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Summary. In this chapter, we present a multi-objective evolutionary algorithm
(MOEA) based on the heuristic called “particle swarm optimization” (PSO). This
multi-objective particle swarm optimizer (MOPSO) is characterized for using a very
small population size, which allows it to require a very low number of objective
function evaluations (only 3000 per run) to produce reasonably good approxima-
tions of the Pareto front of problems of moderate dimensionality. The proposed
approach first selects the leader and then selects the neighborhood for integrating
the swarm. The leader selection scheme adopted is based on Pareto dominance and
uses a neighbors density estimator. Additionally, the proposed approach performs a
reinitialization process for preserving diversity and uses two external archives: one
for storing the solutions that the algorithm finds during the search process and an-
other for storing the final solutions obtained. Furthermore, a mutation operator is
incorporated to improve the exploratory capabilities of the algorithm. The proposed
approach is validated using standard test functions and performance measures re-
ported in the specialized literature. Our results are compared with respect to those
generated by the Nondominated Sorting Genetic Algorithm II (NSGA-II), which is
a MOEA representative of the state-of-the-art in the area.


1 Introduction


The Particle Swarm Optimization (PSO) algorithm is a relatively recent
heuristic based on the simulation of social behavior of birds within a flock
[9]. Alhough PSO was originally proposed for balancing weights in neural net-
works, over the years, it has become a popular optimizer in a wide variety of
disciplines [14]. In the last few years, a variety of proposals for extending the
PSO algorithm to handle multiple objectives have appeared in the specialized
literature [27].
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This chapter precisely proposes a new multi-objective particle swarm opti-
mizer (MOPSO), called micro-MOPSO because of the very small population
size that it adopts. Such a small population size combined with a good mech-
anism to preserve diversity allows us to produce reasonably good approxima-
tions of the Pareto front of several test problems of moderate dimensionality
(up to 30 decision variables), while performing only 3,000 objective function
evaluations. To the best of the authors’ knowledge, this is the first micro-
MOPSO ever proposed, and its main aim is to serve as a good alternative for
applications in which only a very small implementation can be stored (e.g.,
when the multi-objective evolutionary algorithm needs to be placed into a
microcontroller) or when only a low number of objective function evaluations
can be afforded (e.g., in aeronautical engineering problems).


The organization of the rest of the chapter is the following. In Section 2, we
define the problem of our interest. The Particle Swarm Optimization algorithm
is introduced in Section 3. The previous related work is provided in Section 4.
Section 5 describes our approach including the leader selection mechanism, the
neighbors selection mechanism, the reinitialization process, and the mutation
operator adopted. In Section 6, we present the performance measures, our
experimental setup and the results obtained. Finally, Section 7 presents our
conclusions and some possible paths for future research.


2 Basic Concepts


We are interested in solving problems of the type:


Find x wich optimizes f(x) = [f1(x), f2(x), . . . , fk(x)] (1)


subject to:
gi(x) ≤ 0 i = 1, 2, . . . , n (2)


hi(x) = 0 i = 1, 2, . . . , p (3)


where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi, i = 1, ..., k


are the objective functions and gi, hj , i = 1, ..., m, j = 1, ..., p are the con-
straint functions of the problem.


In multi-objective optimization problems the aim is to find good compro-
mises (trade-offs). To understand the concept of optimality, we will introduce
first a few definitions.


Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.
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Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f (x).


Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto optimal if it is nondominated with respect to
F .


Definition 4. The Pareto Optimal Set P∗ is defined by:


P∗ = {x ∈ F|x is Pareto optimal}


Definition 5. The Pareto Front PF∗ is defined by:


PF∗ = {f(x) ∈ IRk|x ∈ P∗}


We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3).


In general, when solving a multi-objective optimization problem with an
evolutionary algorithm, we aim to produce as many elements of the Pareto
optimal set as possible. Additionally, such solutions should be as uniformly
distributed along the Pareto front as possible.


In spite of the existence of a variety of algorithms for solving multi-
objective optimization problems in the operations research literature, such
approaches normally become inefficient and even inappropriate when facing
high-dimensional, discontinuous, and highly nonlinear problems [21]. Further-
more, there exist problems with a very large search space, which can also be
very difficult to explore because of its shape. In all of these cases, the use
of heuristic techniques is fully justified, since they will normally provide a
reasonably good approximation of the Pareto optimal set within a reasonable
time, although, without guaranteeing convergence [7]. One of such heuristic
techniques is PSO, which is described next.


3 Particle Swarm Optimization


The Particle Swarm Optimization (PSO) algorithm was introduced by Russell
Eberhart and James Kennedy in 1995 [9]. PSO is a population-based search
algorithm based on the simulation of social behavior of birds within a flock
[14, 10]. In PSO, each individual (particle) of the population (swarm) adjusts
its trajectory according to its own flight experience and the flying experience
of the other particles within its topological neighborhood in the search space.
In the PSO algorithm, the particles’ positions and velocities are randomly ini-
tialized at the beginning of the search, and then they are iteratively updated,
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based on their previous positions and those of each particle’s neighbors. Our
proposed approach implements equations (4) and (5), proposed in [31] for
computing the velocity and the position of a particle.


vid = w × vid + c1r1(pbid − xid) + c2r2(lbid − xid) (4)


xid = xid + vid (5)


where c1 and c2 are both positive constants, r1 and r2 are random numbers
generated from a uniform distribution in the range [0,1], and w is the inertia
weight that is generated in the range (0,1].


There are two versions of the PSO algorithm: the global version and
the local version. In the global version, the neighborhood consists of all the
particles of the swarm and the best particle of the population is called the
“global best” (gbest). In contrast, in the local version, the neighborhood is a
subset of the population and the best particle of the neighborhood is called
“local best” (lbest).


4 Related Work


In order to extend the PSO algorithm to handle multi-objective optimiza-
tion problems, the leader selection mechanism must be modified so that it
incorporates the concept of Pareto optimality. Additionally, a mechanism for
preserving diversity (normally called “density estimator”) must be incorpo-
rated.


Moore and Chapman [22] introduced the first extension of PSO for han-
dling multi-objective problems (MOPSO) in an unpublished manuscript. Since
then, a wide variety of additional proposals have been introduced [12, 6, 23].
In [27], the authors present a survey of this area, in which a taxonomy of
MOPSOs is also introduced. Based on that taxonomy, our approach can be
classified as a Pareto-based MOPSO. Next, we will review the most repre-
sentative Pareto-based MOPSOs that have been reported in the specialized
literature, since they constitute the previous work related to our proposal.


In [12], Fieldsend and Singh proposed an approach that uses an elite exter-
nal archive. This approach adopts a special data structure called “dominated
tree” for storing the nondominated particles found along the search process.
The archive interacts with the population in order to define leaders. This
algorithm also adopts a “turbulence” operator that acts on the velocity value.


Coello Coello et al. [6] proposed a MOPSO that uses Pareto dominance
to determine the flight direction of a particle. The algorithm uses a global
archive for storing the nondominated solutions found during the search and
also adopts a mutation operator that generates solutions within ranges of the
decision variables that have not been previously used. In more recent work,
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Toscano Pulido and Coello Coello [34] proposed another MOPSO that divides
the population into several swarms adopting clustering techniques.


Mostaghim and Teich [24] proposed another Pareto-based MOPSO, which
adopts the so-called sigma method, in which the best local guides for each
particle are adopted to improve the convergence and diversity. A mutation
operator (called “turbulence”) is also adopted in this case. In further work,
Mostaghim and Teich [23] studied the influence of a relaxed form of Pareto
dominance called ǫ-dominance [18] on MOPSO methods. In more recent work,
Mostaghim and Teich [25] proposed a new method called coveringMOPSO
(cvMOPSO), which works in two phases. In the first phase, a MOPSO algo-
rithm is run with a restricted archive size and the goal is to obtain a good
approximation of the Pareto front. In the second phase, the nondominated
solutions obtained from the first phase are considered as the input archive of
the cvMOPSO. The particles in the population of the cvMOPSO are divided
into subswarms around each nondominated solution after the first generation.
The task of the subswarms is to cover the gaps between the nondominated
solutions obtained from the first phase.


Li in [19] proposed an approach that incorporates the main mechanisms
of the NSGA-II [8] into the PSO algorithm. In this algorithm, once a particle
has updated its position, all the pbest positions of the swarm and all the new
positions recently obtained are combined in just one set. Then, the approach
selects the best solutions among them. The algorithm also randomly selects
the leader based on two mechanisms: a niche count and a crowding distance.


In [3], Bartz-Beielstein et al. proposed an approach that starts from the
idea of introducing elitism into a MOPSO, via an external archive. The au-
thors analyzed different methods for selecting and deleting particles from the
archive, aiming to generate a satisfactory approximation of the Pareto front.


Several other MOPSOs exist (see for example [38, 26, 1, 32, 35, 28]). How-
ever, none of them adopts a small population size, as our proposed approach.
The use of small population sizes is unusual in the evolutionary algorithms lit-
erature in general, because its use normally speeds up the loss of diversity, and
tends to generate premature convergence. However, in the genetic algorithms
literature, it is known that the use of very small population sizes is possible, if
an appropriate reinitialization process is adopted (such approaches are called
micro-genetic algorithms (micro-GAs) [16, 4] and they use population sizes no
larger than five individuals). Krishnakumar [16] proposed the first implemen-
tation of a micro-GA, and we are only aware of one multi-objective micro-GA,
which was introduced in [5, 4]. This approach uses a population size of four
individuals, and three forms of elitism: (1) an external archive that adopts
the adaptive grid from the Pareto Archived Evolution Strategy (PAES) [15],
(2) a population memory, in which randomly generated individuals are re-
placed by evolved individuals, and (3) a mechanism that retains the two best
solutions generated by each run of the micro-GA. In a further paper, Coello
Coello and Pulido introduced the micro-GA2 [33], which avoids the many
parameters (eight) required by the original micro-GA for multi-objective op-
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timization. The micro-GA2 uses online adaptation and it performs a parallel
strategy to adapt the crossover operator and the type of encoding (binary or
real numbers) to be used.


To the authors’ best knowledge, the approach described in this chapter is
the first MOPSO in using a very small population size (i.e., a micro-MOPSO).
The only micro-PSO that we are aware of is the (single-objective) micro-
PSO for constrained optimization problems, which was developed by the same
authors of this chapter [13].


5 The Micro-MOPSO


Our proposed micro-MOPSO is based on the global version of the PSO al-
gorithm. It uses two external archives: one (called auxiliary) for storing the
nondominated solutions that the algorithm finds throughout the search and
another (called final) for storing the final nondominated solutions obtained.
Our proposed algorithm performs the nondominated sorting introduced in [8]
and uses a crowding distance for selecting leaders. As indicated before, our
approach first selects the leader and then selects the neighborhood for cre-
ating the swarm. Our micro-MOPSO also uses a reinitialization process for
preserving diversity and a mutation operator is incorporated to improve the
overall exploratory capabilities of this heuristic (see Algorithm 1). The leader
selection mechanism, the external archives together with the reinitialization
process and the mutation operator adopted, are all described next in more
detail.


Final archive


Since the micro-MOPSO uses a very small population size (only five particles),
it needs an external archive for reporting the final solutions that it has found
(this is called the final archive). Our algorithm uses this archive for selecting
leaders (see Section 5.1). The upper bound of the final archive (FAB) is a
parameter that needs to be set by the user.


At each iteration, and after updating the particles’ positions, the non-
dominated solutions are obtained from the population of the micro-MOPSO.
These solutions enter into the final archive and remain there only if no other
solution dominates them during the entire evolutionary process. If a solution
dominates another solution stored in the final archive, the stored solution is
deleted. When the maximum capacity of the archive is reached, then the algo-
rithm applies the crowding distance [8] as the criterion to prune the contents
of the archive.


Auxiliary Archive


The micro-MOPSO uses another external archive called auxiliary archive,
which is used for storing the solutions that the algorithm finds along the
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Algorithm 1: Pseudocode of the Micro-MOPSO


Input:Number of particles, number of generations, number of reinitialization
particles (pr), number of reinitialization generations (gr), auxiliary archive
bound (AAB), final archive bound (FAB), mutation rate.
Output:Nondominated solutions (final archive)
begin


Initialize the final archive (empty);
Initialize the auxiliary archive (empty);
for i = 1 to Number of particles do


Initialize position and velocity randomly;
end


Store the swarm into the auxiliary archive;
Get the set nondominated solutions;
Store the nondominated solutions into the final archive;
cont = 1;
repeat


until Maximum number of generations ;
Select the leader;
Select the neighborhood;
if cont == number of generations for reinitialization then


Reinitialization process;
cont = 1;


end


for i = 1 to Number of particles do
Update the velocity;
Compute the actual position;
if xi dominates to xpbi then


for d = 1 to Number of dimensions do
xpbid = xid; // Update the pbest;


end


end


end


Performs mutation;
Store the swarm into the auxiliary archive;
if auxiliary archive length > AAB then


Filter out the auxiliary archive;
end


Get the nondominated solutions;
Store the nondominated solutions into the final archive;
if final archive length > FAB then


Filter out the final archive;
end


cont =cont +1;
Report the nondominated solutions (final archive)


end
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search process. Our algorithm uses it for selecting the neighbor in the swarm.
The upper bound of the auxiliary archive (AAB) is a parameter that needs
to be set by the user.


At each iteration and after updating the particles’ positions, the swarm is
stored into the auxiliary archive. When the maximum limit imposed on the
size of the archive is reached, the algorithm performs nondominated sorting
for keeping the solutions located into the first five fronts or the best AAB
solutions (see Figure 1).


5.1 Leader Selection


As we said before, the micro-MOPSO uses the final archive for selecting lead-
ers. The idea is to have better diversity for the selection process. Algorithm 2
shows the mechanism for selecting a leader. The leader is selected from a sub-
set of the final archive members that have the best crowding distances (i.e.,
the best spread). The size of the subset of leaders is a percentage (defined by
the user) of the total population size.


Algorithm 2: Pseudocode of the leader selection mechanism adopted
in our micro-MOPSO.


Input: Final archive FA, final archive maximum limit (FAB), population
percentage for selecting leader (PPS).
Output: Leader
begin


for i = 1 to Final archive length do
Compute the crowding distance CDi;


end


Sort the final archive members (according to CD);
Get a percentage of particles (pps) from the population based on their
CD values;
Choose a particle in a random way;
Make this particle the leader;


end


The use of the crowding distance for selecting leaders allows the micro-
MOPSO to select nondominated solutions that are located in less crowded
areas of the Pareto front. The use of diversity information allows us to dis-
criminate from among several potential leaders (i.e., all the nondominated so-
lutions produced so far). The potential disadvantage of this selection method
is that, in the presence of local Pareto fronts, a good diversity maintenance
mechanism is required, in order to avoid stagnation. In our case, our mutation
operator is responsible for such diversity maintenance, but other mechanisms
could also be adopted (e.g., niching [29]).







Micro-MOPSO 9


f2
F5


F4


F3


F2


F1


f1


F
1


F
2


F
3


F
4


Case a)


Case b)


Non-dominated
sorting


Crowding distance sorting


Rejected
Swarm


Auxiliary
Archive


F
1


F
2


F
3


Rejected


Swarm


Auxiliary
Archive


F
4


F
5


Fig. 1. An example in which the auxiliary archive exceeds its maximum allowable
limit. The process finds the particles of the first nondominated front for all the
archive members. If the front length is lower than the maximum limit, the front is
kept into the archive. Then, in order to find the individuals in the next front, the
solutions of the first front are temporarily disregarded and the above procedure is
repeated until five fronts are found. Case a) When the front is kept into the archive
and it exceeds the allowable limit, a crowding distance is computed (just for the
front) in orden to filter out solutions, and the following fronts are deleted. Case b)
The micro-MOPSO keeps into the auxiliary archive at most five fronts.
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Neighbors selection mechanism


In contrast with others MOPSOs, the micro-MOPSO first selects the leader
and then uses the auxiliary archive for selecting the neighborhood for creating
the swarm. Algorithm 3 shows the mechanism for selecting the neighbors
which have the smallest Euclidian distance.


Algorithm 3: Pseudocode for selecting the neighborhood


begin
Input: Leader gbest, auxiliary archive.
Output: Neighborhood
for i = 1 to auxiliary archive length do


Compute the Euclidean distance (ED) from the ith particle to the
leader particle (gbest) in objective function space;


end


Sort the auxiliary archive (according to the ED values);
Choose the N − 1 particles closest to gbest;
Create a swarm with the N − 1 particles chosen plus the leader (gbest);


end


This mechanism allows the micro-MOPSO to be explorative at the begin-
ning of the search and exploitative at the end.


5.2 Reinitialization Process


The micro-MOPSO uses a reinitialization process similar to the one proposed
in [13]. The mechanism is the following: after certain number of iterations
(replacement generations rg), the algorithm identifies a certain number of
nondominated solutions (swarm) and replaces them by randomly generated
particles (rp). The rationale for mixing evolved and randomly generated par-
ticles is to avoid premature convergence.


5.3 Mutation Operator


Although the original PSO algorithm has no mutation operator, the addi-
tion of such a mutation operator is a relatively common practice nowadays
in the specialized literature. The main motivation for adding this operator
is to improve the performance of PSO as an optimizer, and to improve the
overall exploratory capabilities of this heuristic [2]. In our proposed approach,
we implemented the mutation operator originally developed by Michalewicz
for genetic algorithms [20]. It is worth noticing that this mutation operator
has been used before in PSO, but in the context of unconstrained multimodal
optimization [11]. This operator varies the value added or substracted to a so-
lution during the actual mutation, depending on the current iteration number
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(at the beginning of the search, large changes are allowed, and they become
very small towards the end of the search). We apply the mutation operator in
the particle’s position, for all its dimensions:


xid =


{


xid + ∆(t, UB − xid) if R = 0
xid − ∆(t, xid − LB) if R = 1


(6)


where t is the current iteration number, UB is the upper bound on the
value of the particle’s dimension, LB is the lower bound on the particle’s
dimension, R is a randomly generated bit (zero and one both have a 50%
probability of being generated) and δ(t, y) returns a value in the range [0, y].
δ(t, y) is defined by:


∆(t, y) = y ∗ (1 − r1−( t


T
)b


) (7)


where r is a random number generated from a uniform distribution in the
range [0,1], T is the maximum number of iterations and b is a tunable param-
eter that defines the non-uniformity level of the operator. In this approach,
the b parameter is set to 5 as suggested in [20].


6 Experiments and Results


When an evolutionary algorithm is used for solving multi-objective problems,
three issues have to take into consideration for evaluating the performance of
the algorithm [39]:


1. Minimize the distance of the Pareto front produced by the algorithm with
respect to the true Pareto front.


2. Maximize the spread of solutions found, so that we can have a distribution
of vectors as smooth and uniform as possible.


3. Maximize the number of elements of the Pareto optimal set found.


We adopt three performance measures for evaluating the performance of
the micro-MOPSO and for comparing it with respect to the NSGA-II that is
an algorithm representative of the state-of-the-art in the area.


6.1 Performance Measures


In order to assess the performance of our proposed approach and compare it
with respect to the NSGA-II, we adopted three performance measures that
have been commonly used in the specialized literature: error ratio, inverted
generational distance, and spacing. Each of them is briefly described next.
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Error Ratio


The error ratio (ER) performance measure reports the number of vectors in
the Pareto front found that are not members of the true Pareto front [36].
This is mathematically represented by:


ER =


∑n
i=1 ei


n
(8)


ei =


{


1 if the ith vector is member of the true Pareto front
0 otherwise


(9)


Inverted Generational Distance


The generational distance (GD) reports how far, on average, the Pareto front
found by an algorithm is from the true Pareto front. Mathematically, it is
defined by:


GD =
(
∑n


i=1 di
p)


1/p


n
(10)


where n is the number of vectors that the algorithm found, for p = 2, di


is the Euclidean distance (in objective space) between each member, i, of the
Pareto front found and the closest member in the true Pareto front.


The inverted generational distance (IGD) reports how far, on average, the
true Pareto front is from the Pareto front found by an algorithm. This intends
to reduce some of the problems that occur with the original generational dis-
tance metric when an algorithm generates very few nondominated solutions.


Spacing


The spacing (S) performance measure numerically describes the spread of the
vectors in the Pareto front found by the algorithm [30]. It measures the dis-
tance variance of neighboring vectors in the Pareto front found. The equations
11 and 12 define this performance measure.


E =


√


√


√


√


1


n − 1


n
∑


i=1


(d − di)2 (11)


di = mini,j 6=i(


M
∑


m=1


|fm
i − fm


j |) (12)
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6.2 Experiments


For assessing the performance of the micro-MOPSO, we used five test func-
tions from the ZDT (Zitzler-Deb-Thiele) benchmark described in [39]. Addi-
tionally, we adopted Kursawe’s test function [17] and Viennet’s test funtion
[37]. These test functions contain characteristics that make them difficult to
solve using MOEAs.


We performed thirty independent runs for each test function and we com-
pared our results with respect to the NSGA-II [8]. The number of objective
function evaluations performed was set to 3000 in all cases.


For obtaining the results reported next, we adopted the following param-
eters, which were obtained after numerous experiments:


• w = random number from a uniform distribution in the range [0,1]
• C1 = C2 = 1.8
• population size = 5 particles
• number of generations = 600
• final archive bound (FAB) = 100
• auxiliary archive bound (AAB)= 200
• population percent for leader selection (pps) = 0.20
• number of replacement generations = 100
• number of replacement particles = 2
• mutation rate = 0.1


6.3 Results


The summary of the results obtained are shown in Table 1. This table shows
the mean values and the standard deviations for each of the three performance
measures adopted over the 30 independent runs performed.


The results show that our micro-MOPSO produced the best mean values
in almost all cases. The graphical results shown in Figures 2 to 8, clearly
reflect that our proposed micro-MOPSO outperforms the NSGA-II. In test
functions ZDT1, ZDT2, ZDT3 and ZDT6, we can see that the NSGA-II is
far away from the true Pareto front, whereas our micro-MOPSO has already
converged to the true Pareto front after performing only 3000 fitness function
evaluations. Figures 7 and 8 show that our micro-MOPSO can cover most
of the Pareto front even when it is discontinuous (ZDT3 and Kursawe). The
results and the figures show that the spread of solutions of our micro-MOPSO
is evidently good enough for almost all the test functions (except for ZDT4 in
which both algorithms have a poor performance) in spite of the low number
of objective function evaluations performed.
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ER DGI S


micro-MOPSO NSGA-II micro-MOPSO NSGA-II micro-MOPSO NSGA-II
Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ


ZDT1 0.53 0.4796 1.0 0.0 0.0003 0.0002 0.0151 0.002 0.005 0.0004 0.031 0.009
ZDT2 0.496 0.334 1.0 0.0 0.0009 0.0036 0.0339 0.006 0.0048 0.0005 0.048 0.0182
ZDT3 0.935 0.244 1.0 0.0 0.002 0.0043 0.0216 0.002 0.0085 0.009 0.034 0.009
ZDT4 1.0 0.0 1.0 0.0 1.585 0.790 0.594 0.1782 0.0001 0.0004 5.321 3.837
ZDT6 0.133 0.001 1.0 0.0 0.00006 0.0 0.0570 0.004 0.033 0.149 0.124 0.085


Kur 0.954 0.392 0.837 0.093 0.003 0.0007 0.004 0.0005 0.082 0.028 0.10 0.025
Vnt 0.592 0.44 0.6 0.36 0.0006 0.0005 0.002 0.004 0.04 0.02 0.061 0.010


Table 1. Comparison of results between our micro-MOPSO and the NSGA-II. σ


refers to the standard deviation over the 30 runs performed.


micro-MOPSO vs NSGA-II


micro-MOPSO


Fig. 2. Graphical comparison of the Pareto fronts found by our micro-MOPSO
(bottom) and the NSGA-II (top) for ZDT1.
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micro-MOPSO vs NSGA-II


micro-MOPSO


Fig. 3. Graphical comparison of the Pareto fronts found by our micro-MOPSO
(bottom) and the NSGA-II (top) for ZDT2.


7 Conclusions and Future Work


We have proposed the use of a PSO algorithm with a very small population
size (only five particles) for solving unconstrained multi-objective optimiza-
tion problems. The proposed approach first selects the leader and then selects
the neighborhood for constructing the swarm around the leader. It also uses
a mutation operator, a reinitialization process, and a mechanism based on
the crowding distance for selecting leaders. Our proposed approach was able
to provide a better spread of the solutions obtained, as well as a faster con-
vergence, when compared to the NSGA-II, in several test functions, in which
only 3000 objective functions were performed. These results are very encour-
aging and indicate that our proposed approach could be a viable alternative
for solving problems in which the evaluations of the objective functions are
very expensive (computationally speaking).


As part of our future work, we are interested in incorporating a constraint-
handling mechanism into our approach. We are also interested in adopting
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micro-MOPSO vs NSGA-II - ZDT3


micro-MOPSO - ZDT3


Fig. 4. Graphical comparison of the Pareto fronts found by our micro-MOPSO
(right) and the NSGA-II (left) for ZDT3.


clustering techniques in order to provide a better spread of solutions. Addi-
tionally, we also want to study the sensitivity of our micro-MOPSO to its
parameters, with the aim of finding a set of parameters (or a self-adaptation
mechanism) that allows us to improve the performance and the robustness
of our approach. Finally, we are also interested in experimenting with other
types of reinitialization processes, since they could improve the convergence
rate of our algorithm (i.e., we could reduce the number of objective function
evaluations performed) as well as the quality of the results achieved.
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micro-MOPSO vs NSGA-II - ZDT4


micro-MOPSO - ZDT4


Fig. 5. Graphical comparison of the Pareto fronts found by our micro-MOPSO
(right) and the NSGA-II (left) for ZDT4.
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