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Abstract

This chapter provides a short overview of multiobjective optimiza-
tion using metaheuristics. The chapter includes a description of some of
the main metaheuristics that have been used for multiobjective optimiza-
tion. Although special emphasis is made on evolutionary algorithms, other
metaheuristics, such as particle swarm optimization, artificial immune sys-
tems and ant colony optimization are also briefly discussed. Other topics
such as applications and recent algorithmic trends are also included. Fi-
nally, some of the main research trends that are worth exploring in this
area are briefly discussed.

1 Introduction

Metaheuristics have been widely used for solving different types of optimization
problems (see for example [77, 92, 172]).

One particular class of optimization problems involves having two or more
(often conflicting) objectives which we aim to optimize at the same time. In
fact, such problems, which are called “multi-objective” are quite common in
real-world applications, and their solution has triggered an important amount
of work within Operations Research [115].

During the last 40 years, a large number of mathematical programming
techniques have been developed to solve certain specific classes of multiobjec-
tive optimization problems. However, such techniques have a relatively limited
applicability (e.g., some of them require the first or even the second derivative
of the objective functions and the constraints, others can only deal with convex
Pareto fronts, etc.). Such limitations has motivated the development of alter-
native optimization methods, from which metaheuristics have become a very
popular alternative [37].

From the many metaheuristics currently available, evolutionary algorithms
have been, without doubt, the most popular choice for dealing with any sort of
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optimization problem [74, 16] and multiobjective optimization is, by no means,
an exception. Thus, in this chapter, we will focus our discussion mainly on the
use of evolutionary algorithms for solving multiobjective optimization problems.

The use of evolutionary algorithms for solving multiobjective optimization
problems was originally hinted in 1967 [149], but the first actual implementation
of what is now called a “multi-objective evolutionary algorithm (MOEA)” was
not produced until the mid-1980s [155, 154]. However, this area, which is now
called “evolutionary multi-objective optimization,” or EMO) has experienced
a very important growth, mainly in the last 20 years [33, 45, 36, 174]. The
author maintains the EMOO repository, which, as of April 17th, 2015, con-
tains over 9,700 bibliographic entries, as well as public-domain implementation
of some of the most popular MOEAs. The EMOO repository is located at:
http://delta.cs.cinvestav.mx/~ccoello/EMOO.

The remainder of this chapter is organized as follows. In Section 2, we
provide some basic concepts related to multiobjective optimization, which are
required to make this chapter self-contained. The use of evolutionary algorithms
in multiobjective optimization is motivated in Section 3. A short discussion on
other bio-inspired metaheuristics that have also been used for multiobjective
optimization is provided in Section 5. Some of the main research topics which
are currently attracting a lot of attention in the EMO field are briefly discussed
in Section 4. A set of sample applications of MOEAs is provided in Section 6.
Some of the main topics of research in the EMO field that currently attract a
lot of attention are briefly discussed in Section 7. Such topics include the use
of other metaheuristics. Finally, some conclusions are provided in Section 8.

2 Basic Concepts

In this chapter, we focus on the solution of multiobjective optimization problems
(MOPs) of the form:

minimize [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to the m inequality constraints:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

and the p equality constraints:

hi(~x) = 0 i = 1, 2, . . . , p (3)

where k is the number of objective functions fi : Rn → R. We call ~x =
[x1, x2, . . . , xn]

T
the vector of decision variables. We wish to determine from

among the set F of all vectors which satisfy (2) and (3) the particular set
of values x∗1, x

∗
2, . . . , x

∗
n which yield the optimum values of all the objective

functions.
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2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes
all the objective functions. In fact, this situation only arises when there is
no conflict among the objectives, which would make unnecessary the develop-
ment of special solution methods, since this single solution could be reached
after the sequential optimization of all the objectives, considered separately.
Therefore, we normally look for “trade-offs”, rather than single solutions when
dealing with multiobjective optimization problems. The notion of “optimality”
normally adopted in this case is the one originally proposed by Francis Ysidro
Edgeworth [54] and later generalized by the French economist Vilfredo Pareto
[132]. Although some authors call this notion Edgeworth-Pareto optimality, we
will use the most commonly adopted term: Pareto optimality.

We say that a vector of decision variables ~x∗ ∈ F (i.e., a feasible solution) is
Pareto optimal if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x

∗)
for all i = 1, . . . , k and fj(~x) < fj(~x

∗) for at least one j (assuming that all the
objectives are being minimized).

In words, this definition says that ~x∗ is a Pareto optimal solution if there
exists no feasible vector of decision variables ~x ∈ F which would decrease some
criterion without causing a simultaneous increase in at least one other criterion.
Assuming the inherent conflict normally present among (at least some) objec-
tives, the use of this concept normally produces several solutions. Such solutions
constitute the so-called Pareto optimal set. The vectors ~x∗ corresponding to the
solutions included in the Pareto optimal set are called nondominated. The im-
age of the Pareto optimal set under the objective functions (i.e., the objective
function values corresponding to the decision variables contained in the Pareto
optimal set) is called Pareto front.

3 Multi-Objective Evolutionary Algorithms

The core ideas related to the development of search techniques that simulate the
mechanism of natural selection (Darwin’s survival of the fittest principle) can be
traced back to the early 1930s [64]. However, the three main techniques based on
this notion were developed during the 1960s: genetic algorithms [86], evolution
strategies [160] and evolutionary programming [65]. These approaches, which
are now generically denominated “evolutionary algorithms,” have been found to
be very effective for solving single-objective optimization problems [78, 161, 66].

The basic operation of an evolutionary algorithm (EA) is described next.
First, a set of potential solutions (called “population”) to the problem being
solved is randomly generated. Each solution in the population (called “indi-
vidual”) encodes all the decision variables of the problem (i.e., each individual
contains all the decision variables of the problem to be solved). The user needs
to define a measure of performance for each of the solutions. Such a measure
of performance is called “fitness function” and will allow us to know how good
is a solution with respect to the others. Such a fitness function is normally a
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variation of the objective function of the problem that we wish to solve (e.g.,
the objective function that we aim to optimize). Then, a selection mechanism
must be applied in order to decide which individuals will “mate.” This selection
process is generally stochastic and is normally based on the fitness contribution
of each individual (i.e., the fittest individuals have a higher probability of be-
ing selected). Upon mating, a set of “offspring” (or children) are generated.
Such offspring are “mutated” (this operator produces a small random change,
with a low probability, on the contents of an individual), and constitute the
new population to be evaluated at the next iteration (each iteration is called
a “generation”). This process is repeated until reaching a stopping condition
(normally, a maximum number of generations defined by the user) [55].

The main motivation for using EAs for solving multiobjective optimization
problems relies on their population-based nature, which allows them to gener-
ate (if properly manipulated) several elements of the Pareto optimal set, in a
single run. In contrast, mathematical programming techniques normally gen-
erate a single element of the Pareto optimal set per run. Additionally, the
so-called multi-objective evolutionary algorithms (MOEAs) are less susceptible
to the shape and continuity of the Pareto front and require less specific domain
information to operate [33].

MOEAs extend a traditional (single-objective) EA in two main aspects:

• The selection mechanism: In this case, the aim is to select nondomi-
nated solutions, and to consider all the nondominated solutions in a pop-
ulation to be equally good (unless there is some specific preference from
the user, all the elements of the Pareto optimal set are equally good).

• A diversity maintenance mechanism: Because of stochastic noise,
EAs tend to converge to a single solution if run for sufficiently long time
[78]. In order to avoid this, it is necessary to block the selection mechanism
in a MOEA, favoring the diversity of solutions, so that several elements
of the Pareto optimal set can be generated in a single run.

Regarding selection, early MOEAs relied on the use of aggregating functions
(mainly linear) [81] and relatively simple population-based approaches [154].
However, such approaches have evident drawbacks (i.e., the use of linear aggre-
gating functions does not the generation of non-convex portions of the Pareto
front regardless of the weights combination that is adopted [43]). Towards the
mid-1990s, MOEAs started to adopt variations of the so-called Pareto ranking
selection mechanism. This approach was originally proposed by David E. Gold-
berg in his seminal book on genetic algorithms [78], and it consists of sorting
the population of an EA based on Pareto optimality, such that all nondomi-
nated individuals are assigned the same rank (or importance). The aim is that
all nondominated individuals get the same probability of being selected, and
that such probability is higher than the one corresponding to individuals which
are dominated. Although conceptually simple, this sort of selection mechanism
allows for a wide variety of possible implementations [33, 45].
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Regarding diversity maintenance, a wide variety of methods have been pro-
posed in the specialized literature to maintain diversity in a MOEA. Such
approaches include fitness sharing and niching [80, 46], clustering [177, 197],
geographically-based schemes [100], and the use of entropy [98, 40], among oth-
ers. In all cases, the core idea behind diversity maintenance mechanisms is to
penalize solutions that are too close from each other in some space (i.e., deci-
sion variable or objective function space or even both). Most MOEAs penalize
solutions that are too close from each other in objective function space, because
it is normally aimed to have solutions well-distributed along the Pareto front.

Additionally, some researchers have proposed the use of mating restric-
tion schemes (which imposes rules on the individuals that can be recombined)
[163, 197]. Furthermore, the use of relaxed forms of Pareto dominance has also
become relatively popular in recent years, mainly as an archiving technique
which encourages diversity, while allowing the archive to regulate convergence
(the most popular of such mechanisms is, with no doubt, ε-dominance [105],
which was been adopted in some approaches such as ε-MOEA [47]).

A third component of modern MOEAs is elitism, which normally consists
of using an external archive (also called “secondary population”) that may (or
may not) interact in different ways with the main (or “primary”) population
of the MOEA during selection. The main purpose of this archive is to store
all the nondominated solutions generated throughout the search process, while
removing those that become dominated later in the search (called local non-
dominated solutions). The approximation of the Pareto optimal set produced
by a MOEA is thus the final contents of this archive. It is important to em-
phasize that the use of elitism is not only advisable (the lack of elitism could
make us lose nondominated solutions generated during the search), but it is also
required because of theoretical reasons (elitism is required in order to guarantee
convergence of a MOEA to the Pareto optimal set as proved in [150]).

It is worth noticing that, in practice, external archives are normally bounded
to a certain maximum number of solutions. This was originally done in some
MOEAs that used the external archive during the selection stage (see for ex-
ample [197]). In such a case, allowing the size of the archive to grow too much,
dilutes the selection pressure, which has a negative effect on the performance
of the MOEA. However, most modern MOEAs bound the size of the external
archive, even if the archive is not used during the selection process, mainly be-
cause of practical reasons (this makes easier to compare results with respect to
other MOEAs).

An important remark is that the use of a plus (+) selection is another possible
elitist mechanism. Under this sort of selection scheme, the population of parents
competes with the population of offspring (both populations are of the same size)
and then we keep only the best half. This sort of selection scheme has been
relatively popular in single-objective optimization, and has been also adopted
in some modern MOEAs (see for example [48]), but it’s less popular than the
use of external archives.
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4 Multi-Objective Evolutionary Algorithms

In spite of the very large number of publications related to MOEAs that can be
found in the literature, there is only a handful of algorithms that are actually
used by a significant number of researchers and/or practitioners around the
world.

1. Strength Pareto Evolutionary Algorithm (SPEA): This MOEA was
conceived as the merge of several algorithms developed during the 1990s
[197]. Its main features are the following: It adopts an external archive
(called the external nondominated set), which stores the nondominated
solutions previously generated, and participates in the selection process
(together with the main population). For each individual in this archive,
a strength value is computed. This strength value is proportional to the
number of solutions that a certain individual dominates. In SPEA, the
fitness of each member of the current population is computed according
to the strengths of all external nondominated solutions that dominate it.
As the size of the external nondominated set grows too much, this sig-
nificantly reduces the selection pressure and slows down the search. In
order to avoid this, SPEA adopts a clustering technique that prunes the
contents of the external nondominated set so that its size remains below
a certain (pre-defined) threshold. SPEA standardized the use of external
archives as the elitist mechanism of a MOEA, although this sort of mech-
anism had been used before by other researchers (see for example [91]).

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): This approach
has three main differences with respect to the original SPEA [200]: (1)
it incorporates a fine-grained fitness assignment strategy which takes into
account, for each individual, both the number of individuals that domi-
nate it and the number of individuals by which it is dominated; (2) it uses
a nearest neighbor density estimation technique which guides the search
more efficiently (i.e., a more efficient clustering algorithm is adopted),
and (3) it uses an enhanced archive truncation method that guarantees
the preservation of boundary solutions (this fixes a bug from the original
SPEA).

3. Pareto Archived Evolution Strategy (PAES): This is perhaps the
most simple MOEA than can be possibly designed. It was proposed by
Knowles and Corne [102], and it consists of a (1+1) evolution strategy
(i.e., a single parent that generates a single offspring through the applica-
tion of mutation to the parent) in combination with a historical archive
that stores the nondominated solutions previously found. This archive
is used as a reference set against which each mutated individual is being
compared. Such (external) archive adopts a crowding procedure that di-
vides objective function space in a recursive manner. Then, each solution
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is placed in a certain grid location based on the values of its objectives
(which are used as its “coordinates” or “geographical location”). A map
of such a grid is maintained, indicating the number of solutions that reside
in each grid location. When a new nondominated solution is ready to be
stored in the archive, but there is no room for it (the size of the exter-
nal archive is bounded), a check is made on the grid location to which
the solution would belong. If this grid location is less densely populated
than the most densely populated grid location, then a solution (randomly
chosen) from this heavily populated grid location is deleted to allow the
storage of the newcomer. This aims to redistribute solutions, favoring the
less densely populated regions of the Pareto front. Since the procedure
is adaptive, no extra parameters are required (except for the number of
divisions of the objective space).

4. Nondominated Sorting Genetic Algorithm II (NSGA-II): This is
a heavily revised version of the Nondominated Sorting Genetic Algo-
rithm (NSGA), which was originally proposed in the mid 1990s [168] as a
straightforward implementation of the Pareto ranking algorithm described
by Goldberg in his book [78]. NSGA was, however, slow, and produced
poorer results than other non-elitist MOEAs available in the mid-1990s,
such as MOGA [67] and NPGA [87]. The NSGA-II adopts a more effi-
cient ranking procedure than its predecessor. Additionally, it estimates
the density of solutions surrounding a particular solution in the popu-
lation by computing the average distance of two points on either side
of this point along each of the objectives of the problem. This value
is the so-called crowding distance. During selection, the NSGA-II uses
a crowded-comparison operator which takes into consideration both the
nondomination rank of an individual in the population and its crowd-
ing distance (i.e., nondominated solutions are preferred over dominated
solutions, but between two solutions with the same nondomination rank,
the one that resides in the less crowded region is preferred). The NSGA-II
does not use an external archive as most of the modern MOEAs in current
use. Instead, the elitist mechanism of the NSGA-II consists of combining
the best parents with the best offspring obtained (i.e., this is a (µ + λ)-
selection used in evolution strategies). Due to its clever mechanisms, the
NSGA-II is much more efficient (computationally speaking) than its pre-
decessor, and its performance is so good that it has become very popular,
triggering a significant number of applications, and becoming some sort
of landmark against which new MOEAs have been compared during more
than 10 years, in order to merit publication.

5. Pareto Envelope-based Selection Algorithm (PESA): This algo-
rithm was proposed by Corne et al. [39], and uses a small internal popu-
lation and a larger external (or secondary) population. PESA adopts the

7



same adaptive grid from PAES to maintain diversity. However, its selec-
tion mechanism is based on the crowding measure. This same crowding
measure is used to decide what solutions to introduce into the external
population (i.e., the archive of nondominated vectors found along the evo-
lutionary process). Therefore, in PESA, the external memory plays a
crucial role in the algorithm since it determines not only the diversity
scheme, but also the selection performed by the method. There is also a
revised version of this algorithm, called PESA-II [38], which is identical
to PESA, except for the fact that region-based selection is used in this
case. In region-based selection, the unit of selection is a hyperbox rather
than an individual. The procedure consists of selecting (using any of the
traditional selection techniques [79]) a hyperbox and then randomly se-
lecting an individual within such hyperbox. The main motivation of this
approach is to reduce the computational costs associated with traditional
MOEAs (i.e., those based on Pareto ranking).

6. Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D): This approach was proposed by Zhang and Li [192]: The
main idea of this algorithm is to decompose a multiobjective optimiza-
tion problem into several scalar optimization sub-problems which are si-
multaneously optimized. The decomposition process requires the use of
weights, but the authors provide a method to generate them. During the
optimization of each sub-problem, only information from the neighboring
sub-problems is used, which allows this algorithm to be effective and effi-
cient. MOEA/D is generally considered one of the most powerful MOEAs
currently available, as has been evidenced by several comparative studies.

4.1 Recent Algorithmic Trends

Many other MOEAs have been proposed in the specialized literature (see for
example [34, 175, 176, 190, 47]), but they will not be discussed here due to
obvious space limitations. A more interesting issue, however, is to try to predict
which sort of MOEA will become predominant in the next few years.

Efficiency is, for example, a concern nowadays, and several approaches have
been developed in order to improve the efficiency of MOEAs (see for example
[95]). Also, the use of fitness approximation, fitness inheritance, surrogates
and other similar techniques has become more common in recent years, which
is a clear indication of the more frequent use of MOEAs for the solution of
computationally expensive problems (see for example [141, 99, 145, 153, 193,
135, 188]).

However, the most promising research line within algorithmic design seems
to be the use of a performance measure in the selection mechanism of a MOEA.
This research trend formally started with the Indicator-Based Evolutionary Al-
gorithm (IBEA) [198], although this idea had been already formulated and used
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(in different ways) by other authors (see for example [89, 100]). Nevertheless, the
most representative MOEA within this family is perhaps the S metric selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA) [57, 15]. SMS-EMOA
was originally proposed by Emmerich et al. [57] and is based on NSGA-II. SMS-
EMOA creates an initial population and then, it generates only one solution
by iteration using the operators (crossover and mutation) of the NSGA-II. Af-
ter that, it applies Pareto ranking. When the last front has more than one
solution, SMS-EMOA uses the hypervolume contribution to decide which so-
lution will be removed. The Hypervolume (also known as the S metric or
the Lebesgue Measure) of a set of solutions measures the size of the portion of
objective space that is dominated by those solutions collectively. This is the
only unary performance indicator which is known to be Pareto compliant [201].
Beume et al. [15] proposed not to use the contribution to the hypervolume indi-
cator when in the Pareto ranking we obtain more than one front. In that case,
they proposed to use the number of solutions which dominate to one solution
(the solution that is dominated by more solutions is removed). The authors
argued that the motivation for using the hypervolume indicator is to improve
the distribution in the nondominated front and then it is not necessary in fronts
different to the nondominated front.

The hypervolume indicator has attracted a lot of attention from researchers
due to its interesting theoretical properties. For example, it has been proved
that the maximization of the hypervolume is equivalent to finding the Pareto
optimal set [63]. Empirical studies have shown that (for a certain number of
points previously determined) the maximization of the hypervolume does indeed
produce subsets of the Pareto front which are well-distributed [100, 57].

However, there are also practical reasons for being interested in indicator-
based selection. The main one is that MOEAs such as SMS-EMOA seem to
continue working as usual as we increase the number of objectives, as opposed
to Pareto-based selection mechanisms which are known to degrade quickly in
problems having more than 3 objectives (this research area is known as many-
objective optimization). Although the reasons for the poor scalability of Pareto-
based MOEAs requires further study (see for example [159]), the need for scal-
able selection mechanisms has triggered an important amount of research around
indicator-based MOEAs. The main drawback of adopting the hypervolume in
the selection mechanism of a MOEA is its extremely high computational cost.
One possible alternative for dealing with this high computational cost is to es-
timate the hypervolume contribution. However, MOEAs designed around this
idea (e.g., HyPE [5]) seem to have a poor performance with respect to those that
adopt exact hypervolume contributions. An alternative is to rely on other per-
formance indicators. In this regard, several researchers have proposed the design
of selection mechanisms based on performance measures such as ∆p [158, 144],
and R2 [82, 19, 85, 179]. The use of the maximin [8, 113] is another intriguing
alternative, as this expression seems to be equivalent to the use of the ε-indicator
[199].
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5 Use of Other Metaheuristics

A wide variety of other bio-inspired metaheuristics have become popular in the
last few years for solving optimization problems [37]. Multiobjective extensions
of many of these metaheuristics already exist [33], but few efforts have been
made to actually exploit the main specific features of each of them. There are
also few efforts in trying to understand the types of problems in which each of
these metaheuristics can be more suitable.

Next, we briefly review three popular bio-inspired metaheuristics that are
good candidates for being used as multiobjective optimizers, but many other
choices also exist (see for example [33]).

5.1 Artificial Immune Systems (AIS)

Our natural immune system has provided a fascinating metaphor for developing
a new bio-inspired metaheuristic. Indeed, from a computational point of view,
our immune system can be considered as a highly parallel intelligent system that
is able to learn and retrieve previously acquired knowledge (i.e., it has “mem-
ory”), when solving highly complex recognition and classification tasks. This
motivated the development of the so-called artificial immune systems (AISs)
during the early 1990s [44, 119].

AISs were identified in the early 1990s as a useful mechanism to maintain
diversity in the context of multimodal optimization [68, 166]. Smith et al. [167]
showed that fitness sharing can emerge when their emulation of the immune
system is used. Furthermore, the approach that they proposed turns out to be
more efficient (computationally speaking) than traditional fitness sharing [46],
and it does not require additional information regarding the number of niches
to be formed.

Over the years, a wide variery of multi-objective extensions of AISs have
been proposed (see for example [111, 22, 32, 70, 27, 134]). However, most of
the algorithmic trends in MOEAs, have had a delayed arrival in multiobjective
AISs. Also, the high potential of multiobjective AISs for pattern recognition
and classification tasks has been scarcely exploited.

For more information on multiobjective AISs, the interested reader is referred
to [23, 69].

5.2 Particle Swarm Optimization (PSO)

This metaheuristic is inspired on the movements of a flock of birds seeking
food, and it was originally proposed in the mid-1990s [97]. In the particle
swarm optimization algorithm, the behavior of each particle (i.e., individual)
is affected by either the best local (within a certain neighborhood) or the best
global (i.e., with respect to the entire swarm, or population) individual. PSO
allows particles to benefit from their past experiences (a mechanism that doesn’t
exist in traditional evolutionary algorithms) and uses neighborhood structures
that can regulate the behavior of the algorithm.
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The similarity of PSO with EAs, has made possible the quick development
of an important number of multiobjective variants of this metaheuristic (see for
example [117, 35, 133, 140, 123, 187]). Unlike AISs, most algorithmic trends
adopted with MOEAs have quickly been incorporated into multiobjective par-
ticle swarm optimizers (MOPSOs). Nevertheless, few PSO models have been
used for multiobjective optimization, and the study of the specific features that
could make MOPSOs advantageous over other metaheuristics in some specific
classes of problems is still a pending task.

For more information on MOPSOs, the interested reader is referred to [142,
33, 9, 53, 31].

5.3 Ant Colony Optimization (ACO)

This metaheuristic was inspired on the behavior observed in colonies of real
ants seeking for food. Ants deposit a chemical substance on the ground, called
pheromone [51], which influences the behavior of the ants: they tend to take
those paths in which there is a larger amount of pheromone. Therefore, pheromone
trails can be seen as an indirect communication mechanism used by the ants
(which can be seen as agents that interact to solve complex tasks). This inter-
esting behavior of ants gave rise to a metaheuristic called ant system, which was
originally applied to the travelling salesperson problem. Nowadays, the several
variations of this algorithm that have been developed over the years, are collec-
tively denominated ant colony optimization (ACO), and they have been applied
to a wide variety of domains, including continuous optimization problems.

Several multiobjective versions of ACO are currently available (see for ex-
ample [146, 94, 2, 116, 118, 1]). However, the algorithmic trends developed in
MOEAs have had a slow delay in being incorporated into multiobjective ACO
algorithms. Additionally, the use of alternative ACO models for multiobjective
optimization has been relatively scarce.

For more information on multiobjective ACO, the interested reader is re-
ferred to [72, 33, 2].

5.4 Other Metaheuristics

Many other metaheuristics have been extended to deal with multiobjective op-
timization problems, including: simulated annealing [42, 165, 169, 164, 56],
differential evolution [178, 114, 173, 127, 171, 182, 183], tabu search [83, 131,
25, 75], scatter search [11, 12, 136, 138, 185, 129], and artificial bee colony
[108, 28, 49, 137], among many others. However, their discussion was omitted
due to obvious space constraints.

6 Some Applications

Multiobjective metaheuristics have been extensively applied to a wide variety
of domains. Next, we will provide a short list of sample applications classified
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in three large groups: (1) engineering, (2) industrial and (3) scientific. Specific
areas within each of these large groups are also identified.

By far, engineering applications are the most popular in the current litera-
ture on multiobjective metaheuristics. This is not surprising if we consider that
engineering disciplines normally have problems with better understood math-
ematical models. A representative sample of engineering applications is the
following:

• Electrical engineering [152, 139]

• Hydraulic engineering [162, 170]

• Structural engineering [189, 196]

• Aeronautical engineering [128, 148]

• Robotics [191, 96]

• Control [104, 112]

• Telecommunications [88, 120]

• Civil engineering [186, 126]

• Transport engineering [6, 194]

Industrial applications are the second most popular in the literature on mul-
tiobjective metaheuristics. A representative sample of industrial applications of
multiobjective metaheuristics is the following:

• Design and manufacture [13, 7]

• Scheduling [21, 24]

• Management [29, 59]

Finally, there are several publications devoted to scientific applications. For
obvious reasons, computer science applications are the most popular in the
literature on multiobjective metaheuristics. A representative sample of scientific
applications is the following:

• Chemistry [60, 107]

• Physics [147, 10]

• Medicine [84, 103]

• Computer science [151, 130]

This sample of applications should give at least a rough idea of the increasing
interest of researchers for adopting multiobjective metaheuristics in practically
all kinds of disciplines.
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7 Some Current Challenges

The existence of challenging, but solvable problems, is a key issue to preserve
the interest in a research discipline. Although multiobjective optimization using
metaheuristics is a discipline in which a very important amount of research has
been conducted, mainly within the last fifteen years, several interesting problems
still remain open. Additionally, the research conducted so far has also led to
new, and intriguing topics. The following is a small sample of open problems
that currently attract a significant amount of research within this area:

• Scalability: Although multiobjective metaheuristics have been commonly
used for a wide variety of applications, they have certain limitations. For
example, as indicated before, selection mechanisms based on Pareto op-
timality are known to degrade quickly as we increase the number of ob-
jectives. The reason is that, as we increase the number of objectives,
unless there is a significant increase in the population size, all the indi-
viduals will quickly become nondominated, which will cause stagnation
(i.e., no individual will be better than the others, which makes the selec-
tion mechanism totally useless). In fact, there is experimental evidence
that indicates that, when dealing with ten objectives, random sampling
performs better than Pareto-based selection [101]. There are alternative
ranking techniques that can be used to deal with these problems having
four or more objectives [73, 110], but it is also possible to use relaxed
forms of Pareto dominance [62, 50], dimensionality reduction techniques
[18, 109], or indicator-based selection mechanisms [198, 15]. It is worth
indicating that scalability in decision variable space (i.e., the capability of
multiobjective metaheuristics for dealing with large-scale problems) has
been scarcely studied in the specialized literature (see for example [52, 3]).

• Incorporation of user’s preferences: It is normally the case, that the
user does not need the entire Pareto front of a problem, but only a cer-
tain portion of it. For example, solutions lying at the extreme parts of
the Pareto front are normally unnecessary since they represent the best
value for one objective, but the worst for the others. Thus, if the user
has at least a rough idea of the sort of trade-offs that he/she aims to
find, it is desirable to be able to explore in more detail only the non-
dominated solutions within the neighborhood of such trade-offs. This is
possible, if we use, for example, biased versions of Pareto ranking [41] or
some multi-criteria decision making technique, from the many developed
in Operations Research [30, 17]. In spite of the importante of preference
incorporation in real-world applications, the use of these schemes in mul-
tiobjective metaheuristics is still relatively scarce [58, 71, 26, 93].

• Parallelism: Although the use of parallel multiobjective metaheuristics
is relatively common in certain disciplines such as aeronautical engineering
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[4], the lack of serious research in this area is remarkable [181, 121, 33].
Thus, it is expected to see much more research around this topic in the
next few years. Some of the topics that are worth studying are the follow-
ing: algorithmic design [143, 90, 171], the role of local search in parallel
multiobjective metaheuristics [20, 4], use of GPUs [180, 14], use of grid
computing [122, 61] and convergence analysis [195], among others.

• Theoretical Foundations: Although an important effort has been made
in recent years to provide a solid theoretical foundation to this field, a lot
of work is still required. The most relevant theoretical work in this area
includes topics such as convergence [150, 184], archiving [156, 157], algo-
rithm complexity [124, 125], and run-time analysis [76, 106].

8 Conclusions

In this chapter, we have provided some basic concepts related to multiobjective
optimization using metaheuristics. This overview has included basic concepts
related to multiobjective optimization in general, as well as some algorithmic
details, with a particular emphasis on multiobjective evolutionary algorithms.

Some of the recent algorithmic trends have also been discussed, and some
sample applications have been addressed. In general, breadth has been favored
over depth, but a significant number of bibliographic references are provided for
those interested in gaining an in-depth knowledge of any of the topic discussed
herein.

The information provided in this chapter aims to serve as a general overview
of the field and to motivate the interest of the reader for pursuing research in
this area. As could be seen, several research opportunities are still available for
newcomers.
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with C-CUDA. In Václav Snášel, Ajith Abraham, and Emilio S. Corchado,
editors, Soft Computing Models in Industrial and Environmental Applica-
tions, 7th International Conference (SOCO’12), pages 123–132. Springer.
Advances in Intelligent Systems and Computing Vol. 188, Ostrava, Czech
Republic, 2013.

[15] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Mul-
tiobjective selection based on dominated hypervolume. European Journal
of Operational Research, 181(3):1653–1669, 16 September 2007.

[16] Jürgen Branke. Evolutionary Optimization in Dynamic Environments.
Kluwer Academic Publishers, Boston, Massachusetts, USA, 2002. ISBN
0-7923-7631-5.

[17] Jürgen Branke. Consideration of Partial User Preferences in Evolutionary
Multiobjective Optimization. In Jürgen Branke, Kalyanmoy Deb, Kaisa
Miettinen, and Roman Slowinski, editors, Multiobjective Optimization. In-
teractive and Evolutionary Approaches, pages 157–178. Springer. Lecture
Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.

[18] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian Klein,
Frank Neumann, and Eckart Zitzler. Do Additional Objectives Make a
Problem Harder? In Dirk Thierens, editor, 2007 Genetic and Evolution-
ary Computation Conference (GECCO’2007), volume 1, pages 765–772,
London, UK, July 2007. ACM Press.

[19] Dimo Brockhoff, Tobias Wagner, and Heike Trautmann. On the Prop-
erties of the R2 Indicator. In 2012 Genetic and Evolutionary Computa-
tion Conference (GECCO’2012), pages 465–472, Philadelphia, USA, July
2012. ACM Press. ISBN: 978-1-4503-1177-9.

16



[20] Lam T. Bui, Hussein A. Abbass, and Daryl Essam. Local models—an
approach to distributed multi-objective optimization. Computational Op-
timization and Applications, 42(1):105–139, January 2009.

[21] Edmund K. Burke, Jingpeng Li, and Rong Qu. A Pareto-based search
methodology for multi-objective nurse scheduling. Annals of Operations
Research, 196(1):91–109, July 2012.

[22] F. Campelo, F.G. Guimar aes, R.R. Saldanha, H. Igarashi, S. Noguchi,
D.A. Lowther, and J.A. Ramirez. A novel multiobjective immune al-
gorithm using nondominated sorting. In 11th International IGTE Sym-
posium on Numerical Field Calculation in Electrical Engineering, Seg-
gauberg, Austria, September 2004.

[23] Felipe Campelo, Frederico G. Guimar aes, and Hajime Igarashi. Overview
of Artificial Immune Systems for Multi-Objective Optimization. In
Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and
Tadahiko Murata, editors, Evolutionary Multi-Criterion Optimization,
4th International Conference, EMO 2007, pages 937–951, Matshushima,
Japan, March 2007. Springer. Lecture Notes in Computer Science Vol.
4403.
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[41] Dragan Cvetković and Ian C. Parmee. Preferences and their Applica-
tion in Evolutionary Multiobjective Optimisation. IEEE Transactions on
Evolutionary Computation, 6(1):42–57, February 2002.

[42] P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing—a metaheuris-
tic technique for multiple-objective combinatorial optimization. Journal
of Multi-Criteria Decision Analysis, 7:34–47, 1998.

[43] Indraneel Das and John Dennis. A Closer Look at Drawbacks of Mini-
mizing Weighted Sums of Objectives for Pareto Set Generation in Mul-
ticriteria Optimization Problems. Structural Optimization, 14(1):63–69,
1997.

[44] Dipankar Dasgupta, editor. Artificial Immune Systems and Their Appli-
cations. Springer-Verlag, Berlin, 1999.

[45] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algo-
rithms. John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

[46] Kalyanmoy Deb and David E. Goldberg. An Investigation of Niche and
Species Formation in Genetic Function Optimization. In J. David Schaf-
fer, editor, Proceedings of the Third International Conference on Genetic
Algorithms, pages 42–50, San Mateo, California, June 1989. George Mason
University, Morgan Kaufmann Publishers.

[47] Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. Evaluating the
ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick
Computation of Pareto-Optimal Solutions. Evolutionary Computation,
13(4):501–525, Winter 2005.

[48] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197, April 2002.

19
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