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An Introduction to the Use of
Evolutionary Computation Techniques
for Dealing with ECG Signals


Guillermo Leguizamón and Carlos A. Coello Coello


Abstract Evolutionary Computation (EC) has become one of the most de-
veloped and successful computational intelligence techniques used for solving
real-world problems from different application areas, including engineering,
machine learning, signal processing, and data mining, among many others. It
is indeed particularly worth noticing the success of the use of EC techniques
for dealing with problems that involve the processing, classification, and in-
terpretation of different sources of signals. From them, the treatment of ECG
signals represents a challenge for the scientific community since such a prob-
lem has not only a high academic impact, but an important social impact, as
well. In this chapter we present an introduction to basic EC concepts, includ-
ing the description (under a unified perspective) of the most representative
algorithms within this area. Furthermore, the chapter is aimed to provide the
reader with the fundamentals of the most representative EC-based method-
ologies and other well-known bio-inspired inspired metaheuristics that have
been adopted for dealing with the treatment of ECG signals. Additionally,
some areas for future research are also identified towards the end of the chap-
ter.
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1.1 Introduction


Evolutionary Computation (EC) techniques have reached an impressive level
of development, both from the point of view of basic research as well as from
the perspective of practical applications. This has also triggered an impor-
tant amount of research on other bio-inspired metaheuristics such as Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Differential
Evolution (DE) and Artificial Immune Systems (AIS), which have also been
extensively applied in many real-world problems.


Biomedical signals (biosignals) processing has became a very appealing
area for developing and applying Computational Intelligence (CI) techniques.
CI can be defined as a broad class of bio-inspired approaches normally used for
classification and optimization, which includes EC techniques, artificial neu-
ral networks, and fuzzy logic. Among the most relevant biosignals are those
represented by raw data collected by different medical instruments such as
Electrocardiograms (ECG), Electroencephalograms (EEG), and Electromyo-
gram (EMG); however, in this chapter we will focus specifically on ECG
signals.


It is worth emphasizing that the use of CI-based techniques for medical
applications is a vast and promising research area that has been kept under
continuous development in the last few years. Although (Begg et al., 2008)
have observed that neural networks and fuzzy logic are the most developed
CI techniques used for medical applications, several important EC techniques
have also been applied in this area, too, as we will see in this chapter. Several
EC-based tools have been proposed for medical applications, including those
that deal directly with the processing of ECG signals. However, there are also
EC-based tools aimed to help other techniques to improve their processing
of ECG signals (this could be considered as an indirect way of applying EC
approaches in this area). Therefore, the aim of this chapter is to show that
EC techniques can be considered as useful tools to be used in this application
domain. With that goal in mind, this chapter will review the newest and most
relevant proposals on the use of EC techniques for biomedical problems, aim-
ing to provide an appealing perspective of this CI technique and its potential
use for medical applications.


The rest of the chapter is organized as follows. Section 1.2 provides the
main EC concepts necessary to make this chapter self-contained. This in-
cludes a brief description of the most representative EC-based algorithms,
seen under a unified perspective. In Section 1.3 we give some introductory
remarks and definitions on ECG signals. Next, in Section 1.4 we present a
brief literature review of applications that use EC techniques as either a pri-
marily or as a secondary tool when dealing with some typical problems related
to ECG signals. An additional literature review is given in Section 1.5 that
describes the application to ECG signals of other bio-inspired metaheuristics
such as PSO, AIS, and ACO. The chapter finishes in Section 1.6 with some
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general comments about the state-of-the-art and future research lines in this
application domain.


1.2 EC Basics


EC techniques comprise a set of metaheuristics that seek to emulate the
mechanism of natural selection described in Charles Darwin’s evolutionary
theory, with the aim of solving problems. Although the origins of EC can be
traced back as far as the early 1930s (Fogel, 1995), it was not until the 1960s
that the three main techniques based on this notion were developed: genetic
algorithms (Holland, 1962, 1992), evolution strategies (Schwefel, 1965, 1995)
and evolutionary programming (Fogel, 1966). These approaches, which are
now collectively denominated “evolutionary algorithms,” constitute the core
of the evolutionary computation field.


Nowadays, there exists a large amount of literature devoted to EC tech-
niques and their applications, see for example (Bäck, 1996; Bäck et al., 2000;
Eiben and Smith, 2003; Fogel, 1995; Michalewicz and Fogel, 2004). Modern
approximations to the theory and practice of EAs can be found in (De Jong,
2006) as it represents a valuable, comprehensive, and up-to-date source of
information about EAs from a unified point of view. Additionally, in (Glover
and Kochenberger, 2003), and in (Talbi, 2009), one can find good descrip-
tions of EC techniques in the context of modern metaheuristics. These books
also describe other bio-inspired algorithms such as Ant Colony Optimiza-
tion (ACO), Particle Swarm Optimization (PSO), Bee Colony (BC) based
algorithms, and Artificial Immune Systems (AIS).


Considering the most recent perspectives to study EC techniques, we
present in the following a general and unified description of EAs that can
help readers to better understand their basic operating principles and the
ways in which they could be applied in the solution of problems related to
the processing of ECG signals.


From a Darwinian perspective (De Jong, 2006), the metaphor of adap-
tation and evolution of an species involves: a) one o more populations of
individuals competing for limited resources, b) the notion of dynamically
changing populations due to the birth and death of individuals, c) a concept
of fitness which reflects the ability of an individual to survive and reproduce,
and d) a concept of variational inheritance (i.e., offspring closely resemble
their parents, but are not identical). An algorithm designed to fulfill the above
characteristics implements a Darwinian evolutionary system (De Jong, 2006).
Based on the concept of evolutionary systems, several possibilities arise to
design advanced algorithms capable of efficiently exploring complex search
spaces for solving complex optimization problems. In this regard, it is neces-
sary identify the problem components and the way they can be included in
the evolutionary system (e.g., a representation of potential solutions, a fit-
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ness function to assess the quality of potential solutions, selection mechanisms
for mating and reproduction, and evolutionary operators to create offspring
from the individuals selected for reproduction). An EA can be considered
an advanced expression of an evolutionary system, mainly devoted to solve
optimization problems. In the following, we describe the main components
(including some examples) of an EA. Next, it is presented a general outline
of an EA that embodies, in a unified manner, the most representative EAs
in current use.


1.2.1 Fundamental Components of an Evolutionary


Algorithm


When dealing with a particular problem, a potential user or implementer of
an EA must carefully make appropriate design decisions in order to achieve
an effective and efficient EA to solve the problem at hand. Those decisions
are related to the main components of the EA with regards to the following
description:� Individuals’ representation: With no doubt, this is one of the earliest


and most important design decisions that must be made. The type of rep-
resentation adopted will determine the size of the search space (i.e., the set
of all possible solutions) as well as the design of the evolutionary operators
that will be used for manipulating these solutions. In the jargon of EAs it
is said that an individual1 encodes (using a particular alphabet) a possible
solution for the problem at hand. Many times, the chromosome is an indi-
rect representation of a solution (called genotype) and a decoding process
is needed to obtain the solution (called phenotype). However, some other
representation encodings directly represent the problem solution, i.e., the
EA search space is a phenotypical one. Thus, we will assume that the
search space of an EA can be either genotypical or phenotypical. The bi-
nary alphabet is the canonical option in EAs, and the most commonly
considered is the set {0, 1}. However, many other encodings are possible
as long as we can devise appropriate operators for them. The choice is
generally determined by the problem and also by the type of EA that is
being implemented. For example, when using Evolution Strategies (Schwe-
fel, 1995), the typical representation is a real valued vector. In contrast,
the typical representation in Genetic Programming (Koza, 1992, 1994) is
a tree structure. Another important consideration is about the length of
the chromosomes. Their length could be fixed or variable. This depends
on the problem we are dealing with. For the sake of a simpler discussion,
we will assume in this chapter the use of a fixed length n ∈ N for all the


1 The term chromosome is also widely adopted and will be used interchangeably in the
following.
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individuals in an EA.� Population of Individuals: An EA performs an iterative process that
manipulates a population of individuals. Accordingly, a structure P (t)
is defined to keep the current population of those individuals at time t


(variable t represents the iteration number as described in the following
section). Usually, the population size is kept fixed during the evolutionary
process; however, the use of variable size populations is also possible.


Definition 1. Let I be the set of all possible encoded solutions, P (t) ∈ I
a set of the current population at time t and m = |P (t)| is the population
size. The size of I will depend on n, the length of the chromosome and
the cardinality of the alphabet adopted.


Some examples of possible search spaces regarding the chosen solution
representation are the following:


Binary vectors: I1 = {(b1, . . . , bn)|bi ∈ {0, 1}}
Real vectors: I2 = {(r1, . . . , rn)|ri ∈ [a, b] with a, b ∈ R}


Permutations: I3 = {(p1, . . . , pn)|pi ∈ {1, . . . , n} and
( if pi = pj, then i = j)}


Integer vectors: I4 = {(a1, . . . , an)|ai ∈ N }� Fitness Function: As the emulation of the evolution metaphor implies
the survival of the fittest individuals, a measurement mechanism should be
defined for assessing the adaptability of the individuals to the environment
(i.e., the problem under consideration). The fitness function:


F : I → R
+ (1.1)


assigns to each individual a real positive value that is used for the selection
mechanism (next item) to guide the search in forthcoming iterations.� Selection: The selection mechanism imposes a bias to the search process
towards regions of high quality solutions. The aim of this mechanism is
to preferably select the fittest individuals that will participate in the re-
production phase. The selection mechanism can be seen as the following
function:


Sel : 2I → 2I (1.2)� Reproductive Mechanisms (or Evolutionary Operators): This im-
portant component is in charge of generating the offspring from the se-
lected set of parents (function Sel). Generally speaking, evolutionary op-
erators promote the exploration of the search space by creating offspring
which inherit good genetic material from their parents. Thus, these oper-
ators are expected to create, on average, individuals with higher quality
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with respect to their parents. Classical evolutionary operators are crossover
(eq. (1.3)) and mutation (eq. (1.4)). The general crossover operator pre-
sented in eq. (1.3) is defined as a binary operator that takes two parents
and returns one offspring. However, other domains and ranges are also pos-
sible for this operator, e.g., multiple-parents, and two or more offspring.


χc : I × I → I (1.3)


χm : I → I (1.4)


A classical example of a crossover operator for binary representation is the
so-called 1-point crossover. Its application consists in generating a random
number k ∈ {1, . . . , n− 1}. The offspring inherits the first k bits form the
first parent and the last n−k bits from the second one. For example, given
the crossover point k = 3 and two possible parents P1 and P2, one of the
generated children is the following:


P1 = (0 0 1 |0 1 0 1 1 1)
P2 = (1 0 0 |1 1 1 0 1 0)


χc(P1, P2) = (0 0 1 1 1 1 0 1 0)


It must be noticed that the original 1-point crossover generates two off-
spring, by using a very similar procedure to the one described above. In
fact, this procedure can be extended to allow the generation of more than
two children, to the use of several crossover points and more than two
parents.
Following with the binary representation for the individuals, a classical
example for the mutation operator is the so-called flip mutation. This
simple operator consists of choosing a location l ∈ {1, . . . , n} that indi-
cates the bit that will undergo mutation. The new value at location l is:
new val(l) = 1− old value(l). Let l = 4 be the random location generated
and P1 the individual that undergoes mutation:


P1 = (0 0 1
�
0 1 0 1 1 1)


χm(P1) = (1 0 0 1 1 1 0 1 0)


1.2.2 A general outline of an EA


Having described the main components of an EA, it is now possible to present
a general outline of this kind of algorithm. Figure 1.1 displays a schematic
representation of an EA’s behavior as a composition of the functions Init (ap-
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Algorithm 1 General outline of an EA
1: t = 0;
2: P (t) = Init();
3: while ( Termination Condition not met) do


4: Eval( P (t) );
5: P ′(t) = Sel(P (t));
6: P ′′(t) = Apply Operators(P ′(t), χc, χm);
7: P (t + 1) = Rep( P (t) , P ′′(t + 1));
8: t=t+1;
9: end while


plied once), Sel, χc, χm, and Rep. Function Init is in charge of generating the
initial population to be evolved. Several criteria can be used to generate the
initial population, but the simpler one is to generate a population completely
at random. The last part of the iterative process involves function Rep which
obtains the new population based on the current population (P (t)) and the
intermediate population (P ′′(t)) generated by applying Sel and operators χc


and χm. In order to have a closer perspective of the implementation of an
EA, the corresponding pseudo-code is presented in Algorithm 1.


To conclude this section, it is worth mentioning the importance of hy-
bridization in the field of EAs. Several alternatives to design hybrid EAs can
be found in the literature. Such examples illustrate the importance of this
topic as an alternative to improve the performance of an EA. A recent com-
prehensive description of hybrid metaheuristics that can be applied to EAs
can be found in (Talbi, 2009). It is also important to highlight that EAs and
other related metaheuristics have been widely applied in combination with
a large variety of computational intelligence tools as discussed in Section 1.4
within the context of ECG signal processing.


Fig. 1.1 Schematic representation of an EA as a composition of functions: Init (applied
once), Sel, χc, χm, and Rep.


P (t)
Sel
−−−→ P ′(t)


(χc,χm)
−−−−−−→ P ′′(t)


Rep
−−−→ P (t + 1)


t = t + 1


Termination condition has been met (finish)


t = 0
Init
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1.3 ECG signals


With the advancements of digital technology in general and the technol-
ogy used in medical instrumentation, in particular, many different types of
medical data are continuously collected from patients for different reasons.
Consequently, the hospital and clinical databases are continuously growing as
they maintain detailed information from different medical instruments and
sources of physiological signals (biosignals) that are usually generated by
human beings. For example, magnetic resonance imaging, computerized to-
mography, electrocardiogram (ECG), electroencephalogram (EEG), and elec-
tromyogram (EMG) signals. Although ECG, EEG, and EMG signals are
usually associated to the analysis of unimodal signals (i.e., one signal is con-
sidered at a time), multimodal signal modelling and processing could be also
considered (Laguna and Sörnmo, 2009). Particularly, this chapter is devoted
to the ECG unimodal signal processing from an evolutionary computation
perspective, as an alternative way to deal with some particular problems in
this area. In what follows, we first provide the basic concepts and components
involved in the processing of ECG signals, and then we discuss the need to
use automatic approaches and algorithms for signal processing, as well as
the kind of tasks that are more suitable to be solved through the use of EC
techniques.


Electrocardiogram (ECG) signal processing conforms one important part
of the above mentioned medical data that are widely available and are also
easy to obtain due to the lower costs of medical instruments necessary to
collect them among patients under different circumstances. Moreover, heart
diseases diagnosis and ECG interpretation is an important non-invasive step
in the clinical diagnosis process. The ECG is a valuable indicator of cardiac
function and it represents the electrical activity of the heart over time. In Fig-
ure 1.3 we can observe a normal ECG where the QRS complex and some other
waveforms give evidence of mechanical pumping of the heart. Consequently,
a correct analysis and interpretation of these waveforms can be extensively
used to infer cardiac health as well as cardiac diseases —e.g., arrhythmia,
myocardial infarction, and myocardial ischemia; moreover blood and vessels
diseases and congenital diseases can also be detected by carefully analyzing
the ECG signals. In the next section we cover some of the main tasks that
are usually considered when analyzing the ECG signals in search for patterns
that could indicate possible heart diseases or malfunctioning.


1.3.1 ECG signal processing


General algorithms for basic ECG signal processing include at least the fol-
lowing components: a) noise filtering, b) QRS detection, and c) wave de-
lineation. In addition to that, d) a data compression module can be added
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Fig. 1.2 Schematic representation of a normal ECG: QRS Complex; PR and ST segments;
and PR and QT intervals.
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for further data storage or transmission. (Sörnmo, L. and Laguna, P., 2006)
describe the interaction among these components which is recreated in this
chapter as shown in Figure 1.3. For further information, an appealing source
of introductory information regarding ECG signal processing is precisely the
above mentioned book of (Sörnmo, L. and Laguna, P., 2006). In the following,
we present a short description of the main modules in ECG signal processing
which explains their respective functions and scope in the whole processes:� One important issue when dealing with the interpretation of recorded sig-


nals is the presence of noise as indicated in Figure 1.3 by the respective
module in the main sequence of ECG signal processing. In that regard,
most of the signal processing aims at extracting the expected signal (i.e.,
uncorrupted) from a noisy one. According to (Friesen et al., 1990), there
exist several sources of noise that can corrupt in different ways the recorded
ECG signal. The following can be considered as the most important sources
of noise:
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Fig. 1.3 A general scheme of a potential algorithm for basic ECG signal processing. Light
arrows indicate that the output from QRS complex detection can be used as feedback
information in ‘Data compression’ and ‘Noise filtering’ modules to improve their respective
performance.
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– Power-line interference: to diminish this kind of noise, filters are de-
signed to suppress ECG components close to the power-line frequency.


– Electrode contact noise: is a transient interference caused when an
electrode loses contact with the skin.


– Motion artifacts: the electrode-skin impedance can produce artifacts
with electrode motion.


– Muscle contraction: this causes that millivolt-level potential fields
can be generated.


– Baseline drift: the beat morphology is suitable for changes that do
not have a cardiac origin and can produce important distortions in the
collected signal. This type of noise can be generated by the movements
of the patient when is being tested.


– Instrumentation noise: normally generated by electronic devices
used in signal processing, e.g., producing a saturation on the input
devices that avoid to reach the ECG signals.


– Electrosurgical noise: this type of noise is produced by the instru-
ments that apply electrocauterization and it can completely destroy the
ECG signal.� The QSR wave detection is a very important and determinant step in


the ECG signal processing. On the one hand, QRS complex detection is
directly associated to heart beat detection. Thus, a poor performance of
a potential detector will produce irrecoverable errors in further processing
steps, e.g., during the wave delineation. There exists a large number of
QRS morphologies that must be detected and certainly, many different
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diagnosis tasks that might arise based on the results of the QRS detector.
For example, clustering of beat morphologies may be performed for the
purpose of characterizing the morphology of a QRS complex, i.e., groups
of beats with similar morphology can be assigned to the same cluster.� Wave delineation is the process through which it is determined the bound-
aries of each wave within the PQRST complex (see Figure 1.3). This can
be done right after the detection of the QRS complex. This process lets
us measure the length (or duration) of the waves. From these and other
measurements, different characterizations are possible for the waves in the
PQRST complex such as amplitude and morphology.� Data compression implies an efficient use of storage media, transmission
under different media; e.g., from the ambulance to the hospital for a rapid
diagnostic. Nowadays, the impressive advancements in the creation and im-
provement of medical instruments to capture huge amounts of data makes
necessary to find mechanisms to efficiently transmit, and also store and
retrieve the information collected, while avoiding any type of redundancy.


1.3.2 Feature extraction from ECG signals


Once the ECG signal processing has finished, a large amount of raw digital
data is available for different analysis and interpretation. For undertaking
such analysis and interpretation, it is necessary to present such data to the
phase of feature extraction which lets us to identify the most relevant char-
acteristics that could help us to determine possible heart diseases, if any.
However, the resulting features from the extraction process can lead us to
sub-optimal or redundant sets of characteristics. In the sub-optimal case, a
possible approach to learn and determine heart diseases from some data of
a patient will probably fail since there is not enough information available
to reach a correct or an acceptable decision. In the second case, the learnt
prediction model can be very complex and probably inaccurate as well.


The feature extraction problem can be formulated as follows. Let F be
the set of all available features and n = |F|, the number of features. The
objective is to select a subset F ⊆ F with m = |F | ≤ n that optimizes a
given selection criterion C in regards of F . The feature extraction problem
belongs to the class of NP problems. Therefore, computational intelligence
(CI) techniques are a suitable alternative for dealing with such problems.


It is also worth noting that from a CI perspective, feature extraction is
only one part of the problem, since the main objective is to establish a rela-
tionship between the available information (representing the input data) and
the corresponding pathology observed in real patients. Here is when EAs or
other metaheuristic approaches come to play an important role within ECG
signal interpretation as they can be a very useful tools to provide, in a timely
manner, high-quality solutions in regards either the feature extraction task
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(direct application) or by helping to find more accurate rules in a fuzzy-logic
classifier and more efficient neural networks —e.g., optimal weight values or
network structure (indirect application). Based on this observation, the next
section presents a short review that embodies the most recent research in this
area.


1.4 EAs for ECG: a brief review


This section presents a short review of the specialized literature that high-
lights the application of EAs for solving ECG signal processing related prob-
lems. This review also includes tasks such as feature extraction, as well as the
design of soft computing tools like those found in the field of fuzzy logic and
neural networks. It should be noticed, however, that using EAs as either in-
direct or direct tool to deal with ECG signals, many different solution search
spaces are possible. For example, an EA as indirect application could be de-
signed to find a good combination of kernels in a support vector machine
or possibly for evolving a neural network structure. Also, EAs are usually
applied in the feature selection process before applying another soft com-
puting tool (e.g., for classification). In this case, a binary string is the most
widely used representation for the features to select. In the case of direct
applications, it is possible to deal with the problem of segmentation of a
ECG signal. For that, a real vector can be used as solution representation to
approach this particular problem. Accordingly, the reader should be aware
that many schemes for solution representation are possible. Certainly, it will
depend on the specific problem at hand when dealing with ECG signals and
the way that problem is approached. To better characterize the use of EAs
in the field of ECG signal processing, we have split the presentation of the
review by considering indirect and direct application of EAs as was explained
in the previous section.


1.4.1 Indirect Application of EAs


- (Wiggins et al., 2006) describe the application of a GA for evolving a
Bayesian network devoted to classify patients’ ages based on features ex-
tracted from ECG signals. The evolutionary process is aimed to produce
a high quality network structure for the classification process by evolving
a population of chromosomes represented by integer vectors. The GA is
compared with K2, a greedy hill-climbing algorithm considering the clas-
sification accuracy. The same authors present in (Wiggins et al., 2008) an
extended study of (Wiggins et al., 2006) in which both the GA and K2
are compared with two näıve Bayesian approaches. The results show that
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the GA largely outperforms K2 and is also able to achieve an improved
performance when compared to the two näıve Bayesian approaches.


- (Chua and Tan, 2007) use a GA to evolve a non-singleton fuzzy logic sys-
tem (NSFLS) designed for handling uncertainties in cardiac arrhythmias
classification which is a particular pattern classification problem that usu-
ally arises when dealing with ECG signals. The NSFLS is supposed to work
better than a singleton fuzzy logic system (SFLS) when applied to a noisy
environment as it models uncertainty, imprecision, or inaccuracy of the in-
puts which is a usual situation in ECG signals. In the GA, each possible
fuzzy logic system is represented by a binary string (chromosome) which
decodes values representing, respectively, 3 membership functions (for each
value, it decodes both the mean and the standard deviation) and 9 pos-
sible rules. As the fuzzy logic system is intended to classify three cardiac
arrhythmias —i.e., Ventricular Fibrillation (VF), Ventricular Tachycardia
(VT), and Normal Sinus Rhythm (NSR), the respective fitness function is
calculated as the weighted average on these three correctly classified classes.
NSFLS and SFLS are tested and compared on a set of well known instances
of ECG signals (Goldberger et al., 2000). The results show superiority of
NSFSL with respect to SFLS regardless of the inputs given.


- (Nasiri et al., 2009b) present the Genetic-ESVM, a novel classification sys-
tem based on a GA, which is designed to improve the generalization perfor-
mance of the so-called Emphatic Support Vector Machine (ESVM) classi-
fier. The first stage of the Genetic-ESVM is aimed at finding the best subset
of features by applying a GA. In order to achieve this goal, each chromosome
is represented by a binary vector of length nf (nf number of all possible fea-
tures that can be selected for further classification). The second stage (last)
classifies the ECG signals either using a classical SVM (Genetic-SVM) or
the proposed ESVM (Genetic-ESVM). The experimental study compares
a classical SVM without using the genetic feature extraction and the two
genetic based algorithms: Genetic-SVM and Genetic-ESVM. The dataset
MIT-BIH (Goldberger et al., 2000) was considered to assess the algorithms’
performance. From the reported results, it can be observed that Genetic-
EVSM (with linear kernels) outperformed the other algorithms compared.
A related work presented by the same authors (see Nasiri et al., 2009a)
compares the performance of a classical SVM, the Genetic-SVM (described
above), and PCA-SVM, which is an SVM combined with Principal Compo-
nent Analysis (PCA). These approaches aim to obtain the subset containing
the best possible features for classification. The experimental results show
that the feature selection found by the Genetic-SVM greatly improves the
quality of classification with respect to the other algorithms studied.


- (Jiang et al., 2005) explore the benefit of applying a GA to simultaneously
find the internal structure and associated weights of evolvable Block-based
Neural Networks (BbNNs). The evolved BbNNs are applied to classify heart
beat patterns from ECG signals. The features of BbNNs make them good
candidates to deal with patterns of heart beats (e.g., these patterns vary
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for different individuals and, for the same individual, some changes in the
pattern can take place at different times of the day as well as in differ-
ent situations that the individual is experiencing). One of the features of
BbNNs is the flexibility of their internal structure which can be adapted
as the conditions of the environments change. Additionally, a BbNN can
be implemented, for example, through a Field Programmable Gate Array
(FPGA) which allows on-line partial reorganization of its internal structure.
Ten records collected from different patients provided by the MIT-BIH Ar-
rhythmia database (see Goldberger et al., 2000) were considered in order
to assess the behavior of the evolved BbNN which produced a classification
accuracy of more than 90%.


- A novel hybrid method based on the Ant Colony Optimization (ACO)
metaheuristic and an evolutionary algorithm is presented by (Bursa and
Lhotska, 2007). The proposed algorithm, called ACO-DTree is designed to
automatically find a classification tree via an evolutionary process which
incorporates concepts of the ACO metaheuristic. The main structure of
ACO-DTree corresponds to a traditional ACO algorithm. However, the
population of solutions found by the colony undergo an evolutionary step
(more precisely, the application of a mutation operator) aimed to produce
a renewed set of solutions. After that, the usual cycle of the ACO algo-
rithm continues normally by selecting the best solution to proceed with the
pheromone evaporation step. The experimental study includes the well-
known database MIT-BIH (Goldberger et al., 2000) as well as the Iris data
set taken from the UCI repository (Frank and Asuncion, 2010). However,
the Iris data set is only considered as part of the preliminary parameter
estimation of the algorithm. A comparison of results between an EA and
ACO-DTree shows a clear benefit of using the hybrid approach (i.e., ACO-
DTree) to automatically build high quality classification trees on the ECG
signals data set considered.


1.4.2 Direct Application of EAs� A genetic segmentation of ECG signals is proposed by (Gacek and Pedrycz,
2003). The genetic approach is aimed to produce a segmentation of lossy
signal compression through evolved geometric constructs (linear functions)
which capture the real segments in the ECG signal. The chromosome is
represented by a sequence of real numbers which correspond to the respec-
tive segments’ ending-points and the fitness function measures the level
on monotonicity of the ECG data analyzed within the segments based on
the extreme estimated derivative values (maximum and minimum). In the
experimental study, the authors considered three classes of instances of
ECG signals taken from the MIT-BIH database (Goldberger et al., 2000)
including: normal beats, left bundle branch block beats, and premature
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ventricular contraction. Although the results are encouraging by using a
linear model to approximate the real signal, the authors indicate that more
sophisticated approximation models should be considered, e.g., quadratic
or polynomials of higher order.� (de Toro et al., 2006) present a methodology consisting in applying either a
multimodal2 or multiobjective evolutionary algorithms for the adjustment
of medical diagnostic schemes dealing with biosignal analysis and process-
ing. The evolutionary approach is used in two situations: i) in the process
of feature selection and ii) the selection of best parameter setting for dif-
ferent diagnosis schemes as for example KNN used in this work. Three
different objectives were considered related to the quality of the possible
diagnosis achieved: 1) classification accuracy, 2) sensitivity, and 3) cover-
age level. In the case of the multimodal EA, the only objective considered
out of the three previously mentioned is the classification accuracy. From
the multiobjective perspective, SPEA (Zitzler and Thiele, 1999) is the al-
gorithm applied and two different objective combinations were considered:
a) classification accuracy and sensitivity, and b) classification accuracy and
coverage level. The proposed methodology was successfully applied on the
diagnosis of Paroxysmal Atrial Fibrilation (PAF) on the data set found
in (PhysioBank, 2001). The authors claim the their proposal provides to
the specialists with a set of different solutions to be used in the diagnostic
decision (solutions that include different selected features). Therefore, the
specialists have certain freedom to select the parameters for the diagnostic
decision process according to the possibilities (e.g., availability of medical
instrumentation involved in the features selected).� (Jatoth et al., 2009) present a PSO-based evolutionary tool for extraction
of diminished-noise signal from fetal ECGs which allows an effective ex-
traction and further appropriate analysis. The proposed PSO-based tool
is intended to optimize the weight vector involved in an adaptive noise
cancelation system. This cancelation system aims at minimizing the mean
square error between the real and the estimated fetal ECG signal. The
estimated signal is referred to as LMS (Least Mean Square) estimation.
Although the authors claim that the PSO-based tool outperformed LMS,
the experimental study was unfortunately conducted on only one instance
of the problem. This makes necessary an extended study of the proposed
algorithm to better assess its potential for noise cancelation in fetal ECG.


1.5 Other Nature Inspired Metaheuristics for ECG


Although EAs are the most extensively used and studied bio-inspired meta-
heuristics in the current literature, other bio-inspired metaheuristics are also


2 The authors use here the term ‘multimodal’ to refer to single-objective problems that
have several optima.
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being applied, with different degrees of success, in a variety of real-world
problems. The processing, analysis, and interpretation of ECG signals is one
of the real-world problems in which an important number of research has
been conducted through the use of ACO, PSO, and AISs, just to mention a
few. Accordingly, this section is aimed at showing some recent results in this
regard, by providing a short review of the literature focused on the aforemen-
tioned bio-inspired metaheuristics.� (Bursa and Lhotska, 2008b) propose an Ant Colony inspired clustering


algorithm (called Ant Colony Clustering) for arrhythmia diagnosis from
the analysis of ECG signals. The authors present a comparative study
of their proposal with other clustering algorithms, including: ACO-DTree
from the same authors (Bursa and Lhotska, 2007), Radial Basis Func-
tion Neural Networks (two versions, which are trained by ACO and PSO
algorithms, respectively), Kohonen’s Self-Organizing Maps (SOMs), Hier-
archical Clustering, and k-means. Two versions of Ant Colony Clustering
were implemented: one using Euclidean Distance (or L2) and another one
using the Dynamic Time Warping (DTW) metric. The reported results
show a fairly good performance of the Ant Colony Clustering approach
with respect to some of the other algorithms studied in the experimental
study. A similar proposal from the same authors (see Bursa and Lhot-
ska, 2008a) involves the comparison of ACO-DTree, as described in (Begg
et al., 2008), but using concepts taken form PSO to improve the solutions
and applied at each iteration of the ACO algorithm on the set of solutions
previously found. The benefit of the proposed algorithm are demonstrated
when compared with a Random Tree Generation method (implemented
in the WEKA toolkit). The databases considered include ECG signals
instances and also Electroencephalogram (EEG) signals. As a general con-
clusion, the authors claim that their proposal is suitable for biological data
clustering (such as ECG and EEG signals). They also claim that their ap-
proach has the advantage of producing readily structures (the decision
trees) which have a possible clinical use.� (Korürek and Doĝan, 2010) investigate the use of PSO-RBFNN, an al-
gorithm that evolves radial basis function neural networks (RBFNNs) for
ECG beat classification. The evolutionary process is based on PSO and is
aimed to find a high quality structure for the neural network. Besides the
number of neurons, a RBFNN architecture includes three parameters: a)
center of the neurons (ci), b) the respective bandwidth (σi), and c) the
weights between the hidden layer and the output layer. In this work, only
the center and the respective bandwidth associated to it are considered
in the evolutionary process, where each particle in the population is for-
mulated as in (Korürek and Doĝan, 2010): net = [(c1, σ1), . . . , (cn, σn)],
where n is the number of neurons. The authors present several experi-
ments considering the MIT-BIH arrhythmia database (Goldberger et al.,
2000). Preliminary experiments were carried out to determine the most
appropriate number of neurons before presenting the main part of the ex-
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perimental study. The main conclusion of the experimental study indicates
a reduction on the network size without compromising the quality of the
results expressed in terms of ‘sensitivity’ and ‘specificity’.� (Bereta and Burczyński, 2007) designed an Artificial Immune System
(AIS) which implements the immune metaphor based on both, negative
and clonal selection for evolving subsets of features well suited for clas-
sification. According to the authors, this proposed algorithm is consid-
ered a hybrid AIS as it simultaneously incorporates both selection mech-
anisms, i.e., negative selection and clonal selection. The hybrid AIS man-
ages binary and real-valued encoding for the subpopulations of detectors
(T-lymphocytes). Both versions of the hybrid AIS were compared by using
different types of samples taken from the MIT-HIS database (Goldberger
et al., 2000), representing normal and pathological ECG signals. The real-
coded hybrid AIS showed the best performance regarding computational
complexity, while having a lower level of misclassified signals, and a lower
number of detectors.� (Korürek and Nizam, 2010) investigate an integrated approach based on
a combination of wavelets coefficients of the Discrete Wavelet Transform
(DWT) and time domain coefficients for feature selection. In addition,
Principal Component Analysis (PCA) is applied on the DWT coefficients
in order to decrease the number of features. The resulting subset of features
is considered by an ACO algorithm for clustering analysis of ECG arrhyth-
mias instances taken from the MIT-BIH Arrhythmia Database (Gold-
berger et al., 2000). The design of the ACO algorithm is straightforward,
since the number n of elements in the data set determines the number of
nodes in the construction graph; m ants are distributed on m nodes to
proceed with the search (find the cluster). The ants move from one node
to another one by applying rules that depend on the amount of pheromone
trails and on information of the nearest neighborhood. An exploration rule
is applied to promote exploration by particular ants which are forced to
visit the farthest nodes. At each move, an amount of pheromone trail is
deposited in the respective connection. The clustering is obtained at the
final stage of the algorithm (i.e., when the maximum number of iteration is
reached) by considering the final accumulated amount of trail in the whole
set of edges in the construction graph. The final step (aimed at improv-
ing the clustering) combines small clusters into big ones according to the
respective distance from the centroid. The main part of the experimental
study includes a comparison of the proposed integrated approach with a
similar one except that the clustering is obtained by a Neural Network. As
a general conclusion, the authors claim that their proposed approach based
on the ACO metaphor slightly outperforms the one based on a Neural Net-
work. In addition, both approaches (ACO and NN-based clustering) can
be considered suitable options to accurately classify ECG arrhythmias.� (Poungponsriand and Yu, 2009) investigate the use of a hybrid search algo-
rithm for training a Wavelet Neural Network (WNN) for ECG signal mod-
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eling and noise reduction. The hybrid algorithm consists of the so-called
Adaptive Diversity Learning Particle Swarm Optimization (ADLPSO)
(Chen et al., 2006) for global exploration and a gradient descendent algo-
rithm for fine-tuning purposes. The proposed hybrid algorithm can suc-
cessfully model the ECG signal and remove high-frequency noise.


Finally, a recent publication from (Karpagachelvi et al., 2010) presents an
interesting survey of different approaches for ECG feature extraction. Such
literature review includes an important number of schemes based on Artificial
Neural Networks, Genetic Algorithms, Support Vector Machines, and other
computational intelligence techniques.


1.6 Conclusions


In this chapter, we have presented some introductory concepts of evolution-
ary computation techniques, focused on the so-called evolutionary algorithms
(EAs). The chapter also provides a short introduction to ECG signal process-
ing which highlights aspects that could be addressed by evolutionary tech-
niques and other related approaches. In addition to that, we also presented a
literature review on the use of EAs and other bio-inspired metaheuristics for
dealing with ECG signals. This aims to provide an up-to-date perspective of
the recent and ongoing research in this area.


As discussed by (Begg et al., 2008) we also believe that the oncoming re-
search in this area will focus on the development of tree-breed approaches
coming from i) supervised learning, ii) fuzzy logic, and iii) evolutionary com-
putation. However, the third research area should be extended to include a
number of other bio-inspired algorithms as well as local search based algo-
rithms. The reason for that is that such approaches have shown a lot of po-
tential to deal with complex real-world problems, exhibiting, in many cases, a
similar or even better performance than traditional evolutionary computation
techniques such as genetic algorithms.
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