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13.1 Introduction

Multiobjective optimization problems are often NP-hard, complex and CPU
time consuming. Exact methods can be used to find the exact Pareto front
(or a subset of the front), but they are impractical to solve large problems
as they are time and memory consuming. On the other hand, metaheuristics
provide the approximated Pareto fronts in a reasonable time. However, they
also remain time-consuming for solving large problems.

Parallel and distributed computing are used in the design and implemen-
tation of multiobjective optimization algorithms to speedup the search. Also,
they are used to improve the precision of the used mathematical models, the
quality of the obtained Pareto fronts, the robustness of the obtained solutions,
and to solve large scale problems.

In this chapter, we present the main parallel models for metaheuristics
and exact methods from the algorithmic design point of view. We consider
continuous and combinatorial optimization problems as parallel models are
suited either for combinatorial or continuous optimization problems. From
the implementation point of view, we concentrate on the parallelization of
multiobjective optimization algorithms on general-purpose parallel and dis-
tributed architectures as these architectures are the most widespread com-
putation platforms. The rapid evolution of technology in terms of processors
(multi-core), networks (Infiniband), and architectures (GRIDs, clusters) make
the parallelization very popular.

Different architectural criteria which affect the efficiency of the imple-
mentation are shared memory / distributed memory, homogeneous / hetero-
geneous, dedicated / non dedicated, local network / large network. Indeed,
these criteria have a strong impact on the deployment techniques such as
load balancing and fault-tolerance. Depending on the type of the used archi-
tecture, different parallel and distributed programming environments such as
message passing (PVM, MPI), shared memory (multi-threading, OpenMP),
high throughput computing (Condor), and Grid computing (Globus) can be
used.

This chapter is organized as follows. In the next section, we present the
parallel models for designing metaheuristics for MOPs. In Section 3, we review
the parallel models for exact algorithms. Section 4 deals with the implementa-
tion issues for metaheuristics and exact algorithms. Finally, we conclude the
paper and discuss several lines for future research in Section 5.

13.2 Parallel Models for Metaheuristics

Different parallel models for metaheuristics have been proposed in the litera-
ture. They follow three major hierarchical models such as:

• Self-contained parallel cooperation (between different algorithms)
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• Problem independent intra-algorithm parallelization
• Problem dependent intra-algorithm parallelization

where the last two models do not alter the behavior of the algorithms and
therefore are generally used to speedup the search.

13.2.1 Level 1: Self-Contained Parallel Cooperation

Basic Concept

This group of parallel algorithms containing the Island model is used for par-
allel systems with very limited communication. In the island model, every
processor runs an independent MOEA using a separate (sub)population. The
processors might cooperate by regularly exchanging migrants which are good
individuals in their subpopulations. These algorithms are also suitable for
problems with large search spaces where a large population is being required.
The large population is then being divided into several subpopulations.

In every processor, an optimization algorithm with selection and recombi-
nation operators is being carried out on a subpopulation. As written by Coello
et al. (2002), there are several methods (also based on the island model) in
the literature which we can categorize into two main groups. (1) Cooperating
Subpopulations: These methods are based on partitioning the objective/search
space. In this group, the population is divided into subpopulations. The num-
ber of subpopulations and the way the population is divided are the two key
issues. (2) Multi-start Approach: Here, each processor independently runs an
optimization algorithm.

Group 1: Cooperating Subpopulations

These algorithms attempt to distribute the task of finding the entire Pareto-
optimal front among participating processors. By this way, each processor is
destined to find a particular portion of the Pareto-optimal front. In fact, the
population of a MOEA is divided into a number of independent and separate
subpopulations resulting in several small separate MOEAs executing simulta-
neously which have the responsibility to find the (Pareto-)optimal solutions in
their own search region. Each MOEA could have different operators, param-
eter values, as well as a different structure. In this model, some individuals
within some particular subpopulations occasionally migrate to another one.

Generally, when distributing the task among the processors, the overlap
between the solutions of two processors should be as small as possible. Also,
the distribution algorithm must be scalable. Usually, the designer or a com-
putational resource (master node) is responsible for distributing and dividing
the population or the objective/search space.

In the literature, the very first approaches based on the island model do not
directly divide the objective/search space into different regions, but implicitly
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result in the division as studied by Baita et al. (1995); Poloni (1995); Hiroyasu
et al. (2000); Jozefowiez et al. (2002); Deb et al. (2003); Xiao and Armstrong
(2003); de Toro Negro et al. (2004).

Baita et al. (1995) and Poloni (1995) use a local geographic selection
scheme in which individuals are placed on a toroidal grid with one individ-
ual per grid intersection point. Hiroyasu et al. (2000) proposed the Divided
Range Multi-Objective Genetic Algorithm (DRMOGA) in which the global
population is sorted according to one of the objective functions (which is
changed after a number of generations). Then, the population is divided into
equally-sized sub-populations. Each of these sub-populations is allocated to a
different processor in which a serial MOEA is applied. After a certain number
of generations, the sub-populations are gathered and the process is repeated,
but this time using some other objective function as the sorting criterion. The
main goal of this approach is to focus the search effort of the population on
different regions of the objective space. However, in this approach we cannot
guarantee that the sub-populations remain in their assigned region. A similar
approach is followed by de Toro Negro et al. (2004). Deb et al. (2003) use a
modified domination criterion for assigning a specific region of the objective
space to a processor.

Zhu and Leung (2002); Zhu (2002) proposed the Asynchronous Self-
Adjustable Island Genetic Algorithm (aSAIGA) in which, rather than mi-
grating a set of individuals, the islands exchange information related to their
current explored region. Based on the information coming from other islands,
a self-adjusting operation modifies the fitness of the individuals in the is-
land to prevent two islands from exploring the same region. In a similar way
to DRMOGA, this approach cannot guarantee that the sub-populations move
tightly together throughout the search space, hence the information about the
explored region may be meaningless.

Xiao and Armstrong (2003) use a generalized version of VEGA (Vector
Evaluated Genetic Algorithm, Schaffer (1985)) to divide the population into
subpopulations.

López-Jaimes and Coello (2005) proposed an approach called Multiple Res-
olution Multi-Objective Genetic Algorithm (MRMOGA), whose main idea is
to encode the solutions using a different resolution in each island (heteroge-
neous nodes are assumed). Then, the variable decision space is divided into
hierarchical levels with well-defined overlaps. Evidently, migration is only al-
lowed in one direction (from low resolution to high resolution islands). A
conversion scheme is required when migrating individuals, so that the resolu-
tion is properly adjusted. This approach uses an external population (or elitist
archive) and the migration strategy considers such a population as well. The
approach also uses a strategy to detect nominal convergence of the islands in
order to increase their initial resolution. The rationale behind this approach is
that the true Pareto front can be reached faster using this change of resolution
in the islands, because the search space of the low resolution islands is propor-
tionally smaller and, therefore, convergence is faster. This issue was originally
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identified by Parmee and Vekeria (1997) when they used an injection island
strategy to solve a single-objective engineering optimization problem.

In the method proposed by Jozefowiez et al. (2005), each processor has
its own population which is defined in the entire search space. The defined
communication network between the processors is a ring where the processors
send half of their populations to their two neighbors. The computations of a
given processor do not begin until it has received the information from its two
neighbors.

The first approach on dividing the objective space into several regions is
introduced by Branke et al. (2004). This technique called Cone Separation
divides the objective space into subspaces and assigns each subspace to one
processor. They, however, do not divide the search space and therefore each
processor explores the entire search space. The solutions outside the defined
region in the objective space of each processor are considered as infeasible
(although in reality they are feasible). Those infeasible solutions are migrated
to other processors. This algorithm is scalable and there is no overlap between
the solutions obtained by each processor. The so-called hypergraph has been
used by Mehnen et al. (2004) to structure the populations in MOEAs and
then applied it to parallel MOEAs. Streichert et al. (2005) refined the idea of
the Cone Separation technique by using a clustering method for finding the
right partitions in the objective space.

More recently, Bui et al. (2006) study an approach for dividing the search
space. In their approach, they select a random (hyper-)sphere as the search
space for every single processor. Then every processor runs a MOEA inside its
defined region. The spheres are evaluated in terms of their solutions and their
positions are being improved in the search space for the next iteration(s). This
has been done beside other techniques like racing model using Multi-Objective
Particle Swarm Optimization.

All of these methods work on processors which have similar properties
in other words homogeneous systems. Mostaghim et al. (2007) study an ap-
proach which works asynchronously and is thus particularly suitable for het-
erogeneous computer clusters as occurring, e.g., in modern grid computing
platforms.

Group 2: Multi-start Approach

This model introduced by Mezmaz et al. (2006) consists of several parallel
local search algorithms which are independently run on several (also hetero-
geneous) processors. The basic idea of using such a model is that running
several optimization algorithms with different initial seeds is more valuable
than executing only one single run for a very long time. This is of particular
importance for local search algorithms. Jozefowiez et al. (2007) use a parallel
hybrid approach combining the multi-start model and the self contained paral-
lel cooperation model. The Pareto front found by a parallel EA is partitioned
and serves as a guide to multiple tabu search tasks.
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Synchronous versus Asynchronous

Usually in MOEAs a set of non-dominated solution are found as the result of
the optimization. In case of using the cooperating subpopulation model every
single processor will cooperate to obtain one part of the non-dominated set.
In elitist MOEAs like SPEA2 the non-dominated solutions are usually stored
in an archive. In other algorithms like the NSGA-II, there is no archive as the
main population contains the non-dominated solutions. In any of these cases,
the set of non-dominated solutions must be updated as soon as a processor
finishes its optimization task.

Apart from the way the subpopulations are created, we must ensure that
the processors obtain good convergence and diversity of solutions. For this in
some cases each processor can run the optimization several times as shown
in Algorithm 3. Algorithm 3 is basically being used on a set of homogeneous

Algorithm 3 Synchronous cooperating subpopulations
Initiate subpopulations
repeat

Wait for results of all processors
Migration of individuals if any
Update archive if any

until Termination condition met
Return archive

systems. The termination criterion could be a fixed number of runs on each
processor (in many cases one iteration has been selected). In this algorithm
"Initiate Subpopulation" deals with dividing the objective/search space in or-
der to build the subpopulations. "Migration of individuals" refers to methods
in which processors communicate with each other and exchange some of their
individuals as migrants.

In reality, we typically deal with heterogeneous systems where this Algo-
rithm is not suitable. In heterogeneous systems, there are different computing
resources including very fast and very slow processors. According to Algo-
rithm 3, all of the processors have to wait for the slowest one. In order to
deal with these systems, Algorithm 4 is proposed. In this algorithm, whenever
a processor returns its results, they can be immediately integrated into the
archive. Based on the quality of the obtained archive a suitable new subpopu-
lation can be selected for that processor. This makes the approach particularly
suitable for heterogeneous computer clusters such as Grids, where very fast
processors are used along with rather slow ones. It is not necessary to wait
for the slowest processor to return its results. Here the processors can indi-
rectly communicate through the archive. We must notice that migration is
not straightforward as before.
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Algorithm 4 Asynchronous cooperating subpopulations (Heterogeneous sys-
tems)

Initiate an empty archive
Initiate subpopulations
repeat

if A processor returns results then
Update archive
Determine its new subpopulation

end if
until Termination condition met
Return archive

Mostaghim et al. (2007) integrate a hypervolume based method into the opti-
mization routine in every processor. For initializing a subpopulation, a guide is
selected according to its marginal hypervolume. The hypervolume is the area
dominated by all solutions stored in the archive (Chapter 14). The marginal
hypervolume of a solution is the area dominated by the solution that is not
dominated by any other solution. The guide is the solution from the archive
which has not been selected before and which has the largest marginal hy-
pervolume. After selecting the guide, a Multi-Objective Particle Swarm Op-
timization method is used to move its subpopulation toward the guide, hence
searching the area around the guide.

13.2.2 Level 2: Problem Independent Parallel Intra-algorithm

Most of the metaheuristics are iterative methods. In this model, we will par-
allelize a single iteration of the algorithm. Our concern in this model are only
search mechanisms which are problem independent such as the evaluation of
the neighborhood in local search and the reproduction mechanism in evolu-
tionary algorithms.

Basic Concept

During an optimization, we have to evaluate fitness values of candidates of
solution (individuals). If we use benchmark problems/simple applications to
evaluate fitness values, the calculation time is negligible. However, a real ap-
plication sometimes needs huge computational time, e.g., using computational
fluid dynamics (CFD), electro-magnetic field analysis, finite element method
(FEM) etc. See Okabe et al. (2003); Okabe (2004). In this situation, total
calculation time becomes too huge and it is generally impossible to obtain a
certain result in a reasonable calculation time.

Let assume that the number of individuals, the maximum number of gen-
erations, the number of objectives and the calculation time of ith objective
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function are n, g, k and ti, respectively. The total calculation time in evo-
lutionary multiobjective optimization, denote T , can be easily calculated as
follows:

T = gn

k∑

i=1

ti + gα = gnt + gα, (13.1)

where, α is the time that genetic operator needs in one generation and t =∑k
i=1 ti. If n = 100, g = 500, α ≈ 0 and t = 3 (days) which is a certain

real example using CFD solver, the total calculation time is about 411 years!
Nevertheless, the problem should be optimized.

To tackle this problem, a parallel calculation is often used. The basic idea
is shown in Fig. 13.1. This type of parallelization is called master-slave model
or global parallelization, e.g., Branke et al. (2004); Cantu-Paz (1997a); Veld-
huizen et al. (2003). The optimizer running on a master node carries out an
overall calculation including initialization, crossover, mutation and selection
except for evaluation of individuals. In evolutionary computation, several indi-
viduals exist in a population to be evaluated. However, the evaluation of each
individual is completely independent from other evaluations. Therefore, in Fig.
13.1, each evaluation will be done on different slave nodes. The master node
generates a population, e.g. car designs. Then, the master node distributes
individuals to several independent slave nodes. In the slave nodes, the evalua-
tions of individual, e.g. car design, are carried out simultaneously. Thereafter,
the fitness values are gathered by the master node. Based on the fitness values,
the master node selects promising individuals and generates new individuals
by genetic operators. This flow is repeated until a given termination condition
is met. Since several time-consuming evaluations are carried out at the same
time, the total calculation time is dramatically reduced.

Calculation Time

Now, we will consider when we should parallelize a calculation using master-
slave model. Assume that the total calculation time without/with paralleliza-
tion and the number of nodes are T wo, T w and N , respectively. As an ex-
ample, n = N (the number of available nodes is the same as the number of
individuals) is also assumed. Since a master node can be used not only for
managing total calculation but also for fitness evaluation, a master node also
contributes to fitness evaluation. One can easily obtain the following equations
of T wo and T w:

T wo = gnt + gα = gNt + gα, (13.2)

T w = gα + gt + g(N − 1)TDT , (13.3)

where, TDT is the necessary time for data transfer from the master node to
one slave node and from one slave node to the master node in one generation.

Now, the efficiency of parallelization, denoted as η, is calculated as:
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Fig. 13.1. Master-slave model for parallelization.

η =
T wo

NT w
× 100(%). (13.4)

The numerator is the total resources for calculation when the parallelization
is not used. The denominator is the total resources for calculation when paral-
lelization is used. Since one master node and (N −1) slave nodes are occupied
for the time of T w, the total resources are NT w. If η becomes 100%, the
parallelization is very useful. Oppositely, if η becomes 0%, the parallelization
should not be done.

Using Eq. (13.2) and Eq. (13.3), Eq. (13.4) can be calculated as follows:

η =
Nt + α

N(t + α + (N − 1)TDT )
× 100. (13.5)

Eq. (13.5) leads the following results:

• If α << t and TDT << t, η is nearly 100%. This means that if the necessary
calculation time for one fitness evaluation is sufficiently larger than α (for
genetic operators) and TDT (for data transfer), we should parallelize a
calculation.

• If α ≈ 0, one can easily obtain the following relation:

η =
(

1− (N − 1)TDT

(N − 1)TDT + t

)

× 100. (13.6)

This equation means that the smaller the value of t is, the worse is the
efficiency of η.
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Survey

From the beginning of the research for evolutionary algorithms on single ob-
jective optimization, parallelization technique has been paid attention due to
population-based approach of evolutionary algorithms. There are many sur-
veys in the literature, e.g., Schmeck et al. (2001); Bethke (1976); Adamidis
(1994); Cantu-Paz (1997a,b). As a natural extension, parallelization is also
used for evolutionary multiobjective optimization.

Stanley and Mudge (1995) propose the framework of parallel genetic algo-
rithm called Genetic Algorithm running on the INternet (GAIN). The usage
of different architectures for parallel computation is often due to the fact
that homogenous computers are not readily available. This situation leads to
different computational time of fitness evaluations on slave nodes. If the com-
putational time on a certain node is different from others, the efficiency of
parallel computation decreases dramatically due to much idle time of faster
slave nodes. To solve this problem, Stanley and Mudge propose the GAIN.
Based on a given parameter that determines the maximum number of pending
evaluations, the idle time is reduced. If the number of unevaluated individuals
exceeds this number, the generation process sleeps. Otherwise, the generation
process is carried out even if unevaluated individuals exist. The results of the
GAIN show a robust and good performance.

Watanabe et al. (2002) extend an original master-slave model to maintain
a higher diversity of the population. They call this extension as Master-slave
model with local cultivation (MSLC) model. In this model, two randomly se-
lected individuals are sent to a slave node. Using two individuals, most genetic
operators are carried out in a slave node. However, in one generation, all in-
dividuals distributed to slave nodes are gathered and ranked again on the
master node. Since most of calculation is done on slave node, the problem
occurred on a master-slave node, i.e. higher computational cost of a master
slave, is solved.

de Toro Negro et al. (2002) propose the parallel multiobjective evolution-
ary algorithm called Parallel Single Front Genetic Algorithm (PSFGA) as an
extension of Single Front Genetic Algorithm (SFGA) based on master-slave
model. The characteristic of the SFGA are as follows: Only the non-dominated
individuals can join the recombination process, all non-dominated individuals
are copied to the next population and the rest of individuals to complete the
population are obtained by recombination and mutation of the non-dominated
individuals. In PSFGA, the population is divided into several sub-populations
based on fitness values. In the sub-population, the original SFGA is carried
out. After execution of SFGA, all individuals are gathered by a master node.
They conclude that parallelization is very helpful not only for the reduction
of computational cost but also for the preservation of diversity.

Coello and Sierra (2004) study the parallelization of a coevolutionary mul-
tiobjective evolutionary algorithm. Based on the master-slave model, they par-
allelize their algorithm. The population is divided into several sub-population
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according to search region. In each generation, sup-populations cooperate or
compete. In Coello and Sierra (2004), the parallel algorithm is compared with
the serial (original) algorithm and shows better result from accuracy of solu-
tion and computational cost points of view.

Veldhuizen et al. (2003) discuss parallel evolutionary multiobjective opti-
mization. In Veldhuizen et al. (2003), master-slave model, island model, diffu-
sion model and hybrid model are discussed and the calculation time of them
are also compared.

Dubreuil et al. (2006) analyze the master-slave model for distributed evolu-
tionary computation theoretically. This paper builds a theoretical framework
for the master-slave model and validates the framework empirically based on
the Distributed BEAGLE C++ framework. They conclude that contrary to
popular belief, the master-slave model can scale well.

Recently, many applications which need time-consuming fitness evalua-
tions are successfully optimized using the master-slave model. Due to the
page limitation, few of them are introduced, e.g., Jones et al. (1998); Sasaki
et al. (2000); Okabe et al. (2003). Jones et al. (1998) parallelize a genetic algo-
rithm on an aerodynamic and aeroacoustic optimization of airfoils. Despite the
time-consuming multidisciplinary fitness evaluations, they successfully show
good results by the usage of master-slave parallelization. Since their fitness
evaluations need huge computational cost, their efficiency of parallelization
achieves nearly 100%. Sasaki et al. (2000) optimize the design of a wing for
supersonic transport using multiobjective genetic algorithm. To solve the huge
computational cost, a simple master-slave model is used. They obtain the suc-
cessful results with better performance. Okabe et al. (2003) optimize the shape
of a micro heat exchanger problem using a commercial computational fluid
dynamics software. To reduce huge computational cost, the algorithm is paral-
lelized based on the master-slave model and successfully optimizes the shape.
In Okabe et al. (2003), the necessary conditions of parallel optimization using
a commercial solver are also discussed.

As introduced above, there are a lot of papers proposing new efficient
method for the master-slave model and showing successful optimization results
by master-slave model. Since real multiobjective optimization problems are
more complicated, this type of parallelization will gather much attention in
order to successfully obtain the optimal design of applications in reasonable
time.

13.2.3 Level 3: Problem Dependent Parallelization

In this model, problem-dependent operations are parallelized. In general, the
interest here is the parallelization of the evaluation of a single solution (dif-
ferent objectives and/or constraints). The parallel models may be based on
the data partitioning or task partitioning. This model is useful in MOPs with
time and/or memory intensive objectives and constraints. It may also be use-
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ful in MOPs with uncertainty which need in general an repeated evaluation
of objective.

Basic Concept

In the last section, the evaluations in a generation are parallelized. However,
even if the evaluations are parallelized, one fitness evaluation is sometimes still
time-consuming. To solve this problem, we discuss the parallelization of each
evaluation in this section. Possible parallelization of one fitness evaluations
are listed as follows:

1. Several solvers:
Consider a multiobjective optimization of a car design as an example. To
design a car, several disciplines should be considered. Examples are to
optimize the air flow around a car and the toughness of materials of a car.
To optimize this problem, two independent solvers are necessary, i.e. CFD
solver for the air flow and FEM for the toughness of materials. If we use one
computer to evaluate two objectives, many users will firstly use the CFD
to obtain the first objective function and secondly use the FEM to obtain
the second objective function or vise versa. Some users will execute the
CFD and the FEM at the same time. However, the total calculation time
is nearly same with the above case because the computational resources
are shared by two solvers. However, it is reasonable to execute the CFD
and the FEM at the same time on different computers. Although the idle
time, caused by the different calculation time of the CFD and the FEM,
is not avoidable, the total calculation time becomes shorter.

2. Decomposition of one fitness evaluation:
Consider the evaluation of a big product which consists of several parts.
A simple idea to reduce the computational time is evaluation of each part
and merging of them. Generally, CFD calculation for a big product is
terribly time-consuming and has huge memory consumption. To tackle
these problems, domain decomposition method (DDM) is often used in
CFD research field, e.g., Elleighy and Tanaka (2001). Calculation domain
is divided into several parts and assigned to different computers. Each
computer calculates only the assigned part. To balance all calculation,
the boundary condition is shared regularly. This division reduces the cal-
culation time and memory consumption. However, since the boundary
condition is shared regularly, rich connections among several computers
are necessary. Furthermore, the user should take care of the division to
reduce boundary and the balance of calculation cost on each computer.

3. Multiple runs for one fitness evaluation:
Fitness evaluation sometimes needs several runs of a solver with different
calculation conditions. An example is an optimization with uncertainty.
Recently, robustness of fitness value against the variance of design pa-
rameters has gathered much attention, in particular, by researchers and
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practitioners researching for a real application. In a real application, it is
impossible to generate a product based on optimal design parameters be-
cause some variations are unavoidable. Therefore, it is very important to
obtain a robust and (nearly) optimal design. To find robust and (nearly)
optimal design, multiple runs of a solver are sometimes necessary. Assume
that an optimizer obtains the design parameter x. To see the robustness
against variance of the design parameter, the fitness values of x + dx and
x− dx should also be evaluated. In this situation, it is reasonable to exe-
cute three solvers with different design parameters on different computers
simultaneously. By simultaneous execution, calculation time will be re-
duced.

Calculation Time

For above situations, the total calculation time is considered here. Based on
equations shown later, we will discuss when we should parallelize a calculation
or not.

1. Several solvers:
Assume a k-objective optimization problem where the time ti is necessary
to evaluate the ith objective function and N nodes are available for cal-
culation. As an example, N = k is assumed. The total calculation time
without/with parallelization can be obtained as:

two =
k∑

i=1

ti =
N∑

i=1

ti, (13.7)

tw = max(ti) + TDT , (13.8)

here, two, tw, and TDT are the necessary time for k objective evaluations
without/with parallelization, and the necessary time for data transfer, see
Fig. 13.2 (a). The maximum time of all ti is denoted by max(ti). Using
these equations, the efficiency of parallelization, denote η′, can be obtained
as:

η′ =
two

Ntw
× 100 =

∑N
i=1 ti

N max(ti) + NTDT
× 100. (13.9)

This equation leads the following results when TDT is negligible:
• If all ti are the same, the efficiency of parallelization is 100%.
• Otherwise, the efficiency is reduced due to idle time of the computer

with a shorter calculation.
If TDT is not negligible, the efficiency will be reduced. In the worst case,
the efficiency is nearly 0% when TDT >> ti. This means that the paral-
lelization should not be used.
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2. Decomposition of one fitness evaluation:
Assume that N nodes are available for calculation and one problem will
be decomposed into N sub-problems. The total calculation time of one
problem and one sub-problem are assumed to be tall and tsub, respectively.
Here, the decomposition is assumed as ideal, i.e., the time for all sub-
problems is the same. The number of boundaries caused by decomposition
and the time of internal data transfer per one boundary are assumed
as B and Tin. By decomposition, each domain will be solved separately.
However, to consider relations among neighbor domains, the boundary
information should be adjusted regularly. One can obtain the following
equations:

two = tall (13.10)

tw = tsub + (N − 1)TDT + BTin. (13.11)

Here, the number of boundaries of each decomposed domain is assume to
be the same with others. The variable of TDT is the time of data transfer
for initial data. Since tall is approximately Ntsub, one can obtain the
following efficiency (see Fig. 13.2 (b)):

η′ =
two

Ntw
× 100 =

(

1− (N − 1)TDT + BTin

(N − 1)TDT + BTin + tsub

)

× 100 (13.12)

In domain decomposition method, Tin is generally very high. Therefore, by
using rich connections among nodes, Tin should be reduced. Furthermore,
the users should think of a way to reduce the number of boundaries, B.

3. Multiple runs for one fitness evaluation:
Following the same way of master-slave model, it is easy to obtain the
following equation:

η′ =
(

1− (N − 1)TDT

(N − 1)TDT + t

)

× 100, (13.13)

here, N , TDT and t are the number of necessary runs for one fitness
value, the time for data transfer and the time for one fitness evaluation.
As discussed in master-slave model, the calculation should be parallelized
when t >> TDT .

The three models for parallel metaheuristics may be used in conjunction
within a hierarchical structure. In Meunier et al. (2000); Talbi and Meunier
(2006), this hierarchical architecture has been adopted to solve a complex
multiobjective network design problem. At level 1, a parallel self contained
cooperative model based on evolutionary algorithms (island model) and local
search has been used. At level 2, a parallel evaluation model for a steady state
evolutionary algorithm, in which the evaluation phase of the algorithm is done
in parallel and in an asynchronous manner. Those two first parallel model are
independent of the target MOP. Finally at level 3, a parallel synchronous de-
composition model, in which the evaluation of a single solution is carried out
in parallel by partitioning the geographical domain.
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Fig. 13.2. Necessary calculation time of several solvers and decomposition.

13.3 Parallel Models for Non-heuristic Methods

Parallelization of exact optimization methods, particularly branch and bound
ones, has been largely studied in the literature (refer to Talbi (2006)). How-
ever, to the best of our knowledge it is rarely tackled in the multiobjective
context. For example, in the 11th MCDM conference (1994) Antunes and
Tsoukiás (1997) survey new developments in computer science and they try
to explore their specific relevance for the field of MCDA. The field of dis-
tributed computing is mentioned (p. 382f.) with the potential to integrate
different MC models and methods in a single MCDA system. The benefit of
parallel computing is seen in decomposing the problems. But no reference to
any existing work is given1. Although there were presentations of parallel ap-
proaches at MCDM conferences, these papers have been rarely included in
the official proceedings. For example, in the 15th MCDM conference (2000)

1 The potential benefits of fuzzy sets and neural networks have been discussed
where evolutionary algorithms and related metaheuristics were not an issue at
that time.
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there were at least two papers on parallel MCDM methods2 but none of them
appeared in the official proceedings prepared by Köksalan and Zionts (2001).
This might be the reason why there is only a short list of publications that is
presented next.

13.3.1 High Level Parallel Models

High level parallel models embrace approaches in which sequential MCDM
methods are run independently with no or occasional information exchange
in parallel. The simplest example is probably given by the idea to run sev-
eral instances of the same algorithm with scalarized objective functions but
different weights. This approach yields an approximation of the Pareto front
and set. More flexibility is provided by the OpTiX-II software framework de-
scribed by Grauer and Boden (1997). Here, the user may specify which MCDM
methods are run in parallel on workstation clusters, and which information
they are going to exchange. Unfortunately, numerical results are given for
single-objective optimization only.

13.3.2 Low Level Parallel Models

Low level parallel models represent approaches in which parts of the sequen-
tial MCDM method are parallelized. For example, in 1992 Galperin Galperin
(1992) proposed a new unscalarized method for MCDM based on his concept
of balance numbers. In this procedure m subproblems can be solved in paral-
lel independently (p. 81) in each iteration. Apparently, the parallelization was
outlined only but not realized.

In case of interrelated multiobjective linear (MOLP) problems Volkovich
(1997) parallelize the search for local solutions. Again, there are no results
regarding speedup or efficiency. The situation changes for the parallel method
for MOLPs presented by Wiecek and Zhang (1997). They achieve a speedup
about 27 when using 32 processors for large problems. They deploy the tech-
nique of task partitioning by using an ADBASE solver on each processor.

Another reason for using parallel hardware is raised with interactive
MCDM methods: If you like to foster interactivity during robustness analysis
and that the decision maker does not give up too early (due to impatience
and/or time schedule) then you must take care about fast response times.
For this purpose, Costa and Climaco (1994) calculated solutions in parallel
when using multiple reference points on a four processor system. They ex-
tended their work on parallelization to other interactive MCDM methods: in
the course of the ELECTRE III method the creditability indices that define a
fuzzy outranking relation can be calculated independently (and hence in par-
allel) for different pairs of alternatives. Moreover, they also parallelized the
four subproblems of the distillation algorithm used in this method. A speedup

2 See the program at http://mcdm2000.ie.metu.edu.tr/tentprog.htm
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about 7 was achieved for 16 processors by Dias et al. (1997). Similarly, the
preference indices of the interactive PROMETHEE method can be calculated
independently and therefore in parallel. Dias et al. (1998) achieve a speedup
about 15 for 16 processors in the best case.

Low level parallel models are also used for exact, combinatorial multi-
objective problems. In particular, in case of biobjective flowshop problems
Dhaenens et al. (2006) discuss parallelization of the weighted sum method
with dichotomic search: after a new solution is found two new searches are
launched. Consequently, many processors are idle in the early phase of the
search resulting in poor speedup/efficiency measures. A similar approach can
be deployed for the two phase method—with same disadvantages as in the
previous method proposed by Lemesre et al. (2007a). Speedups do not exceed
1.7 for four processors. Lemesre et al. (2007b) achieved similar performance for
the partitioning parallel method. In the first phase they use task partitioning
and then space partitioning.

Needless to say, hybridizations of metaheuristics and exact methods do
have some potential in case of parallelization. Basseur et al. (2004) propose a
parallel hybrid model combining an exact approach (branch and bound) and
a metaheuristic. The parallel metaheuristic is used to approximate the Pareto
front. The parallel branch and bound is used to solve sub-problems and to
improve the quality of the obtained Pareto front.

We are aware that this list of publications is not complete. But it reveals
that there is considerably less work on the parallelization of non-heuristic and
exact methods than for metaheuristics. Finally, we like to emphasize that the
deployment of parallel hardware for interactive environments might be fruitful
also for multiobjective metaheuristics.

13.4 Parallel Implementation and Deployment

Parallel and distributed architectures can have different memories (shared/
distributed), computation resources (homogeneous/heterogeneous), and net-
works (local/large). These different properties have a strong impact on the
deployment technique such as load balancing and fault-tolerance. Depending
on the type of architecture used, different parallel and distributed program-
ming environments such as message passing (PVM, MPI), shared memory
(multi-threading, OpenMP), high throughput computing (Condor), and Grid
computing (Globus) can be used. We briefly study some of this issues in the
following.

13.4.1 Shared Memory versus Distributed Memory

The main advantage of parallel MOP algorithms implemented on shared mem-
ory architectures such as SMPs and multi-core processors is the simplicity.
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For example, it is easier to share data such as upper bounds in exact algo-
rithms and best found approximated non-dominated set of solutions in meta-
heuristics. However, parallel distributed architectures offer a more flexible and
fault-tolerant programming platform. Indeed, the memory access contention
in shared memory architecture make the number of processors limited for this
type of architectures.

13.4.2 Homogeneous and Dedicated versus Heterogeneous and
Non-dedicated

Most massively parallel machines (MPP) and clusters of workstations (COW)
such as IBM SP3 are composed of homogeneous processors and are generally
dedicated to the application. The proliferation of powerful workstations and
fast communication networks have shown the emergence of heterogeneous net-
work of workstations (NOW) as platforms for high-performance computing.
COWs and NOWs constitute a low-cost hardware alternative to run paral-
lel algorithms. However, the efficient scheduling of tasks and fault tolerant
mechanisms in NOWs is more complex to design and analyze due to the
heterogeneity of those architectures (processors, networks, etc.) and a higher
probability of faults.

Melab et al. (2006a) focus on solving large size problems using the Condor
environment. It is an open source framework originally intended to the design
and deployment of the three parallel models for meta-heuristics on dedicated
clusters and networks of workstations. Relying on the Condor programming
environment, it enables the execution of these applications on volatile non
dedicated heterogeneous computational pools of resources. Efficient load bal-
ancing and fault-tolerance mechanisms have been designed for this purpose.
Experimentations have been carried out on more than 100 PCs originally in-
tended for education. The obtained results are convincing, both in terms of
flexibility and easiness at implementation, and in terms of efficiency, quality
and robustness of the provided solutions at run time.

13.4.3 Tightly Coupled (Local Networks) versus Loosely Coupled
(Large Networks)

Massively parallel machines, clusters and local networks of workstations may
be considered as tightly coupled architectures. Large network of workstations
and Grid computing platforms are loosely coupled and are affected by higher
cost of communication. The larger the granularity of a model, the better suited
is the model for large networks.

Since the granularity of the self-contained parallel cooperation models
(level 1) is very high, they can be easily deployed on large scale architectures
which are in general loosely coupled and have high communication cost.
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This model is also scalable in terms of the number of processors which
is not the case for the other models (Problem Independent Parallel Intra-
Algorithm and Problem Dependant Parallelization). These models are inter-
esting when the evaluation of a single solution is CPU-time consuming and/or
Input/Output intensive.

Melab et al. (2006b) report some results on parallel cooperative multiob-
jective meta-heuristics on computational grids. They particularly focus on the
island model and the multi-start model and their cooperation. They propose
a checkpointing-based approach to deal with the fault tolerance issue of the
island model. Nowadays, existing DispatcherWorker grid middlewares are in-
adequate for the deployment of parallel cooperative applications. Indeed, these
need to be extended with a software layer to support the cooperation. There-
fore, they propose a Linda-like cooperation model and its implementation on
top of XtremWeb. This middleware is then used to develop a parallel meta-
heuristic applied to a bi-objective Flow-Shop problem using the two models.
The work has been experimented on a multi-domain education network of 321
heterogeneous Linux PCs. The preliminary results, obtained after more than
10 days, demonstrate that the use of grid computing allows to fully exploit ef-
fectively different parallel models and their combination for solving large-size
problem instances.

In terms of exact methods, the high level is more appropriate for large net-
works. The most popular parallelization approach of the branch and bound
algorithm consists in building and exploring in parallel the search tree repre-
senting the problem being tackled. The deployment of such parallel model on
a grid raises the crucial issue of dynamic load balancing. The major question
is how to efficiently distribute the nodes of an irregular search tree among
a large set of heterogeneous and volatile processors. Mezmaz et al. (2007)
propose a new dynamic load balancing approach for the parallel branch and
bound algorithm on the computational grid. The approach is based on a par-
ticular encoding of the tree nodes allowing a very simple description of the
work units distributed during the exploration. Such description optimizes the
communications involved by the huge amount of load balancing operations.
The approach has been applied to one instance of the bi-objective flow-shop
scheduling problem. The application has been experimented on a computa-
tional pool of more than 1000 processors belonging to seven Nation-wide clus-
ters. The optimal Pareto front has been generated within almost 6 days with
a parallel efficiency of 98%.

13.5 Conclusion and Future Trend

Parallel and distributed computing are powerful and necessary ways to re-
duce the computation time of multiobjective optimization algorithms and/or
improve the quality of the obtained solutions. This chapter presents a gen-
eral overview of parallel approaches for multiobjective optimization. For this
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purpose, we have proposed a taxonomy for parallel metaheuristics and exact
methods. We have covered both the design aspect of algorithms and imple-
mentation on different parallel and distributed architectures. Different parallel
models have been proposed in the design of multiobjective optimization algo-
rithms. These models are largely experimented on a wide range of academic
and real-life MOPs in different domains. The presented models may be used
in conjunction within a hierarchical structure.

Multiobjective optimization algorithms have been implemented and de-
ployed on different type of parallel and distributed architectures: clusters and
networks of workstations and shared memory parallel architectures. An effi-
cient implementation must consider the characteristics of the target parallel
model (granularity, synchronous, etc.) and architecture (homogeneity, dedi-
cated, etc.). For example, fine granularity models cannot easily be deployed
on large scale distributed systems.

In the last decade, Grid computing and Peer-to-Peer (P2P) computing
have become a real alternative to traditional high performance computing
architectures for the development of large-scale distributed applications. This
is a great challenge as Grid and P2P-enabled frameworks for multiobjective
optimization algorithms are emerging.

Designing generic software frameworks to deal with the design and effi-
cient transparent implementation of distributed multiobjective optimization
algorithms is another important aspect. Software frameworks such as PAR-
ADISEO offer transparent implementation of different parallel models on dif-
ferent architectures using suitable programming environments as written by
Cahon et al. (2004) and Liefooghe et al. (2007)3.

In future, more and more applications will be concerned by parallel multi-
objective optimization in different domains such as MDO (Multi-disciplinary
Design Optimization), life sciences and industrial applications. Also, designing
the interactive multiobjective optimization approaches which requires real-
time parallel solving of MOPs is another important challenge.
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