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Abstract This chapter presents a review of some of the most representative work
regarding techniques and applications of evolutionary algorithms in pattern recogni-
tion. Evolutionary algorithms are a set of metaheuristics inspired on Darwin’s “sur-
vival of the fittest” principle which are stochastic in nature. Evolutionary algorithms
present several advantages over traditional search and classification techniques, since
they require less domain-specific information, are easy to use and operate on a set of
solutions (the so-called population). Such advantages have made them very popular
within pattern recognition (as well as in other domains) as will be seen in the review
of applications presented in this chapter.
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1 Introduction

We will start by providing a very general description of a pattern recognition
process [1, 2] in order to make this chapter self-contained.

The pattern recognition process consists of the three stages shown in Fig. 1:
(1) segmentation, (2) feature selection and (3) classification. In Fig. 1, the
input is a set of pixels (i.e., an image), but other types of input data are also
possible (e.g., three dimensional scanned points of a human face).

Segmentation is the partition of an input image, or data, into its con-
stituent parts or objects. It is known that, in general, automatic segmentation
is a very difficult task. The output of the segmentation stage is usually an-
other image with raw pixel data, constituting either the boundary of a region
or all the points in the region itself.

⋆ The second author is also with the UMI LAFMIA 3175 CNRS at CINVESTAV-
IPN.
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Fig. 1. The three phases of a pattern recognition system.

Feature selection deals with extracting features for differentiating one
class of objects from another. The output of this stage is a vector of values of
the measured features.

The last stage is called classification, or recognition. This is the process
that assigns a label to each object based on the information provided by their
descriptors.

As will be seen in this chapter, Evolutionary Algorithms (EAs) have been
applied to all three stages of the pattern recognition process [3]. In fact, some
authors such as Rizki et al. [4] have applied EAs to each stage of a pattern
recognition system, with minimum human intervention, with the aim of ob-
taining the best possible (overall) pattern recognition system.

From the several metaheuristics that currently exist (see for example [5, 6])
for solving optimization and classification problems, EAs, which emulate the
natural selection mechanism, have become one of the most popular, mainly
because of their ease of implementation, their flexibility and their high ef-
fectivity in a wide variety of tasks [7, 8, 9, 10]. Thus, this chapter aims to
provide a general (although not comprehensive due to obvious space limita-
tions) overview on the use of EAs for solving pattern recognition tasks.

The remainder of this chapter is organized as follows. Section 2 presents
a short introduction to evolutionary algorithms, including two examples that
illustrate their use. Within these two examples, two specific evolutionary al-
gorithms (namely, genetic algorithms and differential evolution) are discussed
in more detail. Then, in Section 3 we provide a brief review of several applica-
tions representative of the work done regarding the use of EAs in any of the
three previously indicated stages of a pattern recognition task. Some possible
paths for future research regarding the use of EAs in pattern recognition are
briefly discussed in Section 4. Finally, the main conclusions of this chapter are
drawn in Section 5.

2 Basic Notions of Evolutionary Algorithms

Evolutionary algorithms are bio-inspired metaheuristics that attempt to em-
ulate Charles Darwin’s natural selection mechanism (i.e., the “survival of the
fittest” principle) with the purpose of solving (mainly optimization) problems
[8]. Metaheuristics are high-level frameworks that combine basic (low-level)
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heuristic methods to explore the search space of a problem in a more effi-
cient and effective way [11]. A heuristic is a technique that searches for good
solutions at a reasonable computational cost, but without guaranteeing opti-
mality. In fact, in some cases, heuristics cannot even determine how far is a
certain solution from the optimum [12].

The idea of getting inspiration from the natural selection mechanism to
solve problems is not new, since it can be traced back to the 1930s [13].
Nevertheless, it was until the 1960s that these early ideas were actually im-
plemented. Three are the main paradigms considered within EAs: genetic
algorithms [14, 15, 7], evolution strategies [16, 17, 18] and evolutionary pro-
gramming [19, 20]. Each of them was developed independent from the others,
and with different motivations (e.g., genetic algorithms were originally devel-
oped to solve machine learning problems, whereas evolution strategies were
originally developed to solve optimization problems). There have been also
variations of some of these approaches. The most remarkable is genetic pro-
gramming [21, 22, 23, 24], which is a variation of the genetic algorithm that
uses tree-based encoding, instead of the original fixed-length binary strings
adopted in genetic algorithms.

EAs, in their different versions and variations have been found to be very
effective for solving a wide variety of optimization and classification problems
[7, 18, 20]. The main reasons for their popularity are their generality (they
require little domain-specific information), ease of implementation and use,
combined with their high effectiveness in solving highly complex problems [7].

The basic operation of an EA can be summarized as follows. First, they
generate a set of possible solutions (called a “population”) to the problem
that is being solved. Such a population is normally generated in a random
manner. Each solution in the population (called an “individual”) encodes all
the decision variables of the problem. In order to assess the suitability of such
individuals, a fitness function must be defined. Such a fitness function is a
variation of the objective function of the problem that we wish to solve and is
used as a relative measure of performance among individuals (i.e., solutions
that represent better objective function values are the fittest). Then, a se-
lection mechanism must be applied in order to decide which individuals will
“mate.” This selection process is normally based on the fitness contribution of
each individual (i.e., the fittest individuals have a higher probability of being
selected). Upon mating, a set of children or “offspring” are generated. Such
offspring are “mutated” (this operator produces a small random change, with
a low probability, on the contents of an individual), and become the popula-
tion to be evaluated at the following iteration (called a “generation”). This
process is repeated until reaching a stopping condition (normally, a maximum
number of generations).

The previous description corresponds to a general EA, but each specific
EA adopts variations of this procedure. For example, a genetic algorithm will
perform crossover (several possible crossover schemes exist), whereas evolu-
tionary programming uses only mutation. It is also worth indicating that there
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are a few recent metaheuristics that are also normally considered as EAs. From
them, the two most popular are differential evolution (DE) [25] and particle
swarm optimization (PSO) [26].

Next, we will illustrate two application examples of the use of EAs in
pattern recognition. In these examples, two specific types of EAs will be briefly
described (namely, genetic algorithms and differential evolution).

2.1 Example 1: Clustering

Clustering can be seen as a previous stage to classification, in which groups
of objects are labeled with an integer value and assigned into subsets (the
so-called clusters), so that objects in the same cluster are similar according
to some measure. Clustering is considered a method of unsupervised learn-
ing, and is commonly used for statistical data analysis in many disciplines,
including data mining, pattern recognition, image analysis, machine learning
and bioinformatics [27, 28].

Perhaps the most popular clustering algorithm in current use is k-means
[29]. The k-means algorithm produces a partition of n observations (x1,x2, . . . ,

xn), where xi is a vector of features of dimension d, into k sets (k < n)
S = {S1, S2, . . . , Sk} such that the distances form each observation to the
nearest partition is minimized:

min
S

k∑

i=1

∑

xj∈Si

‖xi − µi‖
2, (1)

where µi is the mean of the observations in the set i.
Very recently, it was proved that the complexity of the problem tackled

by the k-means algorithm is NP-hard [30] in a general Euclidean space of
dimension d, even for 2 clusters. It is also NP-hard even in 2 dimensions [31]
for a general number of clusters. NP-hard complexity of a problem implies
that, at least up to now, there is no procedure that can solve it in a polynomial
time. In other words, this is really a very difficult task, which therefore justifies
the use of a metaheuristic to solve it. Here, we will use a genetic algorithm to
solve this problem.

A Simple Genetic Algorithm

Genetic algorithms (GAs) emphasize the importance of sexual recombination
(which is the main operator) over the mutation operator (which is used as a
secondary operator). They also use probabilistic selection (like evolutionary
programming and unlike evolution strategies). The basic operation of a GA
is illustrated in Figure 2.

First, an initial population is randomly generated, as indicated in the
description of a general EA. It is worth indicating, however, that deterministic
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Generate initial population of size M in a random manner;
Repeat

Evaluate fitness of each individual within M ;
Select (normally in a probabilistic way) individuals

(called parents) based on fitness;
With probability Pc, apply the crossover operator

between pairs of parents.
Apply the mutation operator to all the children

generated from the previous step with a probability Pm.
Apply elitism (i.e., the best individual in the population

remains intact for the following generation).
Until the stop condition is reached

Fig. 2. Pseudocode of a simple genetic algorithm.

Fig. 3. Example of the binary encoding traditionally adopted with the genetic
algorithm.

or semi-deterministic procedures can also be used for generating the initial
population (using, for example, a greedy procedure).

The individuals of the population of a GA will be a set of strings of char-
acters (letters and/or numbers) called chromosomes that represent all the
possible solutions to the problem. Chromosomes are made of genes that cor-
respond to each of the decision variables of the problem. Finally, genes are
made of alleles which correspond to characters or symbols in the alphabet used
as a basis for the encoding. This notation is graphically depicted in Fig. 3.

One aspect that has great importance in the case of the genetic algorithm is
the encoding of solutions, since GAs normally use an indirect representation of
the solutions of the problem (unlike evolution strategies that typically adopt a
direct representation of solutions, by operating over vectors of real numbers).
Traditionally, GAs adopt a binary encoding regardless of the type of decision
variables of the problem to be solved, mainly because of the fact that this sort
of encoding can be considered as universal [7], but biological arguments have
also been provided to favor this sort of encoding [32]. Nevertheless, other types
of encodings are also possible and have been used with genetic algorithms (see
for example [33, 34, 35]).

After defining the encoding to be adopted by the GA, a fitness function
value must be computed for each of the chromosomes in the population. These
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fitness values measure the quality of the solution encoded by the chromosome
and represent a relative performance measure that will allow us to know which
solutions are preferable over others. Knowing each chromosome’s fitness, a
selection process takes place to choose the individuals (presumably, the fittest)
that will become the parents of the following generation. A variety of selection
schemes exist [36], including roulette wheel selection [37], stochastic remainder
selection [38, 39], stochastic universal selection [40, 41], ranking selection [42]
and tournament selection.

After being selected, crossover takes place. During this stage, the genetic
material of a pair of individuals is exchanged in order to create the population
of the next generation. This operator is applied with a certain probability Pc

to pairs of individuals selected to be parents (Pc is normally set between
60% and 100%). When using binary encoding, there are three main ways of
performing crossover:

Fig. 4. Use of a single-point crossover between two chromosomes. Notice that each
pair of chromosomes produces two descendants for the next generation.

1. Single-point crossover: A position of the chromosome is randomly selected
as the crossover point as indicated in Fig. 4.

2. Two-point crossover: Two positions of the chromosome are randomly se-
lected for exchanging chromosomic material, as indicated in Fig. 5.

3. Uniform crossover: This operator was proposed by Syswerda [43] and can
be seen as a generalization of the two previous crossover techniques. In
this case, for each bit in the first offspring it decides (with some prob-
ability Pc) which parent will contribute its value in that position. The
second offspring will receive the bit from the other parent. Although for
some problems uniform crossover presents several advantages over other
crossover techniques [43], in general, one-point crossover seems to be a
bad choice, but there is no clear winner between two-point and uniform
crossover [44, 34].
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Fig. 5. Use of a two-point crossover between two chromosomes. In this case the
genes at the extremes are kept, and those in the middle part are exchanged.

Fig. 6. Use of 0.5-uniform crossover (i.e., adopting a 50% probability of crossover)
between two chromosomes. Notice how half of the genes of each parent go to each of
the two children. First, the bits to be copied from each parent are selected randomly
using the probability desired, and after the first child is generated, the same values
are used to generate the second child, but inverting the source of procedence of the
genes.

Other crossover operators are, of course, possible, mainly when adopting
other encodings (see for example [45]).

The offspring generated by the crossover operator are subject to mutation,
which is a genetic operator that randomly changes a gene of a chromosome.
If we use a binary representation, a mutation changes a 0 to 1 and viceversa.
This operator is applied with a probability Pm to each allele in a chromosome
(Pm normally adopts a low probability that goes from 1% up to 10% as a
maximum). The use of this operator allows the introduction of new chromo-



8 Luis Gerardo de la Fraga and Carlos A. Coello Coello

somic material to the population and, from a theoretical perspective, it assures
that—given any population—the entire search space is connected [46].

Finally, the individual with the highest fitness in the population is retained,
and it passes intact to the following generation (i.e., it is not subject to either
crossover or mutation). This operator is called elitism and its use is required
to guarantee convergence of a simple GA, under certain assumptions (see [47]
for details).

The previous procedure must be repeated a certain number of times, until
reaching a stopping criterion. The most commonly adopted stopping criterion
is to adopt a (pre-defined) maximum number of iterations (or generations),
but other criteria are also possible [7].

Although GAs can benefit from self-adaptation mechanisms that allow
their parameters to be defined in an automated way [48], their users normally
fine-tune their parameters (population size, crossover and mutation rates, etc.)
by hand, using a trial-and-error process.

The Example

To show how this simple GA works, we will use the k-means problem. Let’s
assume that we have five observations and three clusters. Thus, an individual
can be represented as (1, 2, 1, 3, 2) meaning that the first and third observa-
tions form the first cluster. Analogously, the second and fifth observations
form the second cluster, and the third cluster is formed with only the fourth
observation.

The binary encoding corresponding to the above individual would be
the following: ([0, 1], [1, 0], [0, 1], [1, 1], [1, 0]). Any of the previously discussed
crossover operators can be used in this case. Mutation is also applied as indi-
cated before (using a NOT operator). The fitness value of each individual is
obtained using Eq. (1). In this case, and considering the encoding adopted by
the GA, the means must be computed from the code sets, each time we need
to obtain the fitness value of an individual.

The use of a population, combined with the application of mutation, re-
duces the probability that the GA gets trapped in local minima. When using
a GA, the use of a randomly generated population (using a uniform distribu-
tion) to start the search, solves the initialization of the k-means algorithm,
which is known to have a significant impact on its performance [49].

It is worth indicating that GA-based clustering algorithms [50, 51] have
shown superior performance than traditional clustering algorithms [49].

2.2 Example 2: Robust Ellipse Fitting

A silhouette of an ellipse, or a data set with elliptical form, can be detected
by fitting. Given a function D that calculates the distance from an ellipse x

to a point p, the best ellipse is that which minimizes the function:
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g : R
5 → R,

g =

n∑

i=1

D2(x,pi),
(2)

where pi = [xi, yi]
T is the vector representing the coordinates of each point

i, i = 1, 2 . . . n, and the ellipse is represented by a vector of five parameters
x = [a, b, xc, yc, α]T, where a and b are the semimajor and semiminor axes
of the ellipse in a canonical form (centered at the origin of the coordinate
system), (xc, yc) are the coordinates of the new origin for the translated ellipse,
and α is the rotation angle between the semimajor axis and the original x axis.

To solve the problem stated in Eq. (2) is relatively simple by using the
least squares method. The least squares procedure is based on the observation
that the minimum of Eq. (2) is located at the place where its derivative (or its
gradient) is equal to zero. Using the algebraic distance, the problem is linear
and generates the most efficient algorithm to solve it [52]. Considering the
real orthogonal distance between each point and the ellipse, this becomes a
nonlinear problem which can be solved using the Gauss-Newton method [53].

The problem here is that using the algebraic distance generates distorted
ellipses if points are not provided with sufficient accuracy. Also, the least
squares method is not resistant to the presence of outliers in the data: points
far away from the ellipse will be considered using the square of their dis-
tances. Furthermore, in the case of the nonlinear problem, an initial point,
located very near to the actual optimum is required in order to solve it using
mathematical programming techniques.

In order to obtain better results, we will use the linear solution to the
problem as a starting point for the nonlinear algorithm. It is worth noting,
however, that by doing this, the outliers affect even more to the linear solution.

Taking the sum of the distances, instead of their squared values, gener-
ates a new problem that will not present the same difficulties as the least
squares procedures previously described. In this case, the problem consists of
minimizing the following function:

g1 : R
5 → R,

g1 =

n∑

i=1

D(x,pi),
(3)

The minimization of Eq. (3) is robust to the presence of outliers because
every distance will be taken as it is, rather than adopting its squared value.
The problem now is that Eq. (3) cannot be solved using any conventional
least squares approach. Thus, the use of a metaheuristic is now appropriate.
Something interesting here is that using an EA to solve this problem is much
simpler [54, 55] than adopting a nonlinear least squares procedure, because
we only need a procedure that computes the value of the function g1 (we do
not need to compute gradients or to perform any matrix inversion).
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In this case, it is not possible to use the simple GA described in Section 2.1,
because the most suitable representation for the solutions of this problem are
vectors of real numbers. Although it is possible to use GAs with real-numbers
encoding (see for example [56, 57]), we will adopt in this case an EA that has
been found to be very powerful when dealing with this sort of problems (i.e.,
those in which the decision variables are real numbers): differential evolution
[58, 25].

Differential Evolution

Differential Evolution was proposed by Kenneth Price and Rainer Storn in
the mid 1990s [59, 60, 25]. DE is an evolutionary (direct-search) algorithm
which has been mainly used to solve continuous optimization problems. DE
shares similarities with traditional EAs. Unlike simple GAs [7], DE does not
adopt binary encoding. Also, it does not use a probability density function to
self-adapt its parameters as done with Evolution Strategies [61]. Instead, DE
performs mutation based on the distribution of the solutions in the current
population. Thus, the search directions and any possible step sizes depend on
the location of the individuals that were selected to calculate the mutation
values.

The most popular nomenclature adopted to refer to the different DE vari-
ants is called “DE/rand/1/bin”, where “DE” means Differential Evolution,
the word “rand” indicates that individuals selected to compute the mutation
values are chosen at random, “1” is the number of pairs of solutions chosen
and finally “bin” means that a binomial recombination is used. The corre-
sponding algorithm of this variant (“DE/rand/1/bin”) is shown in Fig. 7 and
is the most popular in the specialized literature.

The “CR” parameter controls the influence of the parent in the generation
of the offspring. Higher values mean less influence of the parent. The “F”
parameter scales the influence of the pairs of solutions that are selected to
obtain the mutation value (only one pair in the case of the algorithm in Fig. 7).
The stopping criterion of DE is normally a maximum number of iterations (as
in the case of the simple GA), but other, more elaborate criteria are also
possible (see for example [62]).

Several DE variants are possible. To exemplify this point, we took from
the paper by Mezura et al. [63] the eight DE variants adopted, each of which
will be briefly described next. The modifications from variant to variant are in
the recombination operator used (steps 9 to 15 in Fig. 7) and also in the way
individuals are selected to calculate the mutation vector (step 7 in Fig. 7).
The variants adopted by Mezura et al. [63] are the following:

• Four variants whose recombination operator is discrete, always using two
individuals: the original parent and the DE mutation vector (step 11 in
Fig. 7). Two discrete recombination operators: binomial and exponential.
The main difference between them is that for binomial recombination, each



A Review of EAs in Pattern Recognition 11

1 Begin
2 G=0
3 Create a random initial population xi,G ∀i, i = 1, . . . , NP

4 Evaluate f(xi,G) ∀i, i = 1, . . . , NP

5 For G=1 to MAX GEN Do
6 For i=1 to NP Do
7 ⇒ Select randomly r1 6= r2 6= r3 :
8 ⇒ jrand = randint(1, D)
9 ⇒ For j=1 to D Do
10 ⇒ If (randj [0, 1) < CR or j = jrand) Then
11 ⇒ ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)
12 ⇒ Else
13 ⇒ ui,j,G+1 = xi,j,G

14 ⇒ End If
15 ⇒ End For
16 If (f(ui,G+1) ≤ f(xi,G)) Then
17 xi,G+1 = ui,G+1

18 Else
19 xi,G+1 = xi,G

20 End If
21 End For
22 G = G + 1
23 End For
24 End

Fig. 7. “DE/rand/1/bin” algorithm. randint(min,max) is a function that returns
an integer between min and max. rand[0, 1) is a function that returns a real num-
ber between 0 and 1. Both are based on a uniform probability distribution. “NP”,
“MAX GEN”, “CR” and “F” are user-defined parameters. “D” is the dimensional-
ity of the problem. Steps pointed with arrows change depending on the DE version
adopted.

variable value of the offspring is taken at each time from one of the two
parents, based on the value of “CR”. On the other hand, in the exponen-
tial recombination, the value of each variable that forms the offspring is
taken from the first parent until a random number surpasses the “CR”
value. From this point, all the remaining offspring variable values will be
taken from the second parent. These variants are called: “DE/rand/1/-
bin”, “DE/rand/1/exp”, “DE/best/1/bin” and “DE/best/1/exp” [64]. The
“rand” variants select at random to all the individuals to compute muta-
tion and the “best” variants use the best solution in the population besides
the random ones.

• Two variants with arithmetic recombination, which, unlike discrete recom-
bination, are rotation invariant. These are “DE/current-to-rand/1” and
“DE/current-to-best/1” [64]. The only difference between them is that the
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first selects the individuals for mutation at random and the second one
uses the best solution in the population besides random solutions.

• “DE/rand/2/dir” [65], which incorporates objective function information
to the mutation and recombination operators. The aim of this approach is
to guide the search to promising areas faster than traditional DE. Their
authors argue that the best results are obtained when the number of pairs
of solutions is two [65].

• Finally, a variant with a combined discrete-arithmetic recombination, the
“DE/current-to-rand/1/bin” [64].

Each variant’s implementation details are summarized in Table 1.

The Example

In our example, the vectors of real numbers for each individual will be of size
5, since we have five decision variables (a, b, xc, yc, α). The population is
randomly initialized within the allowable range of the decision variables. In
our example, a and b can vary between 1 and one half of the size of the input
image (if we consider that every point also represents a pixel position in an
image), (xc, yc) can be inside the image, and α ∈ [0 : π].

For the fitness value, we use in this case the value of the function g1

indicated in Eq. (3). The results obtained by DE are shown in Fig. 8, in which
they are compared with respect to those obtained with the linear algorithm.
It can be clearly seen that the ellipse fitted by DE is much better than the
other one.
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Fig. 8. 45 ellipse points and 10 outliers. We show with a solid line to the ellipse
fitted by differential evolution, using the sum of distances. With a dashed line we
show the ellipse fitted with the linear algorithm, according to the sum of the squared
distances. Clearly the last one is very distortioned and is not resistant to the presence
of outliers.
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rand/p/bin ui,j =

(

xr3,j + F ·
Pp

k=1
(xr

p
1 ,j − xr

p
2 ,j) if Uj(0, 1) < CR or j = jr

xi,j otherwise

rand/p/exp ui,j =

(

xr3,j + F ·
Pp

k=1
(xr

p
1 ,j − xr

p
2 ,j) from Uj (0, 1) < CR or j = jr

xi,j otherwise

best/p/bin ui,j =

(

xbest,j + F ·
Pp

k=1
(xr

p
1 ,j − xr

p
2 ,j) if Uj(0, 1) < CR or j = jr

xi,j otherwise

best/p/exp ui,j =

(

xbest,j + F ·
Pp

k=1
(xr

p
1 ,j − xr

p
2 ,j) from Uj(0, 1) < CR or j = jr

xi,j otherwise

current-to-rand/p ui = xi + K · (xr3 − xi) + F ·
Pp

k=1
(xr

p
1
− xr

p
2
)

current-to-best/p ui = xi + K · (xbest − xi) + F ·
Pp

k=1
(xr

p
1
− xr

p
2
)

current-to-rand/p/bin ui,j =

(

xi,j + K · (xr3,j − xi,j) + F ·
Pp

k=1
(xr

p
1 ,j − xr

p
2 ,j) if Uj(0, 1) < CR or j = jr

xi,j otherwise

rand/2/dir vi = v1 + F
2
(v1 − v2 + v3 − v4) where f(v1) < f(v2) and f(v3) < f(v4)

Table 1. DE variants adopted by Mezura et al. [63]. jr is a random integer number generated within the range [0, n], where n is
the number of decision variables of the problem. Uj(0, 1) is a real number generated at random between 0 an 1. Both numbers are
generated using a uniform distribution. In their experiments, Mezura et al. [63] used p = 1.
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3 A Review of EAs in Pattern Recognition

In this section, we will briefly review some representative work on the use
of EAs for pattern recognition tasks. Our review will provide examples of
all three stages of the pattern recognition process: (1) segmentation, (2) fea-
ture selection and (3) classification. Each of these groups of applications are
discussed in the following subsections.

3.1 Segmentation

Image segmentation denotes a process by which a raw input image is parti-
tioned into non-overlapping regions such that each region is homogeneous and
connected. A segmented image is often considered connected if there exists a
connected path between any two pixels within the region. A region is consid-
ered homogeneous if all of its pixels satisfy a homogeneity criterion defined
over one or more pixel attributes such as intensity, texture, color, range, etc.
Computing such an image partition is a problem of very high combinatorial
complexity. Given the astronomical size of the search space, an exhaustive
or near-exhaustive enumeration of all possible image partitions to arrive at a
segmented image is usually infeasible. This motivates the use of EAs in this
problem.

In [66] Bhandarkar and Zhang use three hybrid EAs for the segmentation
of gray level images: (1) a GA hybridized with simulated annealing (SA) [67]
called SA-GA, (2) a GA hybridized with microcanonical annealing (MCA)
[68] called MCA-GA, and (3) a GA hybridized with a random cost algorithm
(RCA) [69] called RCA-GA. It should be noted that SA, MCA and RCA are all
stochastic hill-climbing search techniques (i.e., they are local search engines).
The problem was defined as one of minimization, in which the fitness function
incorporated both region contour (or edge information) and region gray-scale
uniformity (such uniformity was quantified using gray-level variance values).
Clearly, the desired segmentation corresponded to the global minimum of the
cost function proposed by the authors. The authors noted, however, that their
fitness function presented many local minima. The results of the three hybrid
schemes were compared with respect to those of a simple GA using several
images, both with and without (Gaussian) noise. RCA-GA was the fastest
approach, closely followed by MCA-GA. However, it was SA-GA (the slowest
among the hybrid approaches) the one that obtained the best overall results
in terms of both visual quality and cost value of the final segmentation. All
the hybrid approaches had a better performance than the simple GA, which
clearly showed the usefulness of local search in this case.2

Jiang and Yang proposed in [71] a hybrid approach that combines features
of genetic algorithms [7] and tabu search [72]. The proposed approach, which

2 Population-based approaches (e.g., EAs) hybridized with a local search procedure
are also known as memetic algorithms [70].
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was called “evolutionary tabu search” (ETS) was used for the segmentation
of cell images. Knowing that most cells in the human body have ellipse-like
boundaries, the authors used an ellipse equation to describe the boundary
of a cell. Since the definition of an ellipse requires five parameters (two to
determine its location and three more to determine its size and orientation),
the authors used these five values as the decision variables to be obtained.
The goal was, evidently, to fit the cell boundary as well as possible, and,
therefore, the fitness function was defined in such a way that it counted the
number of points that were within a certain (fixed) distance from the ellipse.
In order to find the edge points, the authors adopted the Canny operator
[73]. The proposed hybrid was compared with respect to its two components
considered separately (i.e., the genetic algorithm and tabu search), showing
to be superior to both of them. The authors reported that their proposed
approach was able to find consistently (i.e., there was little variation of results
over several independent runs) near-optimal results for several images with red
blood cells.

Bocchi et al. presented in [74] an EA for image segmentation. The main
idea of this approach is to perform a colonization of a bidimensional world
(i.e., the image) by a certain number of populations, each of which represents
a different region of the image. The individuals of each population, competed
in order to occupy all the available space and to adapt to the specific local
environmental characteristics of the world. This approach was inspired on the
famous game of “Life” [75]. The authors validated their proposed approach us-
ing several synthetic images. Their results produced significant improvements
with respect to those found by the well-known fuzzy c-means clustering al-
gorithm [76]. The authors indicated that their approach can be used for the
segmentation of gray-scale, color and textural images. Indeed, they indicated
that their approach can be extended to any vector-valued parametric images,
regardless of their number of components.

Krawiec et al. provided in [77] a review of work on the use of genetic pro-
gramming (GP) [22] for object detection and image analysis. As indicated be-
fore, GP refers to a variation of the genetic algorithm in which a tree-encoding
is adopted. This special kind of encoding evidently requires of different alpha-
bets and specialized operators, since we are, in fact, evolving programs rather
than simple vectors of decision variables. The trees used in GP consist of
both functions and terminals. The most commonly adopted functions are the
following [22]:

Arithmetic operations (e.g., +, -, ×, ÷ )
Mathematical functions (e.g., sine, cosine, logarithms, etc.)
Boolean Operations (e.g., AND, OR, NOT)
Conditionals (IF-THEN-ELSE)
Loops (DO-UNTIL)
Recursive Functions
Any other domain-specific function
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Terminals are typically variables or constants, and can be seen as functions
that take no arguments. GP incorporates fitness-based selection, crossover and
mutation (obviously, all of them are modified so that they can properly deal
with trees), but also adds special procedures for generating the initial popu-
lation (e.g., a maximum tree height is normally enforced to avoid an excessive
memory use), as well as other operators for a variety of tasks (e.g., to de-
stroy a certain percentage of the population in order to improve diversity,
or to “encapsulate” or protect certain subtrees that we want to keep). Be-
cause of its nature, GP provides a powerful tool for building scalable and
adaptive image analysis systems, which use raw image data as input and pro-
duce complete recognition systems as their output. Krawiec et al. [77] point
out, however, that the main drawback of GP is that (as any other EA) it
normally requires a considerable number of fitness function evaluations, and
each of these evaluations are quite expensive (computational speaking) in this
case. They also indicate that most of the applications that they reviewed are
focused on feature-based recognition, in which the evolved system is able to
discriminate between positive and negative examples based on certain features
of the image. However, they found very few applications focused on model-
based recognition in which the underlying assumption is that a database of
models of recognized objects is available and comparisons are then done be-
tween the input image and the object models. This sort of approach allows
for the recognition of more complex (even compound) objects, but has been
rarely adopted with GP.

3.2 Feature Selection

Feature selection refers to the selection of the most relevant features (e.g.,
of a class of objects) so that we can build robust learning models (e.g., for
classifying classes of objects). By robustness we refer to finding the minimum
subset of features that are useful to keep in order to obtain an efficient and
improved solution to the problem of our interest (e.g., to classify a set of
objects). This task is important, since normally not all the available features
are useful and keeping any unnecessary features increases the computational
cost required to solve the problem. Performing an optimal feature selection
requires an exhaustive search of all possible subsets of features. This makes
this problem suitable for using EAs, because of the very large search space
normally involved.

In [78], Muni et al. presented an online feature selection algorithm based
on GP. In fact, the use of the tree-based encoding of GP also allows for the
design of the classifiers, which is something they do for a multicategory classi-
fication problem. The authors generated the initial population in such a way
that the initialization process itself, generated classifiers that had a high prob-
ability of using smaller feature subsets. The fitness function adopted by the
authors assigns a higher fitness value to any classifier that is able to classify
more samples using less features. Indeed, this can be seen as a multiobjective
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fitness function [79], since it performs both feature selection and the design
of classifiers at the same time. The authors also proposed two crossover oper-
ators specially designed to perform feature selection. The authors compared
results with respect to those reported in the specialized literature for several
data sets that go from low (four) to high (over 7000) dimensionality. Their
proposed approach provided better performance for both two-class and mul-
ticlass problems, even in problems having redundant or bad features (which
were artificially added). The main limitation of this approach is only its appli-
cability, which is constrained to numerical attributes only, because their GP
implementation adopted arithmetic functions to design the classifiers.

Watchareeruetai et al. [80] adopted a variation of Linear Genetic Program-
ming (LGP)3 [81] for extracting features from images. The authors indicated
that the main source of problems when using LGP for image feature extrac-
tion is the excessive redundancy associated with the encoding adopted by this
technique. Such redundancy can substantially increase the computational cost
of LGP, since the same costly solutions are being evaluated more than once.
In order to deal with this problem, the authors proposed a transformation of
the LGP representation into a canonical form that has no redundancies. The
experiments conducted by the authors indicated reductions in computational
time that go from 7% up to 62% with respect to the use of the original LGP
encoding.

Kowaliw et al. [82] adopted cartesian GP4 [84] to define a set of transforms
on the space of grayscale images which were meant to facilitate a further classi-
fication process. The idea is that these transforms (which are really programs)
emphasize distinguishing characteristics. The authors applied their proposed
approach for detecting muscular dystrophy-indicating inclusions in cell im-
ages. In their experiments, the authors were able to discover a set of features
that could achieve 91% recognition of healthy cells, and an 88% recognition of
sick cells. These accuracies provided a 38% improvement over predefined fea-
tures alone. However, the authors considered as more important the fact that
this approach may constitute an important step towards having a GP-based
recognition system that automatically adapts to a given database without any
human intervention.

Guo et al. [85] proposed an automatic image pattern recognition system
which was used for classification of medical images. This system adopts (ap-
parently, for the first time, as claimed by the authors) a generalized primitive
texture feature extraction technique based on a histogram region of interest by
thresholds (HROIT), which is used to characterize the Oculopharyngeal Mus-
cular Dystrophy (OPMD) disease. They also proposed a new technique, based

3 LGP is a GP [22] variant that evolves sequences of instructions from an imperative
programming language. The term linear is used in this case to denote the structure
of the imperative program representation [81].

4 Cartesian Genetic Programming was proposed in [83] with the purpose of evolving
digital circuits and represents programs as directed graphs.
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on the integration of genetic programming (GP) and the expectation maxi-
mization (EM) algorithm [86] (called GP-EM), for generating feature func-
tions automatically, based on the primitive features obtained from HROIT.
The GP-EM system makes simpler the learning task by generating a single
feature (which is actually a program generated by GP). The authors showed
that this approach led to higher classification accuracies (90%, on average, in
diagnosing the OPMD disease) and lower standard deviations, being able to
outperform another classification system based on a Support Vector Machine
(SVM) [87].

Raymer et al. [88] proposed an approach in which a GA was used to
perform, simultaneously, feature selection, feature extraction and classifier
training. The GA was used to reduce the dimensionality of the feature set.
Basically, the GA transformed a set of patterns into a lower dimensionality (a
set of weight vectors that scale the individual features of the original pattern
vectors was used for this sake). The aim was to reduce the dimensionality as
much as possible, while maximizing the classification accuracy. The authors
also adopted a binary masking vector to perform a selection of a subset of
the features under consideration. This was done while performing the dimen-
sionality reduction, since the GA used both vectors (the weight vectors and
the binary masking vector) in its chromosomes. Each of the resulting subsets
of features were evaluated in terms of their classification accuracy on some
test data using a nearest neighbor classifier. They also used this approach
in combination with the k nearest neighbor classification rule to allow linear
feature extraction (instead of binary vectors, real numbers were used in this
case). The proposed approach was tested on medical and on biochemical data,
producing very competitive results in all cases, while using less features than
the other classifiers with respect to which it was compared.

3.3 Classification and Clustering

As indicated before, clustering can be seen as a previous stage to classification,
and even as a simpler form of classification, which makes it very difficult
to distinguish one task from the other. Because of that, both of them are
considered in this section.

Iglesia et al. [89, 90] used a multi-objective GA called Nondominated Sort-
ing Genetic Algorithm-II (NSGA-II) [91] for doing partial classification (this
is called the nugget discovery task). The aim was to maximize both confidence
and coverage of the rules. The initial population of the GA was not randomly
generated. Instead, the authors used a special procedure that looked at the
data to ensure that no rules with zero coverage were produced (as happens
when a randomly generated population is adopted). In order to achieve this, a
default rule was adopted (in this default rule, all limits were maximally spaced
and all labels were included), and the remainder of the population were just
mutations of the default rule. The authors compared results with respect to
another approach which was developed by some of the same authors. For their
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validation, the authors used data sets taken from the UCI repository [92]. The
proposed approach was able to produce sets of rules of similar quality as the
other approach, and was even able to outperform it in some cases.

EAs have been widely used for clustering, as made evident in the survey on
GA-based clustering written by Sheikh et al. [93]. In this review, the authors
indicated that one of the main advantages of EAs, when used for clustering, is
that, unlike classical clustering techniques (e.g., k-means [29], fuzzy c-means
[76], etc.), they do not require the number of clusters as an input parameter,
since this value can be produced during the search. This review also showed
a rich variety of applications, including image compression, microarray data
analysis, document clustering and text clustering, among others. Finally, the
authors indicated that in their review they found that GAs had only being
applied to distance-based clustering algorithms (e.g., k-means) but not with
other types of clustering algorithms.

Bandyopadhyay and Maulik presented in [94] a GA for the automated
clustering of data sets. The proposed approach can evolve the number of
clusters while performing the clustering of the data. The authors adopted a
special encoding that contains both real numbers (which encode the centers
of the clusters) and “don’t” care symbols (which are used to encode a variable
number of clusters). The fitness of individuals was computed using the Davies-
Bouldin index [95]. The proposed approach was validated using four artificial
and two real-world data sets in which the number of clusters goes from two to
six, and the number of dimensions goes from two to nine. In their experiments,
the authors considered both overlapping and non-overlapping data sets. In all
cases, the results were found to be quite competitive.

In a further paper, Bandyopadhyay et al. [96] proposed the constrained
elitist multiobjective genetic algorithm based classifier (CEMOGA-Classifier)
for developing nonparametric classifiers. The proposed approach can overcome
problems common to traditional (single-objective) classifiers, such as overfit-
ting/overlearning and ignoring smaller classes. In the proposed classifier, the
authors considered three objectives: minimize (1) the number of misclassified
training points and (2) the number of hyperplanes, and maximize (3) the
product classwise correct recognition rates. Since CEMOGA-Classifier gener-
ates several solutions (called nondominated [79]), and it is desirable to have
only one (which corresponds to the desired classifier), the authors adopted a
validity function to select only one solution from the nondominated set. This
validity function is really an aggregating function that combines the values
achieved by the classifier in each of the three objectives considered during
the optimization process. This validity function allows the user to weight the
importance that he/she wishes to give to each of these objectives. Results
were compared with respect to those produced by two well-established multi-
objective evolutionary algorithms: NSGA-II [91] and the Pareto Archived
Evolution Strategy (PAES) [97]. In general, CEMOGA-Classifier was able
to approximate the class boundaries of the data sets adopted using a smaller
number of hyperplanes, which indicates a superior generalization capability.
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4 Future Research Directions

As has been shown in the previous sections, the use of EAs in pattern recog-
nition is a very active research area. There are, however, several other topics
within this area that still represent interesting research topics. The following
are a few examples:

• Integration: One of the long-term goals of using EAs in pattern recog-
nition must be the development of fully automated systems that can be
applied to different databases with minimum (or no) human intervention.
This may require to combine EAs with other approaches (e.g., fuzzy logic
and/or machine learning techniques) as well as the design of new archi-
tectures that allow an efficient and effective integration of different types
of approaches throughout the different stages involved in a pattern recog-
nition process. The use of multiobjective optimization techniques (which
are designed to solve problems in which we aim to optimize two or more
(normally conflicting) objectives) may be useful for this task [79] and have,
indeed, been used (and have been raising increasing interest) in a variety
of pattern recognition tasks (see for example [98, 99, 100]).

• Efficiency: As indicated before, a critical aspect that could certainly limit
the applicability of EAs in pattern recognition is their computational cost.
Although EAs by themselves are computationally inexpensive, they nor-
mally require to evaluate the fitness of several hundreds or thousands of
solutions in order to obtain the necessary information to guide the search.
In many pattern recognition tasks (e.g., in segmentation) these fitness
evaluations are computationally expensive. There has been little work un-
til now regarding the incorporation of fitness approximation techniques
[101] to EAs adopted for pattern recognition tasks. Such techniques could
provide an interesting alternative to improve the efficiency of an EA, at
the expense of sacrificing some accuracy, if this is affordable at the appli-
cation at hand.

• Use of other Metaheuristics: In recent years, other bio-inspired meta-
heuristics have become increasingly popular in a wide variety of appli-
cations [102]. These metaheuristics also have a lot of potential in pat-
tern recognition tasks, but their use in this domain still remains relatively
scarce. Representative examples of these new metaheuristics are the fol-
lowing:

– Particle Swarm Optimization: This is actually another type of EA
which was originally proposed by James Kennedy and Russell C. Eber-
hart in the mid-1990s [103, 26]. This metaheuristic simulates the move-
ments of a flock of birds which aim to find food. In this approach, the
behavior of each individual (called particle) is affected by either the
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best local (i.e., within a certain neighborhood) or the best global in-
dividual. As other EAs, it also uses a population as well as a fitness
measure. However, because of its design, this metaheuristic allows indi-
viduals to benefit from their past experiences, which is a feature that is
normally inexistent in traditional EAs. This technique has been widely
applied in a variety of problems [26].

– Artificial Immune Systems: Our immune system can be seen as
a highly parallel intelligent system that is able to learn and retrieve
previous knowledge (in other words, it has “memory”), while solving
complex recognition and classification tasks (namely, detecting anti-
gens that invade our body). These features make immune systems quite
attractive from a computational point of view, and has motivated a lot
of research on the development of mathematical and computational
models that emulate its operation. Artificial immune systems were in-
troduced in the mid-1990s and since then, have attracted increasing in-
terest from researchers who have used it for a variety of tasks, including
a few classification and pattern recognition problems [104, 105, 106].

– Ant Colony Optimization: This is a metaheuristic inspired by the
behavior shown by colonies of real ants which deposit a chemical sub-
stance on the ground called pheromone [107, 108]. The pheromone in-
fluences the behavior of the ants: they tend to take those paths in which
there is a larger amount of pheromone. Pheromone trails can thus be
seen as an indirect communication mechanism used by the ants. This
system also presents several interesting features from a computational
perspective, and has triggered a significant amount of research. The
first of these ant-based systems, called ant system was originally pro-
posed for the traveling salesman problem. However, over the years, this
approach (and its several variations, which are now collectively denom-
inated ant colony optimization algorithms) has been applied to a wide
variety of combinatorial optimization problems [108].

5 Conclusions

In this chapter, we have provided a short introduction to EAs and some of their
applications within pattern recognition. This introduction included a summa-
rized description of a few EAs (genetic algorithms, genetic programming and
differential evolution). Then, several applications of them in segmentation,
feature selection and classification (including clustering) were reviewed. This
review indicated a great interest in using EAs for pattern recognition tasks,
and also pointed out to the possible use of EAs combined with other ap-
proaches for the development of fully automated pattern recognition systems.

In the last part of the chapter, some further ideas to extend the research
in this area were provided, including the use of other bio-inspired metaheuris-
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tics and the incorporation of fitness approximation techniques to reduce the
(normally high) computational cost associated to the use of EAs.

We really hope that the information provided in this chapter increases the
interest from researchers working in pattern recognition to use EAs, for that
has been its main goal.
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108. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT Press,
2004. ISBN 0-262-04219-3.



Index

ant colony optimization, 21
artificial immune systems, 21

classification, 2
classification of medical images, 17
clustering, 4, 19
constrained elitist multiobjective

genetic algorithm based classifier,
19

crossover, 6
single-point, 6
two-point, 6
uniform, 6

differential evolution, 10

ellipse fitting, 8
evolution strategies, 3
evolutionary algorithms, 2
evolutionary programming, 3
evolutionary tabu search, 15

feature extraction, 18
feature selection, 2, 16, 18
fitness approximation, 20

genetic algorithm, 4, 18, 19
genetic programming, 15, 16

cartesian, 17
linear, 17

hybrid evolutionary algorithms, 14

multiobjective optimization, 20

nondominated sorting genetic
algorithm-II, 18

partial classification, 18
particle swarm optimization, 20
pattern recognition process, 1

segmentation, 1, 14


