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1. Introduction

A wide variety of problems in engineering, industry, and saiher fields, involve the
simultaneous optimization of several objectives. In maases, the objectives are defined
in incomparable units, and they present some degree of coafiiong them (i.e., one
objective cannot be improved without deterioration of asteanother objective). These
problems are calletlultiobjective Optimization Problem@OPs). Let us consider, for
example, a shipping company which is interested in miningzihe total duration of its
routes to improve customer service. On the other hand, tm@any also wants to minimize
the number of trucks used in order to reduce operating cG#srly, these objectives are in
conflict since adding more trucks reduces the duration ofdbees, but increases operation
costs. In addition, the objectives of this problem are esgped in different measurement
units.

In single-objective optimization, it is possible to det@mmbetween any given pair of
solutions if one is better than the other. As a result, we liysobtain a single optimal
solution. However, in multiobjective optimization thereed not exist a straightforward
method to determine if a solution is better than other. Théhotemost commonly adopted
in multiobjective optimization to compare solutions is tiree calledPareto dominance re-
lation [1] which, instead of a single optimal solution, leads to afealternatives with
different trade-offs among the objectives. These solstiare calledPareto optimal solu-
tionsor non-dominated solutions

Although there are multiple Pareto optimal solutions, iagpice, only one solution has
to be selected for implementation. For instance, in the @kamf the shipping company
presented above, only one route from several alternatieeergted will be selected to de-
liver the packages for a given day. Therefore, in the mukictive optimization process we
can distinghish two tasks, namely: i) find a set of Paretonogitisolutions, and ii) choose
the most preferred solution out of this set. Since Paretongptsolutions are mathemati-
cally equivalent, the latter task requires a Decision M&kéW) who can provide subjective
preference information to choose the best solution in aéquéar instance of the multiob-
jective optimization problem.

We can distinguish two main approaches to solve multiobjeabptimization prob-
lems. The first is called the Multi-Criteria Decision MakiigCDM) approach which can
be characterized by the use of mathematical programmirmigees and a decision mak-
ing method in an intertwined manner. In most of the MCDM'’s Inoets the decision maker
plays a major role in providing information to build a prefece model which is exploited
by the mathematical programming method to find solutions lie&ter fit the DM's pref-
erences [2]. Evolutionary Multiobjective OptimizationNIB) is another approach useful
to solve multiobjective optimization problems. Since eNminary algorithms use a popu-
lation based approach, they usually find an approximatichefvhole Pareto front in one
run. Although in the EMO community the decision making taak hot received too much
attention in the past, in recent years a considerable nuwibeorks have addressed the
incorporation of preference in Multi-Objective Evolutemy Algorithms (MOEAS).

In the following, we present some general concepts andiongatised in the remainder
of this chapter.
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Definition 1 (Multiobjective Optimization Problem)Formally, a Multiobjective Optimiza-
tion Problem (MOP) is defined as:

“Minimize”  f(x) = [f1(x), fo(x), ..., fa(x)]" o
subjectto x € X.

The vectorx € R is formed byn decision variablesepresenting the quantities for
which values are to be chosen in the optimization probleme féhasible sett C R is
implicitly determined by a set of equality and inequalitynstraints. The vector function
f : R® — R* is composed by: scalarobjective functiong; : R* - R (i = 1,...,k;k >
2). In multiobjective optimization, the sel&* andR” are known aslecision variable space
andobjective function spaceespectively. The image of under the functiorf is a subset
of the objective function space denoted By= f(X') and referred to as thfeasible set in
the objective function space

Decision variable space Objective function space
A fa !
X CR” Z CRF
2 f:R” - RF
T fi
71 B} fa

Figure 1. Search spaces in multiobjective optimizatiorbjfgnms.

2. Notions of Optimality in MOPs

In order to define precisely the multiobjective optimizatjgroblem stated in definition (1)
we have to establish the meaning of minimizationRif. That is to say, it is required
to define how vector§(x) € R* have to be compared for different solutiorsc R™.
In single-objective optimization is used the relation Sd¢kan or equal’ ) to compare
the values of the scalar objective functions. By using thlation there may be different
optimal solutionsx € X, but only one optimal valug,,;, = min{ f;(x)|x € X'}, for each
function f;, since the relatior< induces a total order iR (i.e., every pair of solutions is
comparable, and thus, we can sort solutions from the bebetabrst one). In contrast, in
multiobjective optimization problems, there is no canaharder onR*, and thus, we need
weaker definitions of order to compare vector®in
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In multiobjective optimization, it is usually adopted tRareto dominance relatioarig-
inally proposed by Francis Ysidro Edgeworth in 1881 [3], baheralized by the french-
italian economist Vilfredo Pareto in 1896 [1].

Definition 2 (Pareto Dominance relatianyVe say that a vecta' Pareto-dominates vector
z2, denoted by <p.ret0 22, if and only if:

Vie{1,... k}: 2! <2? 2
and
Jie{l,... k}:z < 2P (3)
A
z! 22
,,,,,,,,,,,,, “
3
,,,,,,,,,,,,, @ - e
f1

Figure 2. lllustration of the concept of Pareto dominandatian.

Figure 2 illustrates the Pareto dominance relation with gangle with four 2-
dimensional vectors. Vectaz? is strictly less thanz? in both objectives, therefore
23 <pareto Z-. Vectorz? also Pareto-dominates since with respect tg; those vectors are
equal, but inf,, z? is strictly less tham!. Since<pareto IS NOt a total order some elements
can be incomparable like is the case withandz?, i.e.,z! Aparcto z* andz? Apareto 21
Similarlyv Z3 "<pareto Z4’ Zl '<pareto Z21 andz4 "<pareto ZQ-

Thus, to solve a MOP we have to find those solutigns X whose images; = f(x),
are not Pareto-dominated by any other vector in the feasjidee. In the example shown
in Figure 2, no vector dominates, and, therefore, we say that is nondominated

Definition 3 (Pareto Optimality) A solutionx* € X" is Pareto optimal if there does not
exist another solutiox € X" such thatf (x) <pareto f(x*).

Definition 4 (Weak Pareto Optimality)A solutionx* € X is weakly Pareto optimal if there
does not exist another solutione X such thaff(x) < f(x*) forall i =1,... k.

Iwithout loss of generality, we will assume only minimizatiproblems.
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The set of Pareto optimal solutions and its image in objectpace is defined in the
following.

Definition 5 (Pareto optimal set)The Pareto optimal seR?*, is defined as:
Pr={xecX|ByeX: f(y) 2f(x)} (4)

Definition 6 (Pareto front) For a Pareto optimal seP*, the Pareto frontPF*, is defined
as:

FP* ={f(x) = (i(x),.., fu(x)) [ x € P"}. ()

Figure 3 illustrates the concept of Pareto optimal set asdniage in the objective
space, the Pareto front. Darker points denote Pareto dptectors. In variable space,
these vectors are referred to as Pareto optimal decisicorgeevhile in objective space,
are called Pareto optimal objective vectors. As we can séeifigure, the Pareto front is
only composed by nondominated vectors.

A [o Pareto optimal seﬂ A [o Pareto front ]
T2 f2
z C Rk:
X CR"”
f:R" — RF
—_ T
Pareto front
X1 g fl
Decision variable space Objective function space

Figure 3. lllustration of the Pareto optimal set and its imabe Pareto front.

On some optimization techniques is useful to know the lower @pper bounds of the
Pareto front. The ideal point represents the lower boundssatlefined by = min.cz z;
foralli =1,...,k. Inturn, the upper bounds are defined by the nadir point, lwisigiven
by z?ad: max,cz z; foralli =1,... k.

As we mentioned before, Pareto dominance is the most commedargnce relation
used in multiobjective optimization. However, it is onlyenf the possible preference
relations available. The interested reader is referredit¢CGhap. 6) and [5] (Chap. 5),
where other preference relations are presented.

As indicated by some authors (see e.g., [5] and [6]), in ggnarMOP can be defined
completely by(X', R¥, £, R), whereX is the feasible seR” is the objective function space,
f is the objective function vector, arid is the preference relation, which induces an ordered
set onRF.
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3. Mathematical Programming Techniques

The mathematical programming techniques are classifiegtdggy how and when to in-
corporate preferences from the DM into the search procesgerAimportant issue is the
moment at which the DM is required to provide preferencermiation. There are three
ways of doing this [4, 7]:

1. Prior to the search (a priori approaches).
2. During the search (interactive approaches).
3. After the search (a posteriori approaches).

In this section we present some of the most popular MCDMkriggues accordign to
the above classification.

3.1. A Priori Preference Articulation
3.1.1. Goal Programming

Charnes and Cooper [8] are credited with the devolopmeihisogoal programming method
for a linear model, and played a key role in applying it to igial problems. In this

method, the DM has to assign targets or goals that wishe<toese for each objective.
These values are incorporated into the problem as additmrestraints. The objective
function then tries to minimize the absolute deviationgrirthe targets to the objectives.
The simplest form of this method may be formulated as foltows

k
minimize | fi(x) — T3]
; (6)

subjectto x € X,

whereT; denotes the target or goal set by the decision maker foittthebjective function
fi(x), andX represents the feasible region. The criterion, then is t@wmze the sum of
the absolute values of the differences between targetvaloe actually achieved values. A
more general formulation of the goal programming objectivection is a weighted sum of
the pth power of the deviatiofif;(x) — T;|. Such a formulation has been callgeneralized
goal programmind9].

In equation 6, the objective function is nonlinear and thepdéx method can be applied
only after transforming this equation into a linear formyghreducing goal programming to
a special type of linear programming. In this transfornmatioew variables;” ands; are
defined such that:

57 = SR~ T+ [fix ~ 1)) ™
57 = GRG0~ T~ [fix ~ 1)) ®

This means that the absolute value signs can be dropped fastem (6) by introduc-
ing the underachievement and the overachievement vasiaBldding and subtracting the
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equations (7) and (8), the resulting equivalent linear fdaetion may be found:

k
minimize (6} +6;)

=1

subjectto f(x) -6 +6; =Ty, i=1....,k )
65,67 >0, i=1....,k,
xe X,

Since it is not possible to have both under and overachiewtmd the goal simultane-
ously, then at least one of the deviational variables mugebe. In other words:

5567 =0 (10)

Fortunately, this constraint is automatically fulfilled the simplex method beacuse the
objective function drives eithe¥;" or §; or both variables simultaneously to zero forall
Some times it may be desirable to express preference foravwender achievement of a
goal. Thus, it may be more desirable to overachieve a tatgetbility figure than to under-
achieve it. To express preference for deviations, the DMasaign relative weights;” and
w; to positive and negative deviations, respectively, fomeacgetT;. If a minimization
problem is considered, choosing thg to be larger thanw;” would be expressing prefer-
ence for underachievement of a goal. In addition, goal progning provides the flexibility
to deal with cases that have conflicting multiple goals. Esss#y, the goals may be ranked
in order of importance to the problem solver. That is, a j§idactor, p; (i = 1,...,k) is
assigned to the deviational variables associated withdasgThis is calledl&xicographic
ordering. These factorg; are conceptually different from weights, as it is explainked
example, in [7]. The resulting optimization model becomes

k
minimize " pi(w; 6 + w; 5;)
i=1

subjectto f(x) =6 +6; =Ty, i=1....,k (11)
6,67 >0, i=1....,k,
X e X,

Note that this technique yields a nondominated solutiotisefgoal point is chosen in
the feasible domain. The following theorem is presentedpaiaded in [7]:

Theorem 1. The solution of a weighted or a lexicographic goal programgnproblem (9)
is Pareto optimal if either the aspiration levels form a Rareptimal reference point or
all the deviational variables;” for functions to be minimized anij~ for functions to be
maximized have positive values at the optimum.

3.1.2. Goal-Attainment Method

Similar to the goal programming method, in this approachigr@sion maker must provide
a goal vectorz™'. In addition, the decision maker must provide a vector ofghsw =
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[wy,wae, ..., w| relating the relative under- or over-attainment of the ekigoals. In
order to find the best-compromise solutixh the following problem is solved [10, 11]:

Minimize «
subjectto 2/® +a-w; > fi(x); i=1,...,k, (12)
xe X,
where« is a scalar variable unrestricted in sign and the weightsws, . . ., w; are

normalized so that

k

> lwil=1 (13)

i=1

g

Figure 4. lllustration of the goal attainment method witlotebjective functions.

If somew; = 0 (: = 1,...,k), it means that the maximum limit of objectivggx)
is z?f. It can be easily shown [12] that every Pareto optimal sotuttan be generated
by varying the weights, withu; > 0 (i = 1,...,k) even for nonconvex problems. The
mechanism by which this method operates is illustrated guiei 4. The vectoe'™' is
represented by the decision goal of the DM, who also decigeslirection ofw. Given
vectorsw andz™®', the direction of the vecta® 4+ - w can be determined, and the problem
stated by equation (12) is equivalent to finding a feasibiatpan this vector in objective
space which is closest to the origin. It is obvious that thinogl solution of equation (12)
is the first point at whiche™ + o - w intersects the feasible region in the objective space
(denoted byZ in Figure 4). If this point of intersection exist, then it wdiclearly be a
Pareto optimal solution. It should be pointed out that thiénopm value ofa informs the
DM of whether the goals are attainable or not. A negativeevalux implies that the goal of
the decision maker is attainable and an improved solutitireis to be obtained. Otherwise,
if a > 0, then the DM’s goal is unattainable.
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3.1.3. Lexicographic Method

In this method, the objectives are ranked in order of impmetaby the decision maker
(from best to worst). The optimal valug (i = 1,..., k) is then obtained by minimizing
the objective functions sequentially, starting with thesmionportant one and proceeding
according to the order of importance of the objectives. #ddally, the optimal value
found of each objective is added as a constraint for subséegyeimizations. This way,
it is preserved the optimal value of the most important dbjes. Only in the case of
several optimal solutions in the single optimization of therent objective, the rest of
the objectives are considered. Therefore, in the worst, eesdiave to carry ouk single
objective optimizations.

Let the subscripts of the objectives indicate not only thedive function number, but
also the priority of the objective. Thug, (x) and f;(x) denote the most and least important
objective functions, respectively. Then, the first problerformulated as

Minimize fi(x)

: (14)
subjectto x € X.

We have to note that, although only one optimal vafife= min{f;(x)|x € X'} is
generated for this single-objective problem, it might begilole to obtain many different
optimal solutionsx* € X. Nonetheless, regarding the original multiobjective peoh
only one of these solutions is Pareto optimal. For this neasee should consider two
situations after the optimization of each objectifigi = 1, ..., k). If we obtain a unique
optimal solution, then this solution is the optimal solatiof the original multiobjective
problem, and, therefore, we stop the optimization proc@siserwise, we have to optimize
the next objective. In general, we have to solve the singjeatibe optimization problem
(:=2,...,k) given by

Minimize  f;(x)
subjectto x € X, (15)
fx)=ff 1=1,...,i—1

If several optimal solutions were obtained in each optitnraproblem (15) until ob-
jective fi,_1, then the unique optimal solution obtained fgri.e.,x}, is taken as the desired
solution of the original problem.

In[7, 13] itis proved that the optimal solution obtained hg texicographic problem is
Pareto optimal. For this reason, the lexicographic methogdually adopted as an additional
optimization approach in methods that can only guaranteskwptimality by themselves.
For example, in the-constraint method (see Section 3.2.3.), or in methodschasghe
Tchebycheff achievement function (see Sections 3.3.23&58.).

3.2. A Posteriori Preference Articulation

3.2.1. Linear Combination of Weights

In this method, the general idea is to associate each olgeftinction with a weighting
coefficient and minimize the weighted sum of the objectiMesthis way, the multiobjec-
tive problem is transformed into a single objective prohleftnus, the new optimization
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problem is defined as:

k
minimize ) " w; f;(x)
=1

(16)
subjectto x € X.

wherew; > 0 and is strictly positive for at least one objective, such fﬂ‘af:l w; = 1.
The set of nondominated solutions can be generated by pareailg varying the weights
w; in the objective function. This was initially demonstrateygl Gass and Saaty for a two-
objective problem. The following implications are conseqgees of this formulation and
their corresponding proofs can be found in [7]:

Theorem 2. The solution of weighting problem (16) is weakly Paretoropli

Theorem 3. The solution of weighting problem (16) is Pareto optimalhié tweighting
coefficients are positive, thatis; > 0forall i =1,... k.

Theorem 4. The unique solution of the weighting problem (16) is Pargitnoal.

Theorem 5. Let the multiobjecive optimization problem be convexx*lfe X' is Pareto
optimal, then there exists a weighting vector (w; > 0,i = 1,...,k, Zf”:lwi =1)
which is a solution to the weighting problem (16).

3.2.2. Normal Boundary Intersection

Das and Dennis [14] proposed this novel method for gengydsreto optimal solutions
evenly distributed. The main idea in the Normal Boundargrsgction (NBI) method, is
to intersect the feasible objective region with a normahi® ¢onvex combinations of the
columns of thepay-offmatrix. For undestanding this method let’s see the next itiefin

Definition 7. Letz be the respective global minimizers 6fx), i = 1,...,k overz €
X. LetFf = F(z}),i = 1,...,k. Let® be thek x k matrix whosei'" column is
Fr — F* sometimes known as the pay-off matrix. Then the set of poin$ that are
convex combinations df — F*, i.e. {®(3: 8 € R", Zle Bi = 1,; > 0}, is referred to

as the Convex Hull of Individual Minima (CHIM).

The set of the attainable objective vectofs)(x) : x € X'} is denoted byF, thusX is
mapped ontd” by F. The spacé®” which containsF is referred to as thebjective space
The boundary ofF is denoted by)F.

Figure 5 illustrates thé€’ H I M for a two-objective problem. In the example we show
the shadow minimum antopian pointF™* defined byF™* = {f/,..., f}, the area in gray
describes the objective spageand the black line describes the complete boundefyof
F.

NBI is a method designed to find the portion@F which contains the Pareto optimal
points. The main idea behind this approach is that the ie¢tics point between the bound-
ary 0F and the normal pointing towards the origin emanating from@oint in the CHIM
is a point on the portion adF containing the efficient points. This point is guaranteedeo
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a Pareto optimal point if the trade-off surface in the olijecspace is convex. Therefore,
the original multiobjective problem is traslated into tleddwing new problem.

Given a convex weighting, ¢ represents a point in the CHIM. Létdenote the unit
normal to the CHIM simplex towards the origin; théw + ¢n represents the set of points
on that normal. The point of intersection of the normal arellibundary ofF closest to
the origin is the global solution of the following problem:

Maximize,; t
subjectto ®5 + tn = F(x), an
xeX

The vector constrain® s + tn = F(x) ensures that the poistis actually mapped by
F to a point on the normal, while the remaining constraintsuengeasibility ofx in X.
This approach considers that the shadow mininftiims in the origin. Otherwise, the first
set of constraints should &3 + tn = F(x) — F™.

As many scalarization methods, for varioisa number of points on the boundary of
JF are obtained thus, effectively, constructing the Paretfase.

A quasi-normal direction is used instead of a hormal dioegtsuch that it represents
an equally weighted linar combination of columnsdafmultiplied by —1 to ensure that it
points towards the origin. That is,

n=—o0v

wherev is a fixed vector with strictly positive components. Comnypil is chosen to be
n = —®e, wheree is the column vector of all ones.

f

fs

77 g

Figure 5. lllustration of the&> H I M for a two-objective problem.
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3.2.3. e-Constraint Method

Thee-constraint method is one of best known scalarization tieghas to solve multiobjec-
tive problems. In this approach one of the objectives is mime¢d while the others are used
as constraints bound by some allowable levgls

The multiobjective optimization problem is transformetbithe followinge-constraint
problem

Minimize  fi(x)
subjectto fi(x) <e; Vi=1,...,k i#I, (18)
x e X.

Figure 6 illustrates the application of theconstraint method in a bicriterion problem.
In the example we show three different constraint valuegfand their respective optimum
values forfs. It is worth noting that for some values of, the constraint imposed might be
active or inactive. For example, the constraintdprandes is active, whereas that fap is
inactive.

A
f2

(LY Y — c cc oo oo o oo o o o o P

>

€3

N
™
[

fi

Figure 6. Illustration of the-constraint method.

In order to find several Pareto optimal solutions, we neeahkzesproblem (18) using
multiple different values foe;. In this iterative optimization process the user needsae pr
vide the range of the reference objectiyg, In addition, it must be provided the increment
for the constraints imposed ky This increment determines the number of Pareto opti-
mal solutions generated. In Algorithm 3.2.3. it is shown piseudo code of the iterative
e-constraint optimization for the case of two objectives.

In [13] and [7] are presented an proved the following impairtheorems related to the
optimality of the solutions generated by theonstraint problem.

Theorem 6. The optimal solution of the-constraint problem (18) is weakly Pareto optimal.
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Algorithm 1 Pseudocode of an iterative optimization process using-ttamstraint method.
Input:
min gmax ¢ R: | ower and upper bounds for objectiye.
é € R: Increment for constrain.

PFapprox<— 0

€ — finax

while e > fn do
x < e-MINIMIZE (f,e) > Minimize using problem (18)
P Fapprox < P FapproxU {x}
g—e—90

end while

Return the approximation of the Pareto frdhEapprox

Theorem 7. The solutionx* € X is Pareto optimal if and only if; = f;(x*) for all i =
1,...,k,i # [, andx* is an optimal optimal solution of problem (18) for al=1, ..., k.

Theorem 8. If x* is the unique optimal solution of problem (18) for some 1,... k,
thenx* is Pareto optimal.

As pointed out by Ehrgott [13], Theorem 7 only provides a rodtko check Pareto
optimality instead of a method to find Pareto optimal soh#isince the values farmust
be equal to the nondominated vecfdk™).

Therefore, in order to generate Pareto optimal solutiomhg e need to solvé single
objective problems, or less tharif we obtain a unique optimal solution in one of the prob-
lems. One possibility to avoid weakly Pareto optimal solosi is the use of lexicographic
optimization (see Section 3.1.3.) in problem (18). Thaifig; has multiple optimal solu-
tions, then select the best solution with respect to oljegdt an so on.

3.2.4. Method of Weighted Metrics

The idea behind this method is to find the closest feasibletisol to a reference point,
which usually is the ideal point. Some authors, such as DatkEL5] and Zeleny [16], call
this method compromise programming. The most common n3dtrsimeasure the distance
between the reference point and the feasible region are th@sved from thel,-metric,
which is defined by

p 1/p
lyllp = (Z\ym) : (19)
=1

for 1 < p < co. The value ofp indicates the type of metric. Fgr= 1 we obtain the
Manhattan metric, while fop = co we obtain the so-called Tchebycheff metric. From the
L,-metrics is derived the following compromise problem

» 1/p
Minimize <Z |fi(x) — Zi*\p> (20)

i=1
subjectto x € X.
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In order to obtain different (weakly) Pareto optimal saba we must allow weights in
problem (20). The resulting weighted compromise programgnpiroblem is

p 1/p
Minimize wi| fi(x) — 27 P
(Z} |fi(x) \) 21)
subjectto x € X.

Forp = 1, all deviations fromz are taken into account. Ehrgott [5] shows that
the method of linear combination of weights (see Sectionld.2s a special case of the
weighted compromise problem wigh= 1. Forp = oo, i.e, using the Tchebycheff met-
ric, the largest deviation is the only one taken into consitien. The resulting weighted
Tchebycheff problem is defined by

Minimize  max {w;|fi(x) — 27|}
i=1,..k (22)
subjectto x € X.

This problem presents the most interesting theoreticallteand is one of the most
commonly employed. Depending on the properties of the metmployed, we obtain
different results regarding the optimality of the solusagenerated.

In [7] and [13] is shown that the solution of the weighted coompise programming
problem (21) withl < p < oo is Pareto optimal if one the following conditions holds:

1. The optimal solution of (21) is unique.
2. w; >0foralli=1,...,k.

It is important to note, however, that far < p < oo, although problem (21) can
generate Pareto optimal solutions, it does not necesdardyall of them. In constrast,
the weighted Tchebycheff problem is able to generate evargt® optimal solution [7, 5].
Unfortunately, if the solution of the Tchebycheff problesnniot unique, some of the solu-
tions generated are weakly Pareto optimal. In order to ifyete Pareto optimal solutions,
Miettinen [7] suggests two possible approaches: use Igréghic ordering to solve the
Tchebycheff problem, or modify the original problem. In tléer approach, Steuer and
Choo [17] suggest aggregating an augmentation term to igaak problem. Thus, it is
obtained the augmented weighted Tchebycheff problem

k
Minimize irllaxk{wi\fi(x) — 27|} + Pizl | fi(x) — 2] (23)

subjectto x € X,

wherep is a sufficiently small positive scalar. However, it is wortbting that using
this approach it may be possible that some Pareto optimati@at cannot be found. Nev-
ertheless, every properly Pareto optimal solution can h&irdd by this approach. The set
of properly Pareto optimal solutions is a subset of the Bawptimal solutions in which
unbounded tradeoffs are not allowed.
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3.3. Interactive Preference Articulation
3.3.1. Method of Geoffrion-Dyer-Feinberg (GDF)

This interactive method developed by Geoffrion et al. [l8based on the maximization
of a value function (utility function) using a gradient-kdsmethod. The value function is
only implicitly known, but is assumed to be differentiablelaconcave. The gradient-based
method employed is the Frank-Wolfe method [19], howeveindikated by the authors,
other methods could be used in an interactive fashion. ThekFwolfe method assumes
that the feasible sefy’ C R"™, is compact and convex. The direction-finding problem of the
Frank-Wolfe method is the following:

Maximize V,U(f(x")) -y

. (24)
Subjectto y € X,

whereU : R* — R is the value functionx” is the current point, angt is the new
variable of the problem. Using the chain rule it is obtained

K rouU
V. U(f(x")) = ) V. fi(x"). (25)
; <8fi>

Dividing this equation b)g—% we obtain the following reformulation of the Frank-Wolfe
problem

k

Maximize (Z —m?VJ;fi(Xh)) "y
=1

subjectto y € X,

(26)

wherem!? = (0U/0f;)/(0U/of1) foralli = 1,...,k, i # 1 are the marginal rates
of substitution (or indifference tradeoff) at' between objectiveg; and f;. The marginal
rate of substitution is the amount of loss on objeciiythat the decision maker is willing to
tolerate in exchage of one unit of gain in objectje while the value of the other objectives
remain unchanged.

The prodecedure of the GDF method is the following:

Step 0: Provide an initial poink! € X. Seth = 1.

Step 1: The decision maker must provide marginal rates of substitutetweenf; (the
reference objective) and the other objectives at the cupeint x”.

Step 2: Find the optimal solutiony” of problem (26). Set the new search direction
d" =y —x". 1f d* =0, go toStep 5

Step 3: The decision maker must determine the best step-¢izeto compute the new
solutionx”. Then, sexk*! = x" 4+ thd".

Step 4: If x"*1 = x", go toStep § else set, = h + 1 and go toStep 1
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Step 5: Returnx” as the final solution.

The most important steps of this procedure are the steps B.ai@he possibility to
estimate the marginal rates is to compare the solutions

[fl(xh)va(Xh)w e 7fj(xh)7' .. 7fk(xh)]a

and
(A" = A fo(x"), o f &) + A f(xD)],

where A is an small amount added ty in compensation of a decrement fia by
a small amount\;, while the other values remain unaltered. The idea is to fisobthe
quantitiesA; and A; until the two solutions are indifferent to the decision makehus,
m? ~ %. Regarding the selection of the optimal step-size, Gewffat al. proposed a
graphical procedure that presents to the decision makeraesiternative vectors varying
tin the interval[0, 1]. That is, the vectors; = fi(x" +td) fori = 1,.. ., k using different
values oft € [0, 1].

3.3.2. Tchebycheff Method

The Tchebycheff method proposed in [17], is an iterativeho@iwhich was designed to be
user-friendly, thus, complicated information is not remged. This method is based on the
minimization of a function value, assuming that the gloloigal objective vectorufopian
vecto is known. The metric to be used for measuring the distareasutopian objective
vector is the weighted Tchebycheff metric. Thus, the mbj&otive optimization problem
is transformed into a single-objective optimization pesh| defined by

Minimize  max [w;(fi(x) — 2;)]

i=1,....k (27)
subjectto x € X,

wherew € W = {w € R¥|0 < w; < 1,22‘;1 w; = 1} andz* is the utopian objective
vector.

Theorem 9. Letx* € X be Pareto optimal. Then there exists a weighting veoter w <
R* such thatx* is a solution of the weighted Tchebycheff problem (27), eiter reference
point is the utopian objective vectat.

Thus, from the above theorem, every Pareto optimal solutfi@any multiobjective op-
timization problem can be found by solving problem (27). Hwer, with this approach,
some of the solutions may be weakly Pareto optimal solutibos solving this negative as-
pect, the Tchebycheff method can be stated formulatingitardce minimization problem
as alexicographic weighted Tchbychefbproach, as follows:

(fi(x) = z)

k
=1

Minimize  max [w;(fi(x) = 27)],

(28)

(2

subjectto x € X,
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The following theorems are consequences of the connectitwelen the lexicographic
weighted Tchebycheff problem and the Pareto optimal swisti

Theorem 10. The solution of lexicographic weighted Tchebycheff pmob(@8) is Pareto
optimal.

Theorem 11. Letx € X be Pareto optimal. Then there exists a weighting velter w ¢
R* such thatx is a unique solution of lexicographic weighted Tchebyaghefblem (28).

At each iteration, the Tchebycheff method provides diffiéiubsets of nondominated
solutions. These solutions consist Bf~ n) representative points, generated by using
an augmented weighted Tchebycheff problem (for exampke lékicographic weighted
Tchebycheff problem (28)), from which the DM is required &dext one as his most pre-
ferred. Below, we describe the complete Tchebycheff method

Step 0: Calculate the ideal point* and letz** = z* + ¢, wheree is a vector of arbitrarily
k
small positive values. LetV'! = {w € R* : w; € [0,1], 3 w; = 1} be the initial
=1
set of weighting vectors. Sét= 1.

Step 1: Generate a large numbeiog) of weighting vectors fromiv".

Step 2: Find the optimal solutions of problem (28). Filter ta€ resulting nondominated
points to obtainP solutions.

Step 3: Show theP compromise solutions to the DM and ask him to select the omads
prefers. Let:" be the selected point.

Step4: i. If h = t thenStopwith 2" as the preferred solution (wherés a prespecified
number of iterations); else

ii. Let w” be the weighting vector which generatetlin step 2. Its components
are given by:

1 1
h .
w; = —— E pEr— (i=1,...,k)

( o j=1"J Zj

Determine the reduced set of weighting vectors:
k
Wl —f{w e R :w; € [li,ui],Zwi =1}
=1
where
[0, "] if wh <rh/2,
[li,ui] =< [1 =71 if wh >1—rh/2,
[wh — 7" /2wl + 1" /2]  otherwise,

7

andr” is a prespecified “convergence factorfaised to theéith power.
Seth = h + 1 and go toStep 1
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3.3.3. Reference Point Methods

The proposed preference relation is based on the referevioé method proposed by
Wierzbicki [20, 21], and thus, this section presents a surgrogthis method.

The reference point approach is an interactive multiobjeabptimization technique
based on the definition of a scalarization achievement ifmmct The basic idea of this
technique is the following. First, the DM is asked to give #erence point. This point
represents the aspiration levels for each objective. Ttensolutions that better satisfy
the aspiration levels are computed using an achievemelarigedion function, which is a
type of utility function based on a reference point. If the Ddvsatisfied with the current
solution, the interactive process ends. Otherwise, the DMtmprovide another reference
point.

Definition 8 (Achievement scalarizing functionAn achievement scalarizing function is a
parameterized function,.i(z) : R¥ — R, wherez'' ¢ R* is a reference point representing
the decision maker’s aspiration levels. Thus, the muléotiye problem is transformed into
the following scalar problem:

Minimize s, ef(z

subjectto z € Z.

Most of the achievement scalarization functions are baseth® Tchebycheff metric

(Lo metric). Based on the Tchebycheff distance we can define@oaigate achievement
scalarizing function.

Definition 9 (Augmented Tchebycheff scalarizing functiorifhe augmented weighted
Tchebycheff scalarizing function is defined by

k
refy __ (. ref (. ef
Soo(za v/ ) = zirll,ax,k’{)\Z(ZZ Z; )} + pz; )\z(zz Z; )7 (30)
1=
wherez™f is a reference pointy > 0 is an augmentation coefficient sufficiently small,
and A = [\q,..., ] is a vector of weights such th&i \; > 0 and, for at least oné,
A > 0.

The (weighted) Tchebycheff scalarizing function poseseoomvenient properties over
other scalarizing functions. As proved in [7] and [13], byngsthe augmented version of
this function we can find any Pareto optimal solution.

In most of the reference points methods the exploration @bthjective space is made
by moving the reference point at each iteration. In conttast weights are kept unaltered
during the interactive optimization process. That is, w&sglo not define preferences, but
they are mainly used for normalizing each objective functidsually, the weights are set
foralli=1,... kas

1

nad __
Z

A = -
7

Itis important to mention that the DM can provide both felesdnd infeasible reference
points. On the one hand, if the reference point is infeastblen the minimum of (30) is
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the closest feasible point to the aspiration levels. On therchand, ifz"f is feasible, the
solution generated by (30) improves the aspiration levels.

3.3.4. Light Beam Search

The Light Beam Search (LBS) method proposed by JaszkiewidzStowinski [22], is
an iterative method which combines the reference point &ehtools of Multi-Attribute
Decision Analysis (MADA). At each iteration, a finite samgiEnondominated points is
generated. The sample is composed of a current point cailéddle point which is obtained
in previous iteration, and nondominated points from its neighborhood. A local prafeee
model in the form of aroutranking relationS is used to define the neighborhood of the
middle point. It is said thai outranksb (aSb), if a is considered to be at least as good.as
The outranking relations is defined by DM, which specify éhpeeference thresholds for
each objective. They atiadifference threshold, preference threshaldd veto threshold
The DM has the possibility to scan the inner area of the neididind along the objective
function trajectories between any two characteristic nlgigs or between a characteristic
neighbor and the middle point. Below, the general schemieEBS procedure is shown.

Step 0: Ask the DM to specify the starting aspiration and reservagioints.
Step 1. Compute the starting middle point.

Step 2: Ask the DM to specify the local preferential information te bsed to build an
outranking relation.

Step 3: Present the middle point to the DM.

Step 4. Calculate the charateristic neighbors of the middle pamat present them to the
DM.

Step 5: If DM is satisfied therStop, else

i. ask the DM to choose one of the neighboring points to be gdwemiddle point,
or
ii. update the preferential information, or
iii. define a new aspiration point and/or a reservation point

GotoStep 4

4. Evolutionary Algorithms

Currently, there is a large variety of traditional mathecatprogramming methods (see for
example [7, 5]) to solve MOPs. However, some researcher2 25, 26] have identified
several limitations of traditional mathematical prograimgnapproaches to solve MOPs.
Some of them are the following:

1. We need to run many times those algorithms to find sevesatants of the Pareto
optimal set.
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2. Many of them require domain knowledge about the problebetsolved.

3. Some of those algorithms are sensitive to the shape anadgtof the Pareto front.

These complexities call for alternative approaches to dihlcertain types of MOPs.
Among these alternative approaches, we can find EvolutjoAfgorithms (EAs), which
are stochastic search and optimization methods that sientila natural evolution process.
At the end of 1960s, Rosenberg [27] proposed the use of geaigtrithms to solve MOPs.
However, it was until 1984, when David Schaffer [28] introdd the first actual implemen-
tation of what it is now called a Multi-Objective EvolutioryaAlgorithm (MOEA). From
that moment on, many researchers [29, 30, 31, 32, 33, 34]rap®sed a wide variety of
MOEAs.

As other stochastic search strategies (e.g., simulateshting, ant colony optimization,
or particle swarm optimization), MOEAs do not guaranteend the true Pareto optimal set
but, instead, aim to generate a good approximation of suéh ageasonable computational
time. On the other hand, MOEAs are particularly well-suitedolve MOPs because they
operate over a set of potential solutions (i.e., the pojmuiat This feature allows them to
generate several elements of the Pareto optimal set (or & amaroximation of them) in
a single run. Furthermore, MOEASs are less susceptible tahlpe or continuity of the
Pareto front than traditional mathematical programmirdntéques, require little domain
information and are relatively easy to implement and use.

Single objective EAs and MOEAs share a similar structuree Trtajor difference is
the fitness assignment mechanism since a MOEA deals witlssitvextors of dimensioh
(k > 2). As pointed out by different authors [31, 4], finding an apgmation to the Pareto
front is by itself a bi-objective problem whose objectives:a

¢ minimize the distance of the generated vectors to the troetéfont, and
e maximize the diversity of the achieved Pareto front appration.

Therefore, the fitness assignment scheme must consider thesobjectives. Algo-
rithm 2 describes the basic structure of a MOEA.

Algorithm 2 Pseudocode of a MOEA.

1.t«—0

2: Generate an initial populatioR (t)

3: while the stopping criterion is not fulfilledo
Evaluate the objective vectérfor each individual inP(t)
Assign a fitness for each individual ()
Select fromP(t) a group of parent®’(¢) preferring the fitter ones
Recombine individuals of’(¢) to obtain a child populatiod®” ()
Mutate individuals inP” (t)
CombineP(t) and P”(t) and select the best individuals to geft + 1)
10: t—t+1
11: end while

© o N O R
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Usually, the initial population is generated in a random n&an However, if we have
some knowledge about the characteristics of a good so|utiwise to use this informa-
tion to create the initial population. The fitness assignnseheme requires a ranking of
the individuals according to a preference relation and,thegigning a scalar fithess value
to each individual using such rank. The selection for repetidn (line 6) is carried out as
in the single objective case, for instance, using tourndarselection. In contrast, the selec-
tion for survival (line 9), intended to maintain the bestuimins so far (i.e., elitism), uses
a preference relation to remove some solutions and maittiaipopulation size constant.
To ensure diversity of the approximation set, the seleatimthanism is also based on a
density estimator of the objective function space.

41. MOGA

Carlos M. Fonseca and Peter J. Fleming [33] proposed thd-Rbjective Genetic Algo-
rithm (MOGA), which was one of the first in using Pareto dommica to rank individuals.
In MOGA, the rank of a certain individual corresponds to thenter of individuals in the
current population by which it is dominated. That is, thekrahinvidual x* at generation
t is given by rankx’,t) = 1 + p;, wherep; is the number of individuals that dominaté
in the current generation. Note that all nondominated iddizls in the population receive
rank 1, while dominated ones are penalized according todpalation density of the cor-
responding region of the trade-off surfadé.refers to the population sizg,is the specific
generation,fj(x’“) is the j-th objective functionx” is thek-th individual, P the population.
Fitness assignment is performed in the following way:

1. Sort population according to rank.

2. Assign fitness to individuals by interpolating from thetgank 1) to the worst (rank
n < N) in the way proposed by David E. Goldberg [35] according tmedunction,
usually linear, but not necessarily.

3. Average the fitnesses of individuals with the same rankhaball of them will be
sampled at the same rate. This procedure keeps the globabhgiop fithess constant
while maintaining appropriate selective pressure, as eefiry the function used.

As Goldberg and Deb [36] indicate, this type of blocked fithassignment is likely to
produce a large selection pressure that might produce pueeneonvergence. In order to
avoid this, MOGA adopts a fitness sharing scheme [37] thaid|iees” solutions lying too
close from others in some space (e.g., objective functiagesp

4.2. NSGA and NSGA-II

The Nondominated Sorting Genetic Algorithm (NSGA) was jpsgd by Srinivas and
Deb [30] and is another variation of Goldberg’s approacH.[3Bhe NSGA is based on
several layers of classifications of the individuals. Befselection is performed, the pop-
ulation is ranked on the basis of nondomination: all nondatad individual are classified
into one category (with a dummy fitness value, which is propoal to the population size,
to provide an equal reproductive potential for these imtligis). To maintain the diveristy
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of the population, these classified individuals are sharihd their dummy fitness values.
Then this group of classified individuals is ignored and haotayer of nondominated in-
dividuals is considered. The process continues until glividuals in the population are
classified. Stochastic remainder proportionate selediadopted for this technique. Since
individuals in the first front have the maximum fitness valiey always get more copies
than the rest of the population. This allows for a better deaf the different nondomi-
nated regions and results in convergence of the populatiwart such regions. Sharing,
by its part, helps to distribute the population over thisioagi.e. the Pareto front of the
problem). As a result, one might think that this MOEA conesrgather quickly; however,
a computational bottleneck occurs with the fithess shariaghanism.

An improved version of the NSGA algorithm, called NSGA-Il svaroposed by Deb
et al. [38, 39]. As shown in Figure 7, the NSGA-II builds a plapion of competing in-
dividuals, ranks and sorts each individual according tmasdomination level, it applies
Evolutionary Operators (EVOPS) to create a new offspringl,pand then combines the
parents and offspring before partitioning the new combipeal into fronts. The NSGA-II
then computes a crowding distance for each member and ithiseglue in the selecion
process in order to spread the solutions along the Parett fithis is the most popular
MOEA used today, and it is frequently adopted to compare ¢énfopmance of newly intro-
duced MOEAs.

Non-dominated sorting P
t+1

Crowding distance

I,
o T
B

} ) Rejected

Figure 7. Flow diagram that shows the way in which he NSGA4lks. P; is the parents
population andy; is the offspring population at generatiénF; are the best solutions from
the combined populations (parents and offspring).are the second best solutions and so
on.

4.3. SPEA and SPEA2

The Strength Pareto Evolutionary Algorithm (SPEA) wasddtrced by Eckart Zitzler and
Lothar Thiele [31]. This approach integrates some sucaoksséchanisms from other
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MOEASs, namely, a secondary population (external archive) the use of Pareto dom-
inance ranking. SPEA uses an external archive containimglorainated solutions pre-
viously found. At each generation, nondominated indivisduse copied to the external
nondominated set.

In SPEA, the fitness of each individual in the primary popatats computed using
the individuals of the external archive. First, for eachividal in this external set, a
strength value is computed. The strength,of individual i is determined by; = 7,
wheren is the number of solutions dominated hyand NV is the size of the archive. This
strength is similar to the ranking value of MOGA, since it il@portional to the number
of solutions to which a certain individual dominates. Fyahe fitness of each individual
in the primary population is equal to the sum of the strengfhall the external members
that dominate it. This fithess assignment considers bosenkess to the true Pareto front
and even distribution of solutions at the same time. Thustead of using niches based
on distance, Pareto dominance is used to ensure that th@sslare properly distributed
along the Pareto front.

Since the size of the archive may grow too large, the authupayed a technique that
prunes the contents of the external nondominated set sitdlsé#te remains below a certain
threshold.

There is also a revised version of SPEA (called SPEA2) [4BEA2 has three main
differences with respect to its predecessor: (1) it incrafes a fine-grained fitness assign-
ment strategy which takes into account for each individbalrtumber of individuals that
dominate it and the number of individuals to which it dom@gat(2) it uses a nearest neigh-
bor density estimation technique which guides the searate eiticiently, and (3) it has an
enhanced archive truncation method that guarantees therpation of boundary solutions.

4.4. PAES

The Pareto Archived Evolution Strategy (PAES) was desigmetlimplemented by Joshua
D. Knowles and David W. Corne [41]. PAES consists oflaH1) evolution strategy (i.e.,
a single parent that generates a single offspring) in coatioin with a historical archive
that records some of the nondominated solutions previdosiyd. This archive is used as
a reference set against which each mutated individual rgb@mpared. PAES also uses
a novel approach to keep diversity, which consists of a cinogvgirocedure that divides
objective space in a recursive manner. Each solution isgdlat a certain grid location
based on the values of its objectives (which are used asatzdinates” or “geographical
location”). A map of such grid is maintained, indicating thenber of solutions that reside
in each grid location. Since the procedure is adaptive, ritagarameters are required
(except for the number of divisions of the objective spaEe)ythermore, the procedure has
a lower computational complexity than traditional nichimgthods [41]. The adaptive grid
of PAES and some other issues related to external archil&s ¢alled “elite” archives)
have been studied both from an empirical and from a theatgberspective (see for ex-
ample [42]). Other implementations of PAES were also predpsamely { + \)-ES and
(1 + A)-ES. However, these were found not to improve overall perémce.
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45. PESA

The Pareto Envelope-based Selection Algorithm (PESA)dgested by Corne et al. [43].
PESA consists of a small internal population and a largezraat population. A hyper-

grid division of phenotype space is used to maintain seediversity (using a crowding

measure) as the MOEA runs. Furthermore, this crowding measused to allow solutions
to be retained in an external archive similar to the one atbpy PAES [41]. A revised

version of this MOEA is called PESA-II [44]. The differencetlveen the PESA-I and Il is
that in the second, selection is region-based and the dudjjselection is now a hyperbox,
not just an individual (i.e., it first selects a hyperbox, #&meh it selects an individual within
that hyperbox). The motivation behind this approach is tuce the computational cost
associated with Pareto ranking [44].

4.6. New Trends in MOEAS

Today, one of the trends regarding the design of MOEASs is tlopton of performance
measures to select individuals (see for example [45]). Atlsere is growing interest in
dealing with problems having a large number of objective® [®r example [46]) and to
deal with expensive objective functions (see for exampig)[4

4.7. Incorporation of Preferences in MOEAS

Among the earliest attempts to incorporate preference inGEM, we can find Fonseca
and Fleming's proposal [33]. This proposal consisted oérding the ranking mechanism
of MOGA to accommodate goal information as an additiondkedon. They used the goal
attainment method, so that the DM could supply hew goalscit ganeration of the MOEA,
reducing in consequence the size of the solution set undpeation and learning.

Deb [48] proposed a technique to transform goal programminglems into multiob-
jective optimization problems which are then solved usid@EA. In goal programming
the DM has to assign targets or goals that wishes to achieveafth objective, and these
values are incorporated into the problem as additionaltcaings. The objective function
then attempts to minimize the absolute deviations fromdlgets to the objectives.

Yun et al. [49] proposed the use of Generalized Data EnvetmpnAnalysis
(GDEA) [50] with aspiration levels for choosing desirabl@wions from the Pareto op-
timal set. This is an interactive approach in which a norlinaggregating function is
optimized by a genetic algorithm in order to generate thet®avptimal solutions of the
multiobjective optimization problem. The decision makarsindefine aspiration levels for
each objective, as well as the ideal values for each of thelren;Tthe aspiration levels
are adopted as constraints during the optimization, scalieaPareto optimal solutions are
filtered out and those closest to the aspiration levels aigraexdd the higher fithess values.

Branke et al. [51] proposed an approach called Guided MOB@& akploiting the con-
cept of utility function. The idea is to express the DM’s @mefnces in terms of maximal
and minimal linear weighting functions, correspondingedily to slopes of a linear util-
ity function. The authors determine the optimal soluticonira population using both of
the previously mentioned weighting functions. Those iitllials are given rank one and
are considered the borderline solutions (since they reptesxtreme cases of the DM’s
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preferences). Then all the nondominated vectors are dedliaterms of these two linear
weighting functions. After that, all solutions that haveedtbr fitness than either of the two
borderline individuals are assigned the same rank (thestmaindividuals preferred by the
DM). These solutions are removed from the population anchdasi ranking scheme is ap-
plied to the remaining individuals. The authors used a biasesion of fithess sharing, in
which the maximum and minimum niche counts are incorporatixra formula assigning
each individual a fitness at least as good as that of any atbetidual with inferior rank.
More recently, Deb and Sundar [52] incorporated a refergraget approach into the
NSGA-II [38]. They introduced a modification in the crowdidgstance operator in order
to select from the last front the solutions that would take pathe new population. They
used the Euclidean distance to sort and rank the populatimsrdingly (the solution closest
to the reference point receives the best rank). The propwstdod was designed to take
into account a set of reference points. The drawback of tthierme is that it does not
guarantee weakly Pareto optimality, particularly in MORghwlisconnected Pareto fronts.
A similar approach was also proposed by Deb and Kumar [53)vhith the light beam
search procedure was incorporated into the NSGA-II. Sirtoléhe previous approach, they
modified the crowding operator to incorporate DM’s prefees They used a weighted
Tchebycheff achievement function to assign the crowdistadice to each solution in each
front. Thus, the solution with the least distance will halie best crowding rank. Like
in the previous approach, this algorithm finds a subset aftisols around the optimum
of the achievement function using the usual outrankingticela However, from the three
parameters that specify the outranking relation, they asid the veto threshold.

4.8. New Trends in the Incorporation of Preferences in MOEAS

One interesting trend in this area is the integration of raa@ms to define preferences
from the user into the selection process in a more naturalbyatlowing, for example, the
use of set preference relations of any kind [54].

5. Conclusion

This chapter has presented several techniques to solvehjeditive optimization problems
using both mathematical programming and evolutionary agatpn approaches.

The choice of the most appropriate approach to be used dementhe nature of the
problem to be solved and on the available resources. Sintieematical programming
techniques normally emphasize the use of interactive tqubn, they are suitable for prob-
lems in which the decision maker has considerable knowledidiee problem in order to
express his/her preferences accurately. In turn, evolatioalgorithms are not only useful
to approximate the Pareto front, but also to gain knowledigeiethe problem, i.e., to under-
stand the structure of the possible set of solutions, theegegf conflict and the trade-offs
among the objectives. In other words, MOEASs are a good chefan little information is
available about a certain MOP.

Another important topic that complements the solution of@Ms the incorporation of
user’s preferences and, as such, this topic is briefly dészlig this chapter, in the context
of their use combined with MOEAs.
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The main aim of this chapter has been to provide a generavieveof the multiobjec-

tive optimization field and to serve as a departing point fimse interested in working in
this research area.
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