual are classified
into one category (with a dummy fitness value, which is proportional to the population size,
to provide an equal reproductive potential for these individuals). To maintain the diveristy
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of the population, these classified individuals are shared with their dummy fitness values.
Then this group of classified individuals is ignored and another layer of nondominated in-
dividuals is considered. The process continues until all individuals in the population are
classified. Stochastic remainder proportionate selectionis adopted for this technique. Since
individuals in the first front have the maximum fitness value,they always get more copies
than the rest of the population. This allows for a better search of the different nondomi-
nated regions and results in convergence of the population toward such regions. Sharing,
by its part, helps to distribute the population over this region (i.e. the Pareto front of the
problem). As a result, one might think that this MOEA converges rather quickly; however,
a computational bottleneck occurs with the fitness sharing mechanism.

An improved version of the NSGA algorithm, called NSGA-II was proposed by Deb
et al. [38, 39]. As shown in Figure 7, the NSGA-II builds a population of competing in-
dividuals, ranks and sorts each individual according to itsnondomination level, it applies
Evolutionary Operators (EVOPs) to create a new offspring pool, and then combines the
parents and offspring before partitioning the new combinedpool into fronts. The NSGA-II
then computes a crowding distance for each member and it usesthis value in the selecion
process in order to spread the solutions along the Pareto front. This is the most popular
MOEA used today, and it is frequently adopted to compare the performance of newly intro-
duced MOEAs.

Figure 7. Flow diagram that shows the way in which he NSGA-II works. Pt is the parents
population andQt is the offspring population at generationt. F1 are the best solutions from
the combined populations (parents and offspring).F2 are the second best solutions and so
on.

4.3. SPEA and SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Eckart Zitzler and
Lothar Thiele [31]. This approach integrates some successful mechanisms from other
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MOEAs, namely, a secondary population (external archive) and the use of Pareto dom-
inance ranking. SPEA uses an external archive containing nondominated solutions pre-
viously found. At each generation, nondominated individuals are copied to the external
nondominated set.

In SPEA, the fitness of each individual in the primary population is computed using
the individuals of the external archive. First, for each individual in this external set, a
strength value is computed. The strength,si, of individual i is determined bysi = n

N+1
,

wheren is the number of solutions dominated byi, andN is the size of the archive. This
strength is similar to the ranking value of MOGA, since it is proportional to the number
of solutions to which a certain individual dominates. Finally, the fitness of each individual
in the primary population is equal to the sum of the strengthsof all the external members
that dominate it. This fitness assignment considers both closeness to the true Pareto front
and even distribution of solutions at the same time. Thus, instead of using niches based
on distance, Pareto dominance is used to ensure that the solutions are properly distributed
along the Pareto front.

Since the size of the archive may grow too large, the authors employed a technique that
prunes the contents of the external nondominated set so thatits size remains below a certain
threshold.

There is also a revised version of SPEA (called SPEA2) [40]. SPEA2 has three main
differences with respect to its predecessor: (1) it incorporates a fine-grained fitness assign-
ment strategy which takes into account for each individual the number of individuals that
dominate it and the number of individuals to which it dominates; (2) it uses a nearest neigh-
bor density estimation technique which guides the search more efficiently, and (3) it has an
enhanced archive truncation method that guarantees the preservation of boundary solutions.

4.4. PAES

The Pareto Archived Evolution Strategy (PAES) was designedand implemented by Joshua
D. Knowles and David W. Corne [41]. PAES consists of a (1 + 1) evolution strategy (i.e.,
a single parent that generates a single offspring) in combination with a historical archive
that records some of the nondominated solutions previouslyfound. This archive is used as
a reference set against which each mutated individual is being compared. PAES also uses
a novel approach to keep diversity, which consists of a crowding procedure that divides
objective space in a recursive manner. Each solution is placed in a certain grid location
based on the values of its objectives (which are used as its “coordinates” or “geographical
location”). A map of such grid is maintained, indicating thenumber of solutions that reside
in each grid location. Since the procedure is adaptive, no extra parameters are required
(except for the number of divisions of the objective space).Furthermore, the procedure has
a lower computational complexity than traditional nichingmethods [41]. The adaptive grid
of PAES and some other issues related to external archives (also called “elite” archives)
have been studied both from an empirical and from a theoretical perspective (see for ex-
ample [42]). Other implementations of PAES were also proposed, namely (1 + λ)-ES and
(µ + λ)-ES. However, these were found not to improve overall performance.
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4.5. PESA

The Pareto Envelope-based Selection Algorithm (PESA) is suggested by Corne et al. [43].
PESA consists of a small internal population and a larger external population. A hyper-
grid division of phenotype space is used to maintain selection diversity (using a crowding
measure) as the MOEA runs. Furthermore, this crowding measure is used to allow solutions
to be retained in an external archive similar to the one adopted by PAES [41]. A revised
version of this MOEA is called PESA-II [44]. The difference between the PESA-I and II is
that in the second, selection is region-based and the subject of selection is now a hyperbox,
not just an individual (i.e., it first selects a hyperbox, andthen it selects an individual within
that hyperbox). The motivation behind this approach is to reduce the computational cost
associated with Pareto ranking [44].

4.6. New Trends in MOEAs

Today, one of the trends regarding the design of MOEAs is the adoption of performance
measures to select individuals (see for example [45]). Also, there is growing interest in
dealing with problems having a large number of objectives (see for example [46]) and to
deal with expensive objective functions (see for example [47]).

4.7. Incorporation of Preferences in MOEAs

Among the earliest attempts to incorporate preference in a MOEA, we can find Fonseca
and Fleming’s proposal [33]. This proposal consisted of extending the ranking mechanism
of MOGA to accommodate goal information as an additional criterion. They used the goal
attainment method, so that the DM could supply new goals at each generation of the MOEA,
reducing in consequence the size of the solution set under inspection and learning.

Deb [48] proposed a technique to transform goal programmingproblems into multiob-
jective optimization problems which are then solved using aMOEA. In goal programming
the DM has to assign targets or goals that wishes to achieve for each objective, and these
values are incorporated into the problem as additional constraints. The objective function
then attempts to minimize the absolute deviations from the targets to the objectives.

Yun et al. [49] proposed the use of Generalized Data Envelopment Analysis
(GDEA) [50] with aspiration levels for choosing desirable solutions from the Pareto op-
timal set. This is an interactive approach in which a nonlinear aggregating function is
optimized by a genetic algorithm in order to generate the Pareto optimal solutions of the
multiobjective optimization problem. The decision maker must define aspiration levels for
each objective, as well as the ideal values for each of them. Then, the aspiration levels
are adopted as constraints during the optimization, so thatthe Pareto optimal solutions are
filtered out and those closest to the aspiration levels are assigned the higher fitness values.

Branke et al. [51] proposed an approach called Guided MOEA also exploiting the con-
cept of utility function. The idea is to express the DM’s preferences in terms of maximal
and minimal linear weighting functions, corresponding directly to slopes of a linear util-
ity function. The authors determine the optimal solution from a population using both of
the previously mentioned weighting functions. Those individuals are given rank one and
are considered the borderline solutions (since they represent extreme cases of the DM’s
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preferences). Then all the nondominated vectors are evaluated in terms of these two linear
weighting functions. After that, all solutions that have a better fitness than either of the two
borderline individuals are assigned the same rank (these are the individuals preferred by the
DM). These solutions are removed from the population and a similar ranking scheme is ap-
plied to the remaining individuals. The authors used a biased version of fitness sharing, in
which the maximum and minimum niche counts are incorporatedinto a formula assigning
each individual a fitness at least as good as that of any other individual with inferior rank.

More recently, Deb and Sundar [52] incorporated a referencepoint approach into the
NSGA-II [38]. They introduced a modification in the crowdingdistance operator in order
to select from the last front the solutions that would take part of the new population. They
used the Euclidean distance to sort and rank the population accordingly (the solution closest
to the reference point receives the best rank). The proposedmethod was designed to take
into account a set of reference points. The drawback of this scheme is that it does not
guarantee weakly Pareto optimality, particularly in MOPs with disconnected Pareto fronts.
A similar approach was also proposed by Deb and Kumar [53], inwhich the light beam
search procedure was incorporated into the NSGA-II. Similar to the previous approach, they
modified the crowding operator to incorporate DM’s preferences. They used a weighted
Tchebycheff achievement function to assign the crowding distance to each solution in each
front. Thus, the solution with the least distance will have the best crowding rank. Like
in the previous approach, this algorithm finds a subset of solutions around the optimum
of the achievement function using the usual outranking relation. However, from the three
parameters that specify the outranking relation, they onlyused the veto threshold.

4.8. New Trends in the Incorporation of Preferences in MOEAs

One interesting trend in this area is the integration of mechanisms to define preferences
from the user into the selection process in a more natural wayby allowing, for example, the
use of set preference relations of any kind [54].

5. Conclusion

This chapter has presented several techniques to solve multiobjective optimization problems
using both mathematical programming and evolutionary computation approaches.

The choice of the most appropriate approach to be used depends on the nature of the
problem to be solved and on the available resources. Since mathematical programming
techniques normally emphasize the use of interactive techniques, they are suitable for prob-
lems in which the decision maker has considerable knowledgeof the problem in order to
express his/her preferences accurately. In turn, evolutionary algorithms are not only useful
to approximate the Pareto front, but also to gain knowledge about the problem, i.e., to under-
stand the structure of the possible set of solutions, the degree of conflict and the trade-offs
among the objectives. In other words, MOEAs are a good choicewhen little information is
available about a certain MOP.

Another important topic that complements the solution of a MOP is the incorporation of
user’s preferences and, as such, this topic is briefly discussed in this chapter, in the context
of their use combined with MOEAs.
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The main aim of this chapter has been to provide a general overview of the multiobjec-
tive optimization field and to serve as a departing point for those interested in working in
this research area.
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lutionary Algorithms in Engineering and Computer Science,chap. 8, 135–161. John
Wiley & Sons, Ltd, Chichester, Reino Unido, 1999.

[25] Fogel, L. J. Artificial Intelligence through SimulatedEvolution. Forty Years of Evo-
lutionary Programming. John Wiley & Sons, Inc., Nueva York,1999.

[26] Michalewicz, Z.; Fogel, D. B. How to Solve It: Modern Heuristics. Springer, Berlin,
2000.
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