1

Knowledge Incorporation in Multi-Objective
Evolutionary Algorithms

Ricardo Landa-Becerra, Luis V. Santana-Quintero
and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computacién

Av. IPN No. 2508, Col. San Pedro Zacatenco

México, D.F. 07360, MEXICO
rlandaQcomputacion.cs.cinvestav.mx, lvspenny@hotmail.com
ccoello@cs.cinvestav.mx

Summary. This chapter presents a survey of techniques used to incorporate knowl-
edge into evolutionary algorithms, with a particular emphasis on multi-objective
optimization. We focus on two main groups of techniques: those that incorporate
knowledge into the fitness evaluation, and those that incorporate knowledge in the
initialization process and the operators of an evolutionary algorithm. Several tech-
niques representative of each of these groups are briefly discussed, together with
some examples found in the specialized literature. In the last part of the chapter,
we provide some research ideas that are worth exploring in the future by researchers
interested in this topic.

1.1 Introduction

In many disciplines, optimization problems have two or more objectives, which
are normally in conflict with each other, and that we wish to optimize simul-
taneously. These problems are called “multi-objective”, and their solution
involves the design of different algorithms than when dealing with single-
objective optimization problems. Multi-objective problems, in fact, normally
give rise not to one, but to a set of solutions (called Pareto optimal set) which
are all equally good.

Evolutionary algorithms have been very popular for solving multi-objective
optimization problems [10, 11], mainly because of their ease of use, and
their wide applicability. However, multi-objective evolutionary algorithms
(MOEAS) tend to consume an important number of objective function evalua-
tions, in order to achieve a reasonably good approximation of the Pareto front,
even when dealing with benchmark problems of low dimensionality. This is a
major concern when attempting to use MOEAs for real-world applications,

2 Landa Becerra et al.

since we normally can afford only a fairly limited number of fitness function
evaluations in such cases.

Despite these concerns, little efforts have been reported in the literature
to reduce the computational cost of MOEAs, and several of them only focus
on algorithmic complexity (see for example [29]), in which little else can be
done because of the theoretical bounds related to nondominance checking
[35]. It has been until relatively recently, that researchers have developed
techniques to achieve a reduction of fitness function evaluations by exploiting
knowledge acquired during the search [34]. This knowledge can, for instance,
be used to adapt the recombination and mutation operators in order to sample
offspring in promising areas of the search space (as done through the use of
cultural algorithms [59]). Knowledge of past evaluations can also be used to
build an empirical model that approximates the fitness function to optimize.
This approximation can then be used to predict promising new solutions at a
smaller evaluation cost than that of the original problem [34, 32].

This chapter describes some of the possible schemes by which knowledge
can be incorporated into an evolutionary algorithm, with a particular empha-
sis on MOEAs. The taxonomy of approaches that we will cover in this chapter
is shown in Figure 1.1. In this proposed taxonomy, we divided the techniques
for knowledge incorporation in two groups: (1) those that incorporate knowl-
edge into the fitness evaluations, and (2) those which incorporate knowledge
in the initialization process and the operators of an evolutionary algorithm.
Each of these two groups has several ramifications (as shown in Figure 1.1),
each of which are discussed in this chapter.

The remainder of this chapter is organized as follows. In Section 1.2, we
discuss schemes that incorporate knowledge into the fitness evaluations of
an evolutionary algorithm. The three schemes normally adopted (problem
approximation, functional approximation, and evolutionary approximation)
are all discussed in this section. Section 1.3 discusses the main schemes nor-
mally adopted to incorporate knowledge in the initialization and the operators
of an evolutionary algorithm (namely, case-based reasoning and cultural al-
gorithms). Finally, in Section 1.5, we provide some of the paths for future
research within this topic that we consider worth exploring.

1.2 Knowledge Incorporation into the Fitness
Evaluations

The high number of fitness evaluations often required by evolutionary algo-
rithms is normally expensive, time-consuming or otherwise problematic in
many real-world applications. Particularly in the following cases, a computa-
tionally efficient approximation of the original fitness function reducing either
the number of duration of the fitness evaluations, is necessary:

e If the evaluation of the fitness function is computationally expensive.

1 Knowledge Incorporation in MOEAs

Knowledge Incorporation in
Evolutionary Computation

v

v

Knowledge Incorporation in
Fitness Evaluations

Knowledge Incorporation in
Initialization and Operators

v v

Problem Evolutionary
Approximation Approximation

Functional
Approximation

rd ~a

~a

v

Case-Based
Reasoning

Cultural

Fitness Algorithms

Inheritance

RSM + + ANN

RBF SVM
Kriging Gaussian
Processes

Fig. 1.1. A taxonomy of approaches for incorporating knowledge into evolutionary

algorithms.

e If the fitness function cannot be defined in an algebraic form (e.g., when

the fitness function is generated by a simulator).

e If additional physical devices must be used to determine the fitness func-

tion and this requires human interaction.

If parallelism is not allowed.

If the total number of evaluations of the fitness function is limited by

financial constraints.

In the above cases, the approximation is then used to predict promising
new solutions at a smaller evaluation cost than that of the original problem.
Jin [32] discusses various approximation levels or strategies adopted for fitness

approximation:

Problem Approximation: Tries to replace the original statement of the
problem by one which is approximately the same as the original problem
but which is easier to solve. To save the cost of experiments, numerical
simulations instead of physical experiments are used to pseudo-evaluate

the performance of a design.

4 Landa Becerra et al.

Functional Approximation: In this approximation, a new expression is
constructed for the objective function based on previous data obtained
from the real objective functions. In this case, models obtained from data
are often known as meta-models or surrogates (see section 1.2.1)

Evolutionary Approximation: This approximation is specific for EAs and
tries to save function evaluations by estimating an individual’s fitness from
other similar individuals. A popular subclass in this category is known as
fitness inheritance (see section 1.2.1)

Currently, there exist several evolutionary algorithms that use a meta-
model to approximate the real fitness function and reduce the total number
of fitness evaluations without degrading the quality of the results obtained.
To achieve this goal, meta-models should be combined with the original fit-
ness function in a proper manner. The mechanism adopted to balance the
use of the meta-model and the real objective function is known as evolution
control. Evolution control takes an important role when meta-models are com-
bined with the original fitness function. In such cases, most meta-models could
converge to a local optimum if they are provided incorrect knowledge (or in-
formation) about the real function. There are two different forms to combine
the approximated model and the real function:

Individual-based evolution control: In this case, some individuals use
meta-models to evaluate their fitness value and others (in the same gen-
eration) use the real fitness function. The main issue in individual-based
evolution control is to determine which individuals should use the meta-
model and which ones should use the real fitness function for fitness eval-
uation. They can be randomly chosen from the population, or one could
simply choose the best individuals in the population to be evaluated using
the real function (see Figure 1.2).

Generation-based evolution control: The main issue in generation-based
evolution control is to determine in which generations the meta-model
should be used and in which generations the real fitness function should
be used. In this control, the real fitness function is applied at every g
generations, where g is predefined and fixed throughout the evolutionary
process (see Figure 1.3).

In the above cases, the approximation is used to predict promising new so-
lutions at a smaller evaluation cost than that of the original problem. Current
functional approximation models include Polynomials (e.g., response surface
methodologies [50, 22]), neural networks (e.g., multi-layer perceptrons (MLPs)
[24, 27, 49]), radial-basis-function (RBF) networks [46, 67, 73], support vector
machines (SVMs) [65, 1], Gaussian processes [68, 3], and Kriging [18, 51]; all
of them can be used for constructing meta-models.

Various approximation levels or strategies adopted for fitness approxima-
tion in evolutionary computation are proposed in [32].

1 Knowledge Incorporation in MOEAs 5

Gi Gi+1
»

Meta-model Meta-model

Meta-model Meta-model
Meta-model Meta-model

Fig. 1.2. Individual-based evolution control.

Gi Gi+1 Gir2
Meta-model Meta-model

Meta-model Real-function Meta-model

Meta-model Real-function Meta-model
Meta-model Real-function Meta-model

Meta-model Real-function Meta-model
Meta-model Meta-model

Fig. 1.3. Generation-based evolution control.

l

1.2.1 Surrogates

Surrogate models can perform a number of tasks in support of a computational
analysis. Through interpolation, extrapolation and/or integration, these mod-
els can be used to address complex problems involving experimental design,
system analysis and prediction.

In a single-objective optimization context, surrogate models have been
successful in dealing with highly demanding problems where the cost of eval-
uating the real fitness function is very expensive (computationally speaking).

The accuracy of the surrogate model relies on the number of samples
provided in the search space, as well as on the selection of the appropriate
model to represent the objective functions. There exist a variety of techniques
for constructing surrogate models (see for example [69]). One approach is least-
square regression using low-order polynomials, also known as response surface
methods. A statistical alternative for constructing surrogate models is Kriging,
which is also referred to as “Design and Analysis of Computer Experiments”
(DACE) models [61] and Gaussian process regression [71]. Comparisons of
several surrogate modeling techniques are presented by Giunta and Watson
[21] and by Jin et al. [30].

A surrogate model is built when the objective functions are to be esti-
mated. This local model is built using a set of data points that lie on the

6 Landa Becerra et al.

local neighboorhood of the design. Since surrogate models will probably be
built thousands of times during the search, computational efficiency is the
main objective. This motivates the use of radial basis functions, which can
be applied to approximate multiple data, particularly when hundreds of data
points are used for training.

Chafekar et al. [5] proposed a multi-objective evolutionary algorithm called
OEGADO, which runs several Genetic Algorithms (GAs) concurrently with
each GA optimizing one objective function at a time, and forming a reduced
model (based on quadratic approximation functions) with this information.
At regular intervals, each GA exchanges its reduced model with the others.
This technique can solve constrained optimization problems in 3,500 and 8,000
evaluations and is compared with respect to the NSGA-II [14] and the € —
MOEA [12, 13].

Emmerich et al. [19] present a local Gaussian random field meta-model
(GRFM) to predict objective function values by exploiting information ob-
tained during previous evaluations. This scheme was created for optimizing
computationally expensive problems. This method selects the most promising
population members at each generation so that they are evaluated using the
real objective function. This approach was tested on a 10 dimensional airfoil
optimization problem and was compared with respect to the NSGA-II in the
generalized Schaffer problems.

Polynomials: Response Surface Methods (RSM)

The response surface methodology comprises regression surface fitting in order
to obtain approximate responses, design of experiments in order to obtain
minimum variances of the responses and optimizations using the approximated
responses.

An advantage of this technique is that the fitness of the approximated re-
sponse surfaces can be evaluated using powerful statistical tools. Additionally,
the minimum variances of the response surfaces can be obtained using design
of experiments with a small number of experiments.

For most response surfaces, the functions adopted for the approximations
are polynomials because of their simplicity, although other types of functions
are, of course, possible. For the cases of quadratic polynomials, the response
surface is described as follows:

g=B)+ Y Bixz)+ D (B rrits *zixw)) (1.1)

1<i<k 1<i<j<n

where k is the number of variables, and By and f; are the coefficients to
be calculated. To estimate the unknown coefficients of the polynomial model,
both the least squares method (LSM) and the gradient method can be used,
but either of them requires at least the same number of samples of the real
objective function than the k; coefficients in order to obtain good results.

1 Knowledge Incorporation in MOEAs 7

Goel et al. [22] is one of the few works that has used RSM in multi-
objective problems. In this paper, the NSGA-II [14] an a local search strategy
called “e — constraint” are adopted to generate a solution set that is used for
approximating the Pareto optimal front by a response surface method (RSM).
This method is applied to a rocket injector design problem.

There are few applications of the use of surrogates in evolutionary multi-
objective optimization. Two of them are briefly discussed next.

Bramanti et al. [2] tried to reduce the computational cost of a multi-
objective evolutionary algorithm using neural networks interpolation for build-
ing an objective response surface in order to find multiple trade-off solutions
in electromagnetic design problems.

Wilson et al. [72] used two types of surrogate approximations (response
surfaces and Kriging models) in order to reduce the computational expense of
designing piezomorph actuators. The method shows that is flexible and can
accommodate a wide variety of experimental designs and approximations. The
authors also show that this method works well for both convex and non-convex
Pareto fronts.

Radial Basis Functions

Radial Basis Functions (RBFs) were first introduced by R. Hardy in 1971
[23]. This term is made up of two different words: radial and basis functions.
A radial function refers to a function of the type:

g:R¢ = R:(z1,...,24) = o(||z1, ..., zdl2)

for some function ¢ : R — R. This means that the function value of g at
a point @ = (z1,...,2q) only depends on the Euclidean norm of 7':

d
)22 = distance of Z to the origin
i=0

1zl =

And this explains the term radial. The term basis function is explained
next. Let’s suppose we have certain points (called centers) @1,..., @, € R%.
The linear combination of the function g centered at the points @ is given
by:

n n
FRESR:Z o) Mg -%) =) Mo(|Z-Z) (12)
i=1 i=1

where || 7 — 7| is the Euclidean distance between the points 7 and ;.
So, f becomes a function which is in the finite dimensional space spanned by
the basis functions:

g : T~ g(|T - 7|

8 Landa Becerra et al.

Now, let’s suppose that we already know the values of a certain function
H : R* = R at a set of fixed locations Z,...,ZT;. These values are named
f; = H(T}), so we try to use the T} as centers in the equation 1.2. If we want
to force the function f to take the values f; at the different points T}, then
we have to put some conditions on the A;. This implies the following:

n

Vi€ {L,...,n} f = F@) =Y (- o(IF; ~ Z))

i=1

In these equations, only the \; are unknown, and the equations are linear
in their unknowns. Therefore, we can write these equations in matrix form:

¢(0) d(llzr —22ll) ... d(l|lz1 — 2all) At fi
Sllez —zl) ¢(0) ... glllez —anll) | | A2 f2

: : : : (1.3)
dllzn = 21l)) @(llzn = zal) .. $(0) Ml L

Typical choices for the kernel g(7) include linear splines, cubic splines,
multiquadrics, thin-plate splines and Gaussian functions as shown in Table
1.1.

Type of Radial Function

LS linear splines 7|

CS cubic splines Ir|?
MQS multiquadrics splines /1 + (er)?
TPS thin plate splines |r|>*™* In|r|
GA Gaussian e~ (en)?

Table 1.1. Radial Basis Functions

Ong et al. [47] used surrogate models (RBFs) to solve computationally ex-
pensive design problems with constraints. The authors used a combination of
a parallel evolutionary algorithm coupled with sequential quadratic program-
ming in order to find optimal solutions of an aircraft wing design problem. In
this case, the authors construct a local surrogate model based on radial basis
functions in order to approximate the objective and constraint functions of
the problem.

Karakasis et al. [33] used surrogate models based on radial basis functions
in order to deal with computationally expensive problems. A method called
Inexact Pre-Evaluation (IPE) is applied into a MOEA’s selection mechanism.
Such method helps to choose the individuals that are to be evaluated using
the real objective function, right after a meta-model approximation has been
obtained by the surrogate. The results are compared against a conventional

1 Knowledge Incorporation in MOEAs 9

MOEA in two test-problems, one from a benchmark and one from the turbo-
machinery field.

Voutchkov & Keane [70] studied several surrogate models (RSM, RBF and
Kriging) in the context of multi-objective optimization using the NSGA-II [14]
as the MOEA that optimized the meta-model function given by the surrogate.
The surrogate model is trained with 20 initial points and the NSGA-II is
run on the surrogate model. Then, the 20 best resultant points given by the
optimization are added to the existing data pool of real function evaluations
and the surrogate is re-trained with these new solutions. A comparison of
results is made in 4 test functions (from 2 to 10 variables), performing 400
real fitness function evaluations.

Kriging

In Kriging, the meta-model prediction is formed by adding up two different
models as follows:

y(7T) =a(T) +b(T)

where a(7) represents the “average” long-term range behavior and the ex-
pected value of the true function. This function can be modeled in various
ways, such as with polynomials or with trigonometric series as:

a(B) =ao+)Y a(w:)

i=1 j=1

where: R is the polynomial order with L dimensions and b(%') stands for
a local deviation term. b(7) is a Gaussian random function with zero mean
and non-zero covariance that represents a localized deviation from the global
model. This function represents a short-distance influence of every data point
over the global model. The general formulation for b(7) is a weighted sum of
N functions, K, (x) that represent the covariance functions between the nt"
data point and any point x:

N L 2
0(2) =Y baK(h(z,4)) & h(z,2,) = Z(ﬁ)
n=1 =1 "t ?

where 7" and z7'%® are the lower an upper bounds of the search space
and z;, denotes the i — th component of the data point z,. However, the
shape of K (h) has a strong influence on the resulting aspect of the statistical
model. And that is why it is said that Kriging is used as a estimator or an
interpolator.

Knowles [34] proposed “ParEGO”, which consists of a hybrid algorithm
based on a single optimization model (EGO) and a Gaussian process, which is
updated after every function evaluation, coupled to an evolutionary algorithm.

10 Landa Becerra et al.

EGO is a single-objective optimization algorithm that uses Kriging to model
the search landscape from the solutions visited during the search and learns
a model based on Gaussian processes (called DACE). This approach is used
to solve multi-objective optimization problems of low dimensionality (up to 6
decision variables) with only 100 and 250 fitness function evaluations.

Neural Networks

Artificial neural networks (ANNs) provide a general, practical method for
learning real-valued, discrete-valued, and vector-valued functions from exam-
ples. ANN learning is robust to errors in the training data and has been suc-
cesfully applied to several problems. An ANN basicaly builds a map between
a set of inputs and the respective outputs and are good to deal with nonlinear
regression analysis and incomplete data. The main objective in the construc-
tion of an ANN is defining its appropriate architecture, that is, the number
of layers and the number of nodes in each layer, given a certain number of
inputs and outputs.

The Multi-Layer Perceptron (MLP) network has been widely used in func-
tion approximation problems, because it has been often found to provide com-
pact representations of mappings in real-world problems. An MLP is composed
of neurons which are very close to the ones represented in the case of the lin-
ear network. The linear neurons are modified so that a slight nonlinearity is
added after the linear summation. The output (y) of each neuron is thus:

y =D wi-a;+b)
i=1

where a; are the inputs of the neuron and w; are the weights of the neuron.
The nonlinear function ¢ is called the activation function as it determines the
activation level of the neuron.

In Figure 1.4, we show an MLP network with one layer of linear output
neurons and one layer of nonlinear neurons between the input and output neu-
rons. The middle layers are usually called hidden layers. Note that a graphical
model of the conditional dependences would not include the middle layer be-
cause the computational units are unknown variables of the model whereas
the weights would be included as nodes of the model.

Some applications of ANNs to evolutionary multi-objective optimization
are the following:

Farina [20] proposed “NN-GRS”, which is an extension of the single-
objective Neural Network-based GRS (Generalized Response Surface) method.
The main idea of this approach is to maintain two different objective func-
tions, one real and another one which is an approximation (neural network
based).

Nain & Deb [45] proposed “NSGA-II-ANN”, which combines the NSGA-
IT algorithm [14] with a new method based on neural networks as the basic

1 Knowledge Incorporation in MOEAs 11

@ = hidden layer

@ = output layer

Fig. 1.4. A graphical representation of an MLP network with one hidden layer

approximation technique for fitness computation. This meta-model is updated
at each generation, and it provides a more refined approximate model to guide
the search of the NSGA-II in subsequent generations.

Fitness Inheritance

Fitness Inheritance is a technique proposed by Smith et al. [66], whose main
motivation is to reduce the total number of fitness evaluations made by an
evolutionary algorithm. The mechanism works as follows: when assigning the
fitness to an individual, sometimes the objective function is evaluated as usual,
but the rest of the time, the fitness of an individual is assigned as the average
of the fitnesses of its parents, thus avoiding a fitness function evaluation based
on the assumption of similarity of the individual to its parents.

In the original proposal, inheritance was made in two ways: first, it is
computed as the average of the two parents:

where z is the individual to evaluate, and p; and ps are the parents of x.
The second way is a weighted sum, where one of the parents may be more
important. This weighted inheritance is obtained by:

w1 f(p1) +wa f(p2)

w1 + Wwa

flz) =

where wy and ws are the weigths for the two parents.

The OneMax problem was used in this early proposal [66], and the au-
thors showed a decrease in the number of fitness function evaluations, when
comparing this approach to another one without fitness inheritance. Other
applications of fitness inheritance are: the design of vector quantization code-
books [74], where good results were obtained; and image compression [62],
where the authors reported a significant reduction in the number of evalua-
tions. This last approach is a more complex inheritance mechanism, where the

12 Landa Becerra et al.

individuals store also a variable that reflects the quality of the approximations
with respect to the actual fitness values (a value of one means that the real
objective function was evaluated). Such quality is decreased over generations,
since the evolutionary algorithm tends to converge and the distance of an
individual with respect to its parents tends to decrease over time.

Fitness inheritance must not be always applied, since the algorithm needs
to use the true fitness function several times, in order to obtain enough infor-
mation to guide the search. The percentage of time in which fitness inheritance
is applied is called inheritance proportion. As this inheritance proportion tends
to one (i.e., inherit all the time), the algorithm is most likely to prematurely
converge [6].

There are a few theoretical studies about the fintess inheritance technique.
For example, in [64], the authors present a theoretical model, which is used
to obtain the convergence time, the optimal population sizing and the opti-
mal inheritance proportion. Regarding the inheritance proportion, the authors
found that, for problems of moderate and large size, the optimal values are
between 0.54 and 0.558. They also defined the speedup of fitness inheritance
when comparing it with respect to an algorithm without fitness inheritance
(this is analogous to the speedup achieved when parallelizing an algorithm,
with respect to executing in sequentially).

The work of Sastry et al. [64] was extended to the multi-objective case
by Chen et al. [6]. In this paper, the authors use fitness sharing to maintain
diversity in the population an to be able to cover a larger extension of the
Pareto front. The problem they solve is a bi-objective extension of the One-
Max problem originally solved by Sastry et al. [64]. Chen et al. [6] also present
generalizations of the theoretical work reported in [64] about the convergence
time, the optimal population sizing, the optimal inheritance proportion and
the speedup. The experiments carried out show that, savings of up to 40% of
the total number of evaluations can be achieved when using fitness inherit-
nance alone. Additionally, when using fitness inheritance in combination with
fitness sharing, savings of up to 25% can be obtained.

Bui el al. [4] presented a multi-objective approach for dealing with noisy
functions. As they try to characterize the noise present, they evaluate a single
individual several times, and this increases the computational cost associated
with evaluations of the fitness function. They use fintess inheritance as an
alternative to reduce the cost required by the approach. In their experiments
they use the NSGA-II, with some specific anti-noise mechanisms, such as a
probabilistic model and resampling. The test functions adopted are a noisy
version of the ZDT set [75], which is a commonly used benchmark in evolu-
tionary multi-objective optimization. The results show savings of up to 33%
of the total number of fitness evaluations performed.

Fitness inheritance has also been used with particle swarm optimization.
The main mechanism needs a modification in this case, because of the fact
that in particle swarm optimization there are no parents or children, but
leaders and previous positions of a particle. In [52], the authors propose several

1 Knowledge Incorporation in MOEAs 13

ways to make the inheritance, taking into account the previous position of the
partice (the so called pbest), and the leader. They compare the performance of
different versions of fitness inheritance in some multi-objective problems (the
ZDT test functions [75] and the DTLZ test functions [15]), and also compare
the approach with respect to other multi-objective versions of particle swarm
optimization. The results show that the proposed approach is very competitive
with respect to other techniques, providing savings that range between 30%
and 40%

A more recent approach proposes the use of dynamic rules to assign the
inheritance proportion in particle swarm optimization [53]. This scheme is
proposed again for multi-objective problems. Five rules were proposed in [53]:

)

pi(gen) = (Ggrt:;x)z

pi(gen) = G!izzm _sin (2(7;39’;2””)
pi(gen) = Ggrzzx

pi(gen) = (Gg::m)lh

pi(gen) = (GQTZZm)l/z;

where p;(gen) is the inheritance proportion at generation gen, and Gmaz is
the total number of generations that the algorithm will run.

The use of these rules results on savings from 19% up to 78% of the to-
tal number of evaluations. However, the greater the savings in the number
of evaluations, the greater is the degradation in the quality of the results.
Nevertheless, the authors show that functions that provide up to 49% of sav-
ings present no significant loss in the quality of the results. The approach was
tested with the well known ZDT problems [75].

As a final note on fitness inheritance, it is important to mention that some
researchers consider this mechanism not so useful in complex or real world
problems, because it has been only applied to “easy” problems. For example
[17] tested the original scheme of fitness inheritance on a standard binary GA
and the ZDT problems [75]. From this study, the authors concluded that fit-
ness inheritance is not useful when the shape of the Pareto front is nonconvex
or discontinuous. These conclusions are true for the original proposal, but it
is possible to overcome them, as shown in [54], so that fitness inheritance can
be successfully adopted with Pareto fronts of any shape.

14 Landa Becerra et al.

1.3 Knowledge Incorporation in the Initialization and
the Operators

In addition to the techniques for incorporating knowledge during the eval-
uation of new individuals (i.e., directly affecting fitness calculation), some
researchers have explored the use of knowledge at different stages of the evo-
lutionary search. The aim, however, is the same: either to speedup convergence
or to reduce the computational cost of the algorithm (measured in terms of
the number of fitness function evaluations performed).

In this regard, several options are possible. For example, some domain
knowledge previously obtained (or provided by a human expert) may be used
to build a database of cases that are adopted as a reference for conducting a
more efficient search. It is also possible to seed good solutions in the initial
population of an evolutionary algorithm, or to add knowledge (perhaps based
on experience) to the variation operators (recombination and mutation), in
order to facilitate the generation of good solutions. Next, we will these choices
in more detail.

1.3.1 Case-Based Reasoning

The case-based reasoning method [60] consists of a historical database with
cases of study of the problem to be solved. When new problems appear, the
system looks for a case in the database which matches the current problem,
and adapts the previous solutions. Sometimes the system can even store the
process to obtain a solution, in order to execute the same or a similar process
when similar problems appear.

Early applications of case-based reasoning in evolutionary computation
consist only of a tool to analyze the evolutionary process, making use of the
building blocks theory [42]. The authors in this case, used several test func-
tions, including the circuits design problem, and they applied the case-based
reasoning techniques to discover the search path the algorithm followed, basi-
cally through the discovery of “good” building blocks. The authors argue that
these tools can be used to post-process solutions, and they are also useful when
dealing with deceptive problems.

An attempt to improve the performance of an evolutionary algorithm with
case-based reasoning, is the use of a memory that contains previous solutions,
obtained from similar problems [40]. The population is initialized in this case
with some of these solutions, in order to move the search to potentially good
regions. Louis [40] proposed a methodology for selecting appropriate initial-
ization cases. The approach works very well in combinatorial circuit design
problems, showing that the time required to solve a problem decreases with
respect to that required by the original algorithm. A similar application of
case-based reasoning techniques to the extraction of design patterns within
the context of combinational circuit design is reported by Islas et al. [28].

1 Knowledge Incorporation in MOEAs 15

Similar approaches of injection of solutions obtained from a memory of
previous runs were used to solve different instances of the traveling sales-
man problem [43], for dynamic strike force asset allocation [39], for electronic
circuits design [41], and for games [44].

In the case of [43], the strategy is not only to inject potential solution
at the beginning of the evolutionary process, but also periodically during the
search. The authors also develop a similarity measure to select the appropriate
cases for the traveling salesman problem.

In [39], the authors investigate the number of individuals that can be
injected to the algorithm while it obtains good results. They conclude that
if too many individuals are injected, the algorithm is more likely to have
premature convergence (a similar feature present when using surrogates and
fitness inheritance), and recommend to inject only between 5% and 15% of
solutions.

More recent work investigates the changes in the convergence rates when
applying injection of solutions [16], the identification of the similarity of the
solved problems, and those to be solved.

Despite the lack of applications of case-based reasoning in evolutionary
multi-objective optimization, there are a very interesting potential applica-
tions of this technique, including a multiple objective version of the traveling
salesman problem, and several types of scheduling problems. These and many
other applications could certainly benefit from the use of databases of cases
and/or from domain knowledge provided by human experts.

1.4 Cultural Algorithms

Cultural algorithms were proposed by Robert Reynolds [55], as an approach
that tries to add domain knowledge to an evolutionary algorithm during the
search process, avoiding the need to add it a priori. This approach uses, in ad-
dition to the population space commonly adopted in evolutionary algorithms,
a belief space, which encodes the knowledge obtained from the search points
and their evaluation, in order to influence the evolutionary operators that
guide the search. However, the belief space is commonly designed based on
the group of problems that is to be solved.

At each generation, the cultural algorithm selects some exemplar individ-
uals from the population, in order to extract information from them that can
be useful during the search. Such an information is used to update the belief
space. The belief space will then influence the operators of the evolutionary
algorithm, to transform them in informed operators and enhance the search
process. These interactions between the spaces of a cultural algorithm are
depicted in Figure 1.5.

Regarding optimization, cultural algorithms have been applied mainly to
single-objective problems. One of the first applications was the Boole problem
[55], which uses a genetic algorithm for the population space, and version

16 Landa Becerra et al.

Belief Space

Communication
Protocol

Population Space

Fig. 1.5. Spaces of a cultural algorithm

spaces for the belief space. In this case, a graph (the belief space) of the
schemes in the population is built and classified based on the fitness of each
particular instance. This is a very illustrative approach, because the graph’s
dynamics will reflect the discovering of good and bad schemes.

Constrained and dynamic optimization problems have been a a very ac-
tive application area for cultural algorithms. Reynolds et al. [59] proposed a
cultural version of GENOCOP for solving convex constrained optimization
problems. The belief space in this approach constructs boundaries to include
the feasible region, and then produce new solutions only within that region.

Later on, Chung and Reynolds [57] developed the CAEP (Cultural Algo-
rithms with Evolutionary Programming) for global optimization, with a very
rich model in the belief space, and very encouraging results. For example,
in [58] the authors proposed a formal model of self-adaptation in cultural
algorithms, that supports the three main levels of self-adaptation in evolu-
tionary algorithms (population, individual and component level). The royal
road functions were adopted as a case of study in this work.

The CAEP was tested on a number of global optimization problems [7],
showing its improvement when compared to the standard evolutionary pro-
gramming algorithm. In this work, the belief space was divided in two parts,
called knowledge sources, specifically designed for real-valued problems: the
situational knowledge and the normative knowledge. A general description of
these knowledge sources, and those designed and added later, is provided in
Table 1.2.

1 Knowledge Incorporation in MOEAs

17

Table 1.2. Knowledge sources for real-parameter optimization in cultural algo-

rithms

Knowledge |Description

source

Situational Consists of the best exemplars found in the population, which

knowledge represent leaders to follow. The individuals generated through
this source, will tend to be closer to the leaders.

Normative Consists of a set of intervals for each decision variable where

knowledge good solutions have been found. The individuals generated
through this source are more likely to be within the intervals,
so they exploit good regions.

Topographical |Consists of a set of cells that represent a region of the search

knowledge space. Each cell stores a characteristic of the region it repre-

sents; for example, the feasability of that region. The individ-
uals generated through this source will be closer to the best
cells.

Consists of a set of previous local optima, and its function is to
extract patterns about their position. The individuals generated
through this source will try to find in advance the location of
the next local optimum. This knowledge source can also be used
to add diversity to the algorithm, since it attempts to explore
new regions.

It has no defined structure, because it depends of the problem
which is to be solved. Its function is to exploit some knowledge
about the problem, if available.

History knowl-
edge

Domain knowl-
edge

A CAEP for nonlinear constrained optimization, a more general problem
than the one tackled in GENOCOP, was proposed in [31]. To handle con-
straints, a third knowledge source, called topographical knowledge, was added
to the belief space. It consists of a set of cells, which store some characteristic
of the region of the search space they represent. In this case, they store the
feasibility of the region, based on the explored points within them.

Jin’s approach [31] was extended in [8], improving its computational ef-
ficiency, and overcoming its scalability problems. In the original approach
the topographical knowledge was stored as a n-dimentional grid of the search
space. This was replaced by a spatial data structure, that requires a controlled
amount of memory even when the number of dimensions grows. Additionally,
the authors present an empirical study in which this approach is validated
using a well-known benchmark adopted in evolutionary constrained optimiza-
tion, and results are compared with respect to constraint-handling techniques
representative of the state-of-the-art in the area. The cultural algorithm re-
ported in [8] is able to find competitive results, while performing only about
15% of the total number of fitness function evaluations required by the other
approaches with respect to which it was compared.

18 Landa Becerra et al.

Saleem and Reynolds [63] added two more knowledge sources to cultural
algorithms, in order to deal with dynamic environments: history knowledge
and domain knowledge. The first of these sources was designed to extract
patterns about the changes of position of optimal points at each environmental
change. The second source was designed to exploit the known characteristics of
the function generator. Even when these knowledge sources were designed for
dynamic problems, they have also been used in static environments [48, 36].

Another cultural algorithm in which the population space adopts particle
swarm optimization was proposed by Peng et al. [48]. The authors use all of
the previously designed knowledge sources, and they investigate the role of
the belief space in the different stages of the optimization process.

Differential evolution has also been used for the population space of a
cultural algorithm [36, 37], also focusing on constrained optimization. In this
case, all the knowledge sources were adapted for its use with the differential
evolution operator, providing some adaptation of its components. The ap-
proach was tested on a well known benchmark and also on some engineering
optimization problems, with good results.

Finally, there is a cultural algorithm in which genetic programming is used
for the population space [56]. In this case, the belief space consists of a set of
subgraphs which have been frequently found in the population.

There are very few attempts to use cultural algorithms for multi-objective
optimization. The first is a CAEP [9], which uses Pareto ranking, and an ap-
proximation of the dimensions of the Pareto front in the belief space. The belief
space works as a guide for the individuals to reach regions where nondomi-
nated solutions have been found. The belief space includes also a mechanism
to obtain a good distribution of the resulting points along the Pareto front.

Recently, the cultural algorithm with differential evolution ([36]) for con-
strained optimization was proposed, together with the e-constraint method,
to solve multi-objective problems [38]. In this work, the authors identify some
hard problems from the DTLZ [15] and WFG [25, 26] benchmarks, and then
they apply their technique to them. This approach is computationally expen-
sive (because of the optimization processes to obtain one point at a time),
but this cost, when affordable, is worth trying, because this approach can
solve very difficult problems that other modern multi-objective evolutionary
algorithms (e.g., the NSGA-II [14]) cannot solve, even if allowed to perform a
very high number of fitness function evaluations.

1.5 Future Perspectives

From our previous discussion of the most representative work regarding incor-
poration of knowledge into evolutionary algorithms, we could identify several
topics in which researchers working on evolutionary multi-objective optimiza-
tion have not done much work (or where there is no work at all). Some of
these topics are the following:

1 Knowledge Incorporation in MOEAs 19

e One of the key issues when adopting meta-models for reducing the number
of evaluations of a MOEA, is the design of the evolution control that keeps
a proper balance between the evaluations done in the meta-model and
those performed with the actual objective function. More detailed studies
regarding the design of such evolution control are necessary in the context
of multi-objective optimization.

e To the authors’ best knowledge, so far, nobody has used support vector
machines within the context of evolutionary multi-objective optimization
(i-e., for predicting good solutions).

e The development of cultural algorithms for multi-objective optimization
is another promising path for future research. The aim in this case, should
be not only to reduce the number of fitness function evaluations to be
performed, but also to be able to solve problems that are very hard for
other multi-objective evolutionary algorithms.

e Case-based reasoning techniques have not been used so far (to the authors’
best knowledge) within the context of evolutionary multi-objective opti-
mization. This sort of approach may be very useful to seed good solutions
in the initial population of a MOEA, or to extract certain “patterns” from
the population of a MOEA that could be used to speedup convergence in
similar multi-objective optimization problems.

e Scalability is another important topic that needs to be studied in more
depth. In the few papers that we reviewed in this chapter, MOEAs that
benefit from knowledge incorporation (particularly those adopting meta-
models) have been used only in problems with few decision variables (no
more than ten). Thus, the scalability of current techniques to large dimen-
sional problems is a very important research topic that certainly deserves
attention.

Acknowledgments

The first and second authors acknowledge support from CONACyT through a
scholarship to pursue graduate studies at the Computer Science Department of
CINVESTAV-IPN. The third author acknowledges support from CONACyT
project number 42435-Y.

References

1. M. Bhattacharya and G. Lu. A dynamic approximate fitness based hybrid ea
for optimization problems. In Proceedings of IEEE Congress on Evolutionary
Computation, pages 1879-1886, 2003.

2. A. Bramanti, P. Di Barba, M. Farina, and A. Savini. Combining response
surfaces and evolutionary strategies for multiobjective Pareto-optimization in
electromagnetics. International Journal of Applied Electromagnetics and Me-
chanics, 15(1):231 — 236, 2001.

20

10.

11.

12.

13.

14.

15.

Landa Becerra et al.

. D. Bueche, N.N. Schraudolph, and P. Koumoutsakos. Accelerating evolution-
ary algorithms with gaussian process fitness function models. IEEE Trans. on
Systems, Man, and Cybernetics: Part C, 2004. In press.

L.T. Bui, Hussein Abbass, and D. Essam. Fitness inheritance for noisy evolu-
tionary multi-objective optimization. In Proceedings of genetic and Evolutionary
Computation Conference (GECCO-2005), pages 779-785. ACM, 2005.

D. Chafekar, L. Shi, K. Rasheed, and J. Xuan. Multi-objective GA optimization
using reduced models. IEEE Transactions on Systems, Man, and Cybernetics:
Part C, 35(2):261-265, May 2005.

Jian-Hung Chen, David E. Goldberg, Shinn-Ying Ho, and Kumara Sastry. Fit-
ness Inheritance in Multi-Objective Optimization. In W.B. Langdon, E. Canti-
Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller,
E. Burke, and N. Jonoska, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO’2002), pages 319-326, San Francisco, Cali-
fornia, July 2002. Morgan Kaufmann Publishers.

Chan-Jin Chung and Robert G. Reynolds. CAEP: An Evolution-based Tool
for Real-Valued Function Optimization using Cultural Algorithms. Journal on
Artificial Intelligence Tools, 7(3):239-292, 1998.

Carlos A. Coello Coello and Ricardo Landa Becerra. Adding knowledge and
efficient data structures to evolutionary programming: A cultural algorithm for
constrained optimization. In Erick Canti-Paz et al., editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’2002), pages 201
209, San Francisco, California, July 2002. Morgan Kaufmann Publishers.
Carlos A. Coello Coello and Ricardo Landa Becerra. Evolutionary Multiobjec-
tive Optimization using a Cultural Algorithm. In 2008 IEEE Swarm Intelli-
gence Symposium Proceedings, pages 6-13, Indianapolis, Indiana, USA, April
2003. IEEE Service Center.

Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York, May 2002. ISBN 0-3064-6762-3.

Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Towards a Quick
Computation of Well-Spread Pareto-Optimal Solutions. In Carlos M. Fonseca,
Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors,
Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 20038, pages 222-236, Faro, Portugal, April 2003. Springer. Lecture Notes
in Computer Science. Volume 2632.

Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Evaluating the e-
Domination Based Multi-Objective Evolutionary Algorithm for a Quick Compu-
tation of Pareto-Optimal Solutions. Evolutionary Computation, 13(4):501-525,
Winter 2005.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Ewvolutionary Computation, 6(2):182-197, April 2002.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable
Test Problems for Evolutionary Multiobjective Optimization. In Ajith Abra-
ham, Lakhmi Jain, and Robert Goldberg, editors, Evolutionary Multiobjective

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

1 Knowledge Incorporation in MOEAs 21

Optimization. Theoretical Advances and Applications, pages 105-145. Springer,
USA, 2005.

Rich Drewes, Sushil J. Louis, Chris Miles, John McDonnell, and Nick Gizzi. Use
of case injection to bias genetic algorithm solution of similar problems. In Pro-
ceedings of the International Congress on Evolutionary Computation, Canberra,
Australia, 2003. IEEE Press.

Els I. Ducheyne, Bernard De Baets, and Robert De Wulf. Is Fitness Inheritance
Useful for Real-World Applications? In Carlos M. Fonseca, Peter J. Fleming,
Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors, Evolutionary Multi-
Criterion Optimization. Second International Conference, EMO 2003, pages 31—
42, Faro, Portugal, April 2003. Springer. Lecture Notes in Computer Science.
Volume 2632.

M. Emmerich, A. Giotis, M. Ozdenir, T. Bick, and K. Giannakoglou.
Metamodel-assisted evolution strategies. In Parallel Problem Solving from
Nature, number 2439 in Lecture Notes in Computer Science, pages 371-380.
Springer, 2002.

Michael T.M. Emmerich, Kyriakos C. Giannakoglou, and Boris Naujoks. Single-
and Multiobjective Evolutionary Optimization Assisted by Gaussian Ran-
dom Field Metamodels. IEEE Transactions on Evolutionary Computation,
10(4):421-439, August 2006.

M. Farina. A neural network based generalized response surface multiobjective
evolutionary algorithms. In Congress on Evolutionary Computation, pages 956—
961. IEEE Press, 2002.

A.A. Giunta and L. Watson. A comparison of approximation modeling tech-
niques: Polynomial versus interpolating models. Technical Report 98-4758,
ATAA, 1998.

T. Goel, R. Vaidyanathan, R. Haftka, W. Shyy, N. Queipo, and K. Tucker.
Response surface approximation of pareto optimal front in multiobjective opti-
mization. Technical Report 2004-4501, ATAA, 2004.

R. L. Hardy. Multiquadric equations of topography and other irregular surfaces.
J. Geophys. res, 76:1905-1915, 1971.

Y.-S. Hong, H.Lee, and M.-J. Tahk. Acceleration of the convergence speed of
evolutionary algorithms using multi-layer neural networks. Engineering Opti-
mization, 35(1):91-102, 2003.

Simon Huband, Luigi Barone, Lyndon While, and Phil Hingston. A Scalable
Multi-objective Test Problem Toolkit. In Carlos A. Coello Coello, Arturo
Herndndez Aguirre, and Eckart Zitzler, editors, Evolutionary Multi-Criterion
Optimization. Third International Conference, EMO 2005, pages 280-295, Gua-
najuato, México, March 2005. Springer. Lecture Notes in Computer Science Vol.
3410.

Simon Huband, Phil Hingston, Luigi Barone, and Lyndon While. A Review
of Multiobjective Test Problems and a Scalable Test Problem Toolkit. IEEE
Transactions on Evolutionary Computation, 10(5):477-506, October 2006.

M. Hiiscken, Y. Jin, and B. Sendhoff. Structure optimization of neural networks
for aerodynamic optimization. Soft Computing Journal, 9(1):21-28, 2005.
Eduardo Islas Pérez, Carlos A. Coello Coello, and Arturo Herndndez Aguirre.
Extraction and reuse of design patterns from genetic algorithms using case-
based reasoning. Soft Computing—A Fusion of Foundations, Methodologies and
Applications, 9(1):44-53, January 2005.

22

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Landa Becerra et al.

Mikkel T. Jensen. Reducing the Run-Time Complexity of Multiobjective EAs:
The NSGA-II and Other Algorithms. IEEE Transactions on Evolutionary Com-
putation, 7(5):503-515, October 2003.

R. Jin, W. Chen, and T.W. Simpson. Comparative studies of metamodeling
techniques under miltiple modeling criteria. Technical Report 2000-4801, ATAA|
2000.

Xidong Jin and Robert G. Reynolds. Using Knowledge-Based Evolutionary
Computation to Solve Nonlinear Constraint Optimization Problems: a Cultural
Algorithm Approach. In 1999 Congress on Evolutionary Computation, pages
1672-1678, Washington, D.C., July 1999. IEEE Service Center.

Yaochu Jin. A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1):3-12, 2005.

Marios K. Karakasis and Kyriakos C. Giannakoglou. Metamodel-Assisted Multi-
Objective Evolutionary Optimization. In R. Schilling, W. Haase, J. Periaux,
H. Baier, and G. Bugeda, editors, EUROGEN 2005. Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial Problems, Mu-
nich, Germany, 2005.

Joshua Knowles. ParEGO: A hybrid algorithm with on-line landscape approxi-
mation for expensive multiobjective optimization problems. IEEE Transactions
on Evolutionary Computation, 10(1):50-66, January 2006.

H.T. Kung, F. Luccio, and F.P. Preparata. On finding the maxima of a set of
vectors. Journal of the Association for Computing Machinery, 22(4):469-476,
1975.

Ricardo Landa Becerra and Carlos A. Coello Coello. Optimization with
Constraints using a Cultured Differential Evolution Approach. In Hans-
Georg Beyer et al., editor, Genetic and Evolutionary Computation Conference
(GECCO’2005), volume 1, pages 27-34, Washington, DC, USA, June 2005.
ACM Press. ISBN 1-59593-010-8.

Ricardo Landa Becerra and Carlos A. Coello Coello. Cultured differential evo-
lution for constrained optimization. Computer Methods in Applied Mechanics
and Engineering, 195(33-36):4303-4322, July 1 2006.

Ricardo Landa Becerra and Carlos A. Coello Coello. Solving hard multiobjective
optimization problems using e-constraint with cultured differential evolution. In
Parallel Problem Solving from Nature - PPSN VIII, LNCS, Reykjavik, Iceland,
2006. Springer-Verlag.

Sushil J. Louis. Genetic learning for combinational logic design. In Proceedings
of the GECCO-2002 Workshop on Approzimation and Learning in Evolutionary
Computation, page 2126, New York, NY, 2002.

Sushil J. Louis and J. Johnson. Solving similar problems using genetic algo-
rithms and case-based memory. In Thomas Béack, editor, Proceedings of the
Seventh International Conference on Genetic Algorithms (ICGA97), San Fran-
cisco, CA, 1997. Morgan Kaufmann.

Sushil J. Louis, John McDonnell, and N. Gizzi. Dynamic strike force asset
allocation using genetic algorithms and case-based reasoning. In Proceedings of
the Sizth Conference on Systemics, Cybernetics, and Informatics, pages 855—
861, Orlando, Florida, USA, 2002.

Sushil J. Louis, Gary McGraw, and Richard Wyckoff. Case-based reasoning
assisted explanation of genetic algorithm results. Journal of Experimental and
Theoretical Artificial Intelligence, 5:21-37, 1993.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

1 Knowledge Incorporation in MOEAs 23

Sushil J. Louis and Yongmian Zhang. A sequential similarity metric for case
injected genetic algorithms applied to TSPs. In Wolfgang Banzhaf, Jason
Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela, and
Robert E. Smith, editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 1, pages 377-384, Orlando, Florida, USA, 13-17
1999. Morgan Kaufmann.

Chris Miles and Sushil J Louis. Case-injection improves response time for a
real-time strategy game. In Proceedings of the 2005 IEEE Symposium on Com-
putational Intelligence in Games, New York, NY, 2005. IEEE Press.

P. K. S. Nain and K. Deb. Computationally effective search and optimization
procedure using coarse to fine approximation. In Congress on Evolutionary
Computation, pages 2081-2088, 2003.

Y. S. Ong, P. B. Nair, A. J. Keane, and K. W. Wong. Surrogate-assisted evolu-
tionary optimization frameworks for high-fidelity engineering design problems.
In Y. Jin, editor, Knowledge Incorporation in Evolutionary Computation, Stud-
ies in Fuzziness and Soft Computing, pages 307-332. Springer, 2004.

Y.S. Ong, P.B. Nair, and A.J. Keane. Evolutionary optimization of computa-
tionally expensive problems via surrogate modeling. AIAA Journal, 41(4):687—
696, 2003.

Bin Peng, Robert G. Reynolds, and Jon Brewster. Cultural swarms. In Pro-
ceedings of the Congress on Evolutionary Computation 2008 (CEC’2003). IEEE
Service Center, 2003.

S. Pierret. Turbomachinery blade design using a Navier-Stokes solver and arti-
ficial neural network. ASME Journal of Turbomachinery, 121(3):326-332, 1999.
K. Rasheed, X. Ni, and S. Vattam. Comparison of methods for developing
dynamic reduced models for design optimization. Soft Computing Journal, 2003.
In press.

A. Ratle. Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In A. Eiben, Th. Biack, M. Schoenauer, and H.-P.
Schwefel, editors, Parallel Problem Solving from Nature, volume V, pages 87—
96, 1998.

Margarita Reyes Sierra and Carlos A. Coello Coello. A Study of Fitness Inher-
itance and Approximation Techniques for Multi-Objective Particle Swarm Op-
timization. In 2005 IEEE Congress on Evolutionary Computation (CEC’2005),
volume 1, pages 65—72, Edinburgh, Scotland, September 2005. IEEE Service
Center.

Margarita Reyes-Sierra and Carlos A. Coello Coello. Dynamic Fitness In-
heritance Proportion For Multi-Objective Particle Swarm Optimization. In
Maarten Keijzer et al., editor, 2006 Genetic and Ewvolutionary Computation
Conference (GECCQO’2006), volume 1, pages 89-90, Seattle, Washington, USA,
July 2006. ACM Press. ISBN 1-59593-186-4.

Maria Margarita Reyes Sierra. Use of Coevolution and Fitness Inheritance for
Multiobjective Particle Swarm Optimization. PhD thesis, Computer Science Sec-
tion, Department of Electrical Engineering, CINVESTAV-IPN, Mexico, August
2006.

Robert G. Reynolds. An Introduction to Cultural Algorithms. In A. V. Sebald
and L. J. Fogel, editors, Proceedings of the Third Annual Conference on Evolu-
tionary Programming, pages 131-139. World Scientific, River Edge, New Jersey,
1994.

24

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

Landa Becerra et al.

Robert G. Reynolds. Cultural algorithms: Theory and applications. In David
Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization,
pages 367-377. McGraw-Hill, London, UK, 1999.

Robert G. Reynolds and Chan-Jin Chung. A cultural algorithm framework
to evolve multi-agent cooperation with evolutionary programming. In EP ’97:
Proceedings of the 6th International Conference on Evolutionary Programming
VI, pages 323-334, London, UK, 1997. Springer-Verlag.

Robert G. Reynolds and Chan-Jin Chung. Knowledge-based self-adaptation
in evolutionary programming using cultural algorithms. In Proceedings of 1997
IEEE International Conference on Evolutionary Computation (ICEC 97), pages
71-76, 1997.

Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Using cultural
algorithms for constraint handling in GENOCOP. In J. R. McDonnell, R. G.
Reynolds, and D. B. Fogel, editors, Proceedings of the Fourth Annual Con-
ference on Ewolutionary Programming, pages 298-305. MIT Press, Cambridge,
Massachusetts, 1995.

Christopher K. Riesbeck and Roger C. Schank. Inside Case-Based Reasoning.
Lawrence Erlbaum Associates, Inc., Mahwah, NJ, USA, 1989.

J. Sacks, W. Welch, T. Mitchell, and H. Wynn. Design and analysis of computer
experiments (with discussion). In Statistical Science, volume 4, pages 409 — 435,
1989.

M. Salami and T. Hendtlass. A fast evaluation strategy for evolutionary algo-
rithms. Applied Soft Computing, 2:156-173, 2003.

S. Saleem and R. Reynolds. Cultural algorithms in dynamic environments. In
Proceedings of the Congress on Evolutionary Computation 2000, volume 2, pages
1513-1520, 2000.

K. Sastry, D.E. Goldberg, and M. Pelikan. Don’t evaluate, inherit. In Pro-
ceedings of genetic and Evolutionary Computation Conference, pages 551-558.
Morgan Kaufmann Publishers, 2001.

K. Abboud M. Schoenauer. Surrogate deterministic mutation. In Artificial
Evolution’01, pages 103-115. Springer, 2002.

Robert E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic
algorithms. In SAC °95: Proceedings of the 1995 ACM symposium on Applied
computing, pages 345-350, New York, NY, USA, 1995. ACM Press.

H. Ulmer, F. Streicher, and A. Zell. Model-assisted steady-state evolution
strategies. In Proceedings of Genetic and Evolutionary Computation Confer-
ence, LNCS 2723, pages 610—621, 2003.

H. Ulmer, F. Streichert, and A. Zell. Evolution startegies assisted by gaus-
sian processes with improved pre-selection criterion. In Proceedings of IEEE
Congress on Evolutionary Computation, pages 692-699, 2003.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.

Ivan Voutchkov and A.J. Keane. Multiobjective Optimization using Surrogates.
In I.C. Parmee, editor, Adaptive Computing in Design and Manufacture. Pro-
ceedings of the Seventh International Conference, pages 167-175, Bristol, UK,
April 2006. The Institute for People-centered Computation (IP-CC).

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo., editors, Advances in Neural
Information Processing Systems 8. MIT Press, 1996.

72.

73.

74.

75.

1 Knowledge Incorporation in MOEAs 25

Benjamin Wilson, David J. Cappelleri, Timothy W. Simpson, and Mary I
Frecker. Efficient pareto frontier exploration using surrogate approximations. In
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA,,
September 2000.

K.S. Won and T. Ray. Performance of kriging and cokriging based surrogate
models within the unified framework for surrogate assisted optimization. In
Congress on Evolutionary Computation, pages 1577-1585. IEEE, 2004.

X. Zheng, B. A. Julstrom, and W. Cheng. Design of vector quantization code-
books using an genetic algorithm. In Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC 97), pages 525-530, 1997.
Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjec-
tive Evolutionary Algorithms: Empirical Results. Ewvolutionary Computation,
8(2):173-195, Summer 2000.

