

Applications of Parallel Platforms and Models

in Evolutionary Multi-Objective Optimization

Antonio López Jaimes and Carlos A. Coello Coello∗

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07360, México
email: tonio.jaimes@gmail.com, ccoello@cs.cinvestav.mx

Summary. This chapter presents a review of modern parallel platforms and the
way in which they can be exploited to implement parallel multi-objective evolution-
ary algorithms. Regarding parallel platforms, a special emphasis is given to global
metacomputing which is an emerging form of parallel computing with promising
applications in evolutionary (both multi- and single- objective) optimization. In ad-
dition, we present the well-known models to parallelize evolutionary algorithms (i.e.,
master-slave, island, diffusion and hybrid models) describing some possible strategies
to incorporate these models in the context of multi-objective optimization. Since an
important concern in parallel computing is performance assessment, the chapter also
presents how to apply parallel performance measures in multi-objective evolutionary
algorithms taking into consideration their stochastic nature. Finally, we present a
selection of current parallel multi-objective evolutionary algorithms that integrate
novel strategies to address multi-objective issues.

1 Introduction

Problems having two or more (normally conflicting) objectives naturally arise
in a variety of disciplines. Such problems, which are called “multi-objective”
have not one, but a set of solutions, which are collectively known as the
“Pareto optimal set”. All the solutions contained in the Pareto optimal set
are equally good, and represent the best possible trade-offs among all the
objectives.

The use of evolutionary algorithms (eas) for solving multi-objective opti-
mization problems (mops) has been quite popular in the last few years. The
rising popularity of multi-objective evolutionary algorithms (moeas) is mainly
due to their flexibility and ease of use with respect to traditional mathematical
programming techniques [16, 20, 51, 58, 17]. However, a wide variety of real-
world mops are highly demanding in terms of cpu time (e.g., in aeronautical

∗The second author is also associated to UMI-LAFMIA 3175 CNRS.

2 Antonio López Jaimes and Carlos A. Coello Coello

engineering [49]). This may limit the applicability of moeas, since they nor-
mally require a considerably large number of objective function evaluations
to achieve reasonably good results. The use of parallelism is an obvious choice
to solve these problems in a reasonable amount of time [61]. Besides the time
reduction that they can achieve, parallel moeas (pmoeas) are attractive for
many other reasons: (1) they can use more memory to cope with more difficult
problems, (2) they allow the use of larger population sizes, (3) they tend to
improve the population’s diversity, (4) they reduce the probability of finding
suboptimal solutions, (5) and they can cooperate in parallel with other search
techniques (including non-evolutionary techniques).

During the last three decades, parallel Evolutionary Algorithms used for
global optimization (peas) have been widely studied [5, 15, 54, 60]. How-
ever, due to the peculiarities of multi-objective optimization there are some
issues that require the use of novel approaches. From these issues, the most
relevant is the fact that the evaluation of each particular solution to a mop

implies the evaluation of k (k ≥ 2) objective functions. This implies a much
higher computational cost and, therefore, motivates the need of parallelizing
a moea. Additionally, real-world mops tend to have high-dimensionality (i.e.,
a large number of decision variables) which also normally requires a much
higher computational cost in order to find a reasonably good approximation
of the Pareto optimal set. Finally, the use of archiving, clustering or niching
techniques (which are commonly adopted with moeas [39, 66, 22]) also adds
to the computational overhead of a moea, which is one more reason to justify
their parallelization.

The present chapter provides an overview of the models employed to imple-
ment parallel moeas and discusses some implementation issues that deserve
to be considered in the light of multi-objective optimization. Additionally, we
present a review of the parallel architectures currently available to implement
pmoeas. Special emphasis is given to global metacomputing which is a new
form of parallel computing that allows us to share computing resources in
order to build a large networked metacomputer. The chapter also presents
some of the parallel performance metrics that have been adopted to assess
pmoea’s efficiency as well as a short discussion regarding the conditions un-
der which one may find superunitary speedups. We also present the concept
of fixed-time speedup, which is an alternative measure of speedup that has
some advantages over other forms of speedup usually adopted in the current
literature.

The remainder structure of the chapter is the following. Some basic con-
cepts related to multi-objective optimization are provided in Section 2. Sec-
tion 3 describes a taxonomy of parallel architectures, emphasizing mimd archi-
tectures (Multiple Instruction Stream, Multiple Data Stream), since they are
the most common parallel platform in current use. In Section 4, we present
the most commonly used pmoea parallel models. In turn, the most popu-
lar parallel performance measures in current use are introduced in Section 5.
Finally, Section 6 describes a selection of pmoeas that incorporate novel par-

Applications of Parallel Platforms and Models in EMO 3

allel strategies. The reader can find the description of other pmoeas in the
overview presented by Talbi et al. [57].

2 Basic Concepts

We are interested in solving problems of the type:

Find x wich optimizes f(x) = [f1(x), f2(x), . . . , fk(x)] (1)

subject to:
gi(x) ≤ 0 i = 1, 2, . . . , n (2)

hi(x) = 0 i = 1, 2, . . . , p (3)

where x = [x1, x2, . . . , xn]
T

is the vector of decision variables, fi, i = 1, ..., k
are the objective functions and gi, hj , i = 1, ...,m, j = 1, ..., p are the con-
straint functions of the problem.

In multi-objective optimization problems the aim is to find good compro-
mises (trade-offs). To understand the concept of optimality, we will introduce
first a few definitions.

Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.

Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is
nondominated with respect to X , if there does not exist another x′ ∈ X
such that f(x′) ≺ f(x).

Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto optimal if it is nondominated with respect to
F .

This is a notion of optimality that was originally proposed by Francis
Ysidro Edgeworth [26] and later generalized by Vilfredo Pareto [52]. Although
some authors call this notion Edgeworth-Pareto optimality (see for example
[55]), the term Pareto optimality is the most common and widespread, and is,
therefore, the one used in this chapter.

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F|x is Pareto optimal}

Definition 5. The Pareto Front PF∗ is defined by:

4 Antonio López Jaimes and Carlos A. Coello Coello

PF∗ = {f(x) ∈ IRk|x ∈ P∗}
We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3).

3 Parallel Architectures

Many schemes to classify parallel computers [28, 10, 59, 37] have been pro-
posed so far. However, none of them has become standard in the specialized
literature. The difference among these schemes lies on the characteristics of
the parallel system that are taken into account, namely: the organization of
the address space, the interconnection network, or the processors’ granular-
ity. For our purposes we will use the well-known Flynn’s taxonomy. We will
then complement the mimd classification following a similar approach as in
Johnson [37] or Bell [10].

SISD (Single Instruction Stream, Single Data Stream). This class of comput-
ers represents the conventional single-processor von Neumann computers,
where only one instruction is executed at the same time over a unique
data element.

SIMD (Single Instruction Stream, Multiple Data Stream). This architecture
consists of a central instruction unit that broadcasts a single instruction to
a group of slave processors which apply the instructions in a synchronized
fashion on different pieces of data stored in its own memory. Pipeline vec-
tor processors and processor array computers are considered as specialized
simd architectures.

MISD (Multiple Instruction Stream, Single Data Stream). A computer of
this class is able to apply different instructions to the same stream of
data at a time. Although some authors consider that this architecture is
mainly theoretical because there is no practical computer that fits this
model [31, 25, 59], other authors have considered high-level pipeline com-
puter instances of this model. Likewise, we can include fault-tolerant com-
puters in the misd class since in these systems several processors are ap-
plied upon the same data using different programs in order to mask a
possible fault in one of the programs.

MIMD (Multiple Instruction Stream, Multiple Data Stream). In a mimd ar-
chitecture, a group of processors independently execute different instruc-
tion streams over different data sets. This architecture is intended to sup-
port parallel applications that require processors to operate autonomously
during most of the time.

3.1 Taxonomy of MIMD computers

Although simd computers were very popular in the past (e.g., Connection
Machines [34], MasPar computers [12], and Cray computers [8], which were

Applications of Parallel Platforms and Models in EMO 5

all developed during the 1980s and early 1990s), nowadays manufacturers
have moved toward mimd architectures (clusters and constellations) (see
e.g., [11, 47]), and simd computers are only used in specialized application
domains such as image processing. To illustrate this it suffices to consider
that in 1993, vector computers comprised about 74% of the 500 top super-
computers2, while mimd computers comprised 26%. By 2008, the situation
had drastically changed inasmuch as vector computers comprise only 0.4%
and mimd computers comprise the remaining 99.6%. In the light of this trend
in parallel high-performance architectures, mimd systems are further discussed
in the following paragraphs.

According to the organization of the address space and the connection
method between memory and processors, mimd computers are classified into
two categories: shared memory mimd systems, commonly known as multipro-

cessors, and distributed memory systems, usually referred to as multicomput-

ers (see Figure 3).

Multiprocessor MIMD Systems

In this class of systems all the processors read and write to a common physical
address space through an interconnection network (see Figure 1). Processors
communicate each other by writing information on the global memory so that
the other processors can read it. A drawback of this communication scheme is
that data integrity is endangered since multiple processors can concurrently
request a write operation on the same memory location. In order to avoid
write conflicts the programmer has to use classic synchronization methods
such as semaphores, locks and barriers. In order to improve efficiency, each
processor is equipped with a cache memory to speedup access to frequently
used data. However, the incorporation of cache memories motivates the need of
protocols to ensure the coherence between global and cache memory. The most
common form of multiprocessors are known as Symmetric Multiprocessors

(smp), which are computers constituted by multiple processors where the
memory access time to any region of the shared memory is approximately
the same for each processor. On the contrary, in a Non-Uniform Memory

Access (numa) system, the shared memory is partitioned in such a way that
each partition is associated to a different group of processors. As a result, the
access time depends on which memory location is accessed.

Multicomputer MIMD Systems

In these systems, each processor has its own local memory. In this case, an
interconnection network is used to allow communication among processors

2The Top500 project maintains a worldwide classification and statistics
of the most powerful computers in accordance to the linpack benchmark
(www.top500.org).

6 Antonio López Jaimes and Carlos A. Coello Coello

by means of message passing. In this category, we can find one of the most
common parallel systems in current use, the cluster of computers. A cluster
is a system comprised of independent computers (nodes) connected by a low-
latency network. The nodes in a cluster are capable of independent operation
and communicate with one another via message passing. Clusters comprise
two classes: clusters of workstations (cows)3 and constellation systems. Both
classes of clusters use both commercial off-the-shelf networks and computing
nodes. Nevertheless, according to Dongarra et al. [24], the difference between
these systems relies on the number of nodes connected by the network and the
number of processors on each node. In a cow system, there are more nodes
than processors in any of its nodes, while a constellation system has more
processors than nodes in the clusters. Usually, each node in a constellation is
configured as a smp with hundreds of processors. Nowadays, a cluster with a
low-latency proprietary network and more than 1000 processors is considered
a massively parallel processing system (mpp)4.

Global metacomputing

This is an emerging form of mimd parallel systems that has attracted a great
interest in the last decade. The basic idea of global metacomputing is employ-
ing computers geographically distributed around the world as if they were one
large parallel machine or metacomputer. Although this concept dates back to
the mid 1960’s [63, 42] the limitations both in storage capacity and network
performance in those days made the idea impractical.

The most ambitious form of metacomputing is named grid computing.
Grid computing is a group of technologies and infrastructure that coordi-
nate large-scale resource sharing among individuals or organizations around
the world [29, 30]. Although, currently, the most common shared resources
are computer power (e.g., clusters, constellations) and data (e.g., software,
databases), grid computing is not limited to computational resources. Grid
infrastructure also enables organizations to share: (1) scientific instruments
such as telescopes, particle accelerators and electron microscopes, (2) analysis
procedures and computational results, and (3) human expertise in the form
of collaborative work.

Volunteer computing is another form of metacomputing mainly focused on
facilitating the sharing of computer power and data storage among individ-
uals around the world. The idea behind volunteer computing is to provide
an infrastructure that enables individuals to share the idle processing power
of their computers to build a large parallel machine which is used to solve

3Also known as Beowulf clusters or network of workstations (nows).
4
mpp is a loosely-defined term that has been used to qualify different paral-

lel architectures through the years. For instance, the first mpp system was a simd

computer. However the current usage is mainly intended for distributed-memory
systems.

Applications of Parallel Platforms and Models in EMO 7

expensive computational problems [53]. Among the most successful volunteer
computing projects, we can find the distributed.net project [1] that solved
the rsa rc-56 decryption challenge, and the seti@home [2] project that an-
alyzes radio telescope data looking for signs of extraterrestrial intelligence.
As of 2008, seti@home accounted with near 890 000 registered volunteers
supplying an average of 460Tflops5. In order to put this figure in its proper
context, it is worth considering that the fastest supercomputer currently avail-
able operates at 1026 Tflops the second fastest operates at 478 Tflops, which is
comparable with seti@home’s throughput. Although these projects are cate-
gorized as “true volunteer” computing since users are unpaid and unrelated to
the project administrators, there are other variations of this scheme, includ-
ing private volunteer computing. That is, organizations such as companies,
universities or laboratories which turn their existing networks into virtual su-
percomputers that they can use for their research. For a complete taxonomy
of volunteer computing systems interested readers are referred to [53]. Prob-
lems that can be modelled using the master-slave paradigm are ideal to be
solved with a volunteer computing system.

Fig. 1. Multiprocessor mimd system (shared memory).

4 Parallelization Models of MOEAs

The parallelization schemes that have been proposed for moeas are derived
from the well-known models designed for single-objective optimization: the
master-slave model, the island model, the diffusion model and the hybrid
model. Nevertheless, currently there is no standard way to extend these models

5This information was taken from the web page of boinc

(http://boincstats.com), the middleware used by seti@home and other vol-
unteer computing projects.

8 Antonio López Jaimes and Carlos A. Coello Coello

Fig. 2. Multicomputer mimd system (distributed memory).

MIMD

Multicomputers

Grid
computing

Volunteer
computing

Massively
parallel processors

Clusters of
workstations

Clusters

Global
metacomputing

Constellations

Multiprocessors

NUMA

SMP

Fig. 3. mimd taxonomy.

to the multi-objective field. Van Veldhuizen, Zydallis and Lamont [61] provide
a detailed discussion of the generic versions of these models when applied to
moeas. Next, we will briefly discuss each of them.

4.1 Master-Slave model

The master-slave model is one of the simplest ways to parallelize a moea and,
hence, the most popular among practitioners. Here, a master processor exe-
cutes the moea, and the objective function evaluations are distributed among
a number of slave processors. As soon as the slaves complete the evaluations
they return the objective function values to the master and remain idle until

Applications of Parallel Platforms and Models in EMO 9

the next generation.6 In addition to the evolutionary operators (selection, re-
combination and mutation), the master processor executes other tasks such as
Pareto ranking, and archiving. This model is depicted in Figure 4. A master-
slave pmoea explores the search space in the same way as a serial moea does.
Therefore, it finds the same solutions found by its serial counterpart. How-
ever, the execution time is reduced (ideally p times with p processors). The
master-slave model is perfect to be implemented in a volunteer computing
system. However, as we indicate in the following lines, the evaluation time
of the objective functions should be greater compared to the communication
time.

Slave

variables
Design ObjectiveMaster

SlaveSlave Slave

values

Fig. 4. Master-slave model.

In multi-objective optimization, there are three schemes to distribute the
objective functions evaluations among a number of slave processors:

1. Evenly distribute the population over the slaves in such a way that each
slave evaluates all the objective functions for its share of the population.
Assuming that the master processor evaluates a portion of the individuals,
the total computation time for each generation using P processors is given
by

TP = (P − 1)tcp + tca +
ntF
P

, (4)

where tcp is the time required to send one individual, tca is the time
required to send back the objective values to the master, tF is the time
required to evaluate one individual, and n is the size of the population.
If tcp = tca then we obtain the computation time presented by Cantú-
Paz [15]:

TP = Ptcp +
ntF
P

, (5)

From Equation (5) we can derive some interesting results. First, the opti-
mal number of processors, P ∗, that minimizes TP is given by

6A scheme where the master also evaluates some individuals is possible, though.

10 Antonio López Jaimes and Carlos A. Coello Coello

P ∗ =
√

nγ, (6)

where γ = tF

tcp
. Using the parallel execution time of Equation (5) and

the execution time of a sequential moea, TS = ntF , we can ensure that
a master-slave moea is faster than the sequential counterpart using the
following condition:

γ >
P 2

n(P − 1)
. (7)

Limited by Amdahl’s law [7], the speedup of a master-slave moea has a
maximum value. According to Cantú-Paz [15] the speedup curve is limited
by

S∗
P =

1

2
P ∗. (8)

2. Each objective function is assigned to a different even partition of slaves
(i.e., partition P1 evaluates f1, P2 evaluates f2 and so forth). Each parti-
tion of slaves then evenly distributes the population over their processors.
Here, we are assuming that the size of each partition, Pi, of slaves is P

k
,

where k is the number of objectives. If tc is the time required to broadcast
the entire population and tfmax

= max1≤i≤k{tfi
} is the execution time

of the most expensive objective function in the set of objective functions,
the execution time for each generation using this distribution scheme is
given by

TP = tc + (P − 1)tca +
kntfmax

P
. (9)

3. Each objective function is decomposed into smaller algebraic terms and
then these terms are distributed to different groups of slaves. This way,
each group of slaves evaluates a small part of a complex objective func-
tion. Let tcom be the time required to combine the decomposed objective
values and tfmax

= max1≤i≤k, 1≤j≤pi
{tfi,j

} the execution time of the most
expensive partition of the objective function fi (pi is the number of par-
titions of function fi). Then, the execution time of one generation of this
distribution scheme is

TP = tcom + tc + (P − 1)tca +
kntfmax

P
. (10)

4.2 Diffusion model

Like the master-slave model, the diffusion model considers a unique popula-
tion, but in this case the population is spatially distributed onto a neighbor-
hood structure. Usually, this structure is a two-dimensional rectangular grid,
and there is one individual per grid point (see Figure 5). Ideally, there is one
processor per individual, and therefore this model is sometimes called fine-

grained. This kind of pmoea is also known as a cellular pmoea because the
model is similar to a cellular automaton with stochastic transition rules. The

Applications of Parallel Platforms and Models in EMO 11

selection and mating is confined to a small neighborhood around each indi-
vidual. The neighborhoods are overlapped (as depicted by the dotted lines in
Figure 5) so that the good traits are spread or “diffused” throughout the whole
population. The communication costs tend to be high, since the individuals
who take part in the selection are distributed among several processors. As a
consequence, this model is appropriate for shared-memory mimd computers
such as smps. However, custom hardware implementations on simd computers
are also possible [27].

Fig. 5. Diffusion model.

4.3 Island model

This model was inspired by the natural phenomenon in which a number of spa-
tially isolated populations are linked together by dispersal and migration. In
an island pmoea, the population is divided into several small sub-populations,
called islands or demes, which evolve independently of each other. In each of
these islands a serial moea is executed for a number of generations called an
epoch. At the end of each epoch, individuals migrate between neighboring is-
lands. The neighbors are defined by the migration topology, which determines
the migration paths along which individuals can move to other islands. A typ-
ical representation of the island model is shown in Figure 6, in which a ring
topology is adopted, although other migration topologies are possible (2-D
and 3-D meshes, tori, hypercubes or trees). Island pmoeas are also known as
distributed pmoeas, as they are usually implemented on distributed memory
mimd computers. In particular, due to the low inter-processor communica-
tion frequency, this model is well-suited for clusters of computers or for grid
computing systems.

This model is very popular among researchers, but it requires many pa-
rameters and design decisions. The main issues to consider with this sort of
model include the migration topology, the migration frequency, the number of

12 Antonio López Jaimes and Carlos A. Coello Coello

Migration

Fig. 6. Master-slave model.

individuals to migrate, and the decision regarding the individuals which will
migrate and those which will be replaced by the immigrants. Tables 1 and 2
present a number of possible migration and replacement schemes proposed by
Coello, Lamont and Van Veldhuizen [16].

Scheme Description

Non-uniform schemes

Elitist (random) Migrate a random sample of individuals from the current
nondominated front.

Elitist (niching) Migrate individuals evenly distributed from the current
nondominated front.

Elitist (front) Migrate the entire nondominated front.

Uniform schemes

Random Migrate n individuals selected at random.

Elitist (random) Migrate n individuals selected at random from the cur-
rent nondominated front plus some individuals randomly
selected from the ranked Pareto fronts if necessary.

Elitist (niching) Migrate n individuals evenly distributed from the cur-
rent nondominated front plus some individuals evenly dis-
tributed from the remainder ranked Pareto fronts if neces-
sary.

Table 1. Migration schemes in the island model.

The model allows each island to have their own parameter setting. De-
pending on the homogeneity of the islands, we can recognize four variants of
the island model:

Applications of Parallel Platforms and Models in EMO 13

Scheme Description

Random Randomly replace n individuals.

None No replacement, thereby the population increases its size.

Elitist (random) Maintain the current nondominated front and randomly
replace any dominated individual.

Elitist (ranking) Rank the population into nondominated fronts and replace
individuals from the worst ranked fronts with the immi-
grants.

Elitist (100%
ranking)

Combine immigrants with the current population, rank
the combined population and discard individuals from the
worst ranked fronts.

Table 2. Replacement schemes for the island model.

1. Island pMOEA with homogeneous nodes. The moeas performed
in every island have all the same parameter values (e.g., population size,
mutation, crossover and migration rate).

2. Island pMOEA with heterogeneous nodes. Each island applies a
moea which has a different parameter setting, uses its own evolutionary
operators and solution encoding technique. Even more, each island can be
constituted by a different moea.

3. Island pMOEA with different objective subsets. Each island is re-
sponsible for optimizing a different partition of the entire objective subset.

4. Island pMOEA with different regions in the search space. Each is-
land may be explicitly instructed to explore a particular region of decision
variable or objective function space to optimize computational resources.

There are a number of approaches [41, 62] that have successfully used the
heterogeneous scheme adopting different moeas in each island. Whereas in
León, Miranda and Segura [41] only moeas such as nsga-ii and spea2 are
employed, it is possible to combine different metaheuristics as in the approach
proposed by Vrugt and Robinson [62]. In this approach the authors combine
four different metaheuristics, namely: a multiobjective evolutionary algorithm,
a particle swarm optimization algorithm, an adaptive Metropolis search tech-
nique and a differential evolution algorithm. The idea behind a heterogeneous
approach is to build a robust algorithm in which some metaheuristics can com-
pensate the weaknesses of other metaheuristics in a particular problem. The
success of a heterogeneous approach greatly depends on the strategy adopted
to evaluate the performance of each metaheuristic in order to favor the best
metaheuristics in future generations.

In the third variant, the straightforward strategy is to assign a different
objective function to a set of islands executing, thereby, a single objective
evolutionary optimization algorithm [50]. On the other hand, if the optimiza-
tion problem has a large number of objectives, then it is possible to partition
the objective set into groups with more than one objective. In this situation,

14 Antonio López Jaimes and Carlos A. Coello Coello

we have to carefully decide how to group objective functions. As recent stud-
ies [14, 45] have pointed out, the conflict among objectives determines the
importance of each objective in the optimization problem. In addition, there
are different degrees of conflict among the objectives and it is possible that
one objective that is not in conflict with a certain objective might be in great
conflict with another. Therefore, we can cluster objectives according to the
degree of conflict among them. That is, the objective set should be parti-
tioned in such a way that the conflict among objectives inside each cluster is
maximum and the conflict among objectives in different clusters is minimum.

In order to avoid that two or more demes exploit the same region of the
search space it is convenient to instruct each deme to solve non-overlapping
regions of decision variable or objective function space. In a general mop it
is very hard to devise a priori a distribution such that: (1) covers the entire
search space, (2) assigns regions of equal size, and (3) aggregates a minimum
complexity to constraint demes to their assigned region.

In Coello, Lamont and Van Veldhuizen [16], three strategies to distribute
the search space among the demes are identified:

1. Constrain each deme to a particular region and force it to generate indi-
viduals until a suitable number of them is produced within its assigned
region. The drawback of this strategy is that it introduces an overhead
because of the extra number of objective function evaluations performed.

2. Constrain each deme to a particular region by migrating individuals to
the deme covering such region. This strategy introduces a communication
overhead, though.

3. Constrain each deme to a particular region of the Pareto front by intro-
ducing a bias in the search in such a way that each deme concentrates
on a specific region of the Pareto front. The drawback of this approach
is that the shape of the true Pareto front needs to be known a priori.
Section 6 presents two pmoeas proposed by Deb, Zope and Jain [23], and
by Streichert, Ulmer and Zell [56] that follow this approach.

4.4 Hybrid Model

Another option to parallelize a moea is combining a coarse-grained parallel
scheme at a high level (e.g., island model) with a fine-grained scheme at a
low level (e.g., diffusion model). Cantú Paz discussed three types of hybrid
schemes that use an island model at the high level:

1. Each island implements a diffusion pmoea (see Figure 7(a)),
2. Each island implements a master-slave pmoea (see Figure 7(c)) and
3. Each island implements an island pmoea (see Figure 7(b)).

The first hybrid is ideal for a constellation of computers where each smp

node can be used to implement the diffusion pmoea and the entire cluster of
smps can be configured as the island model.

Applications of Parallel Platforms and Models in EMO 15

(a) Island/diffusion (b) Island/island

(c) Island/master-slave

Fig. 7. Hybrid models.

5 Performance Assessment of Parallel MOEAs

Parallel performance indicators provide useful information that can be used
to identify the bottlenecks of the pmoea or to predict its performance on a
given parallel system. For instance, researchers can use these indicators to
improve a parallel moea and a practitioner can decide if extending a given
parallel system is cost-effective according to an analysis of the performance
results.

5.1 Speedup

The most well-known measure of performance of a parallel system is the
speedup, which is defined as the ratio of the total execution time on an unipro-
cessor to the total execution time in the parallel system. In other words, the
speedup of a parallel algorithm executed in p processors is given by

Sp =
T1

Tp

,

16 Antonio López Jaimes and Carlos A. Coello Coello

where T1 is the wall-clock time of the sequential algorithm and Tp is the
wall-clock time of the parallel algorithm. Usually, T1 should correspond to
the optimal sequential algorithm (this speedup is denoted as strong speedup

by Alba [4]). Nevertheless, as Helmbold and McDowell [33] point out, this
requirement is impractical since even the best known sequential algorithm
may be improved in the future and it may exhibit a different performance
depending on the data of interest.

Alba [4] suggests different approaches to compute the speedup in evolu-
tionary algorithms. First of all, given the stochastic nature of evolutionary
algorithms, the execution times of the algorithms should involve the compu-
tation of average times over several runs. In fact, some authors [18] suggest to
measure average execution times even for deterministic algorithms, since there
are some random events in a parallel system such as the execution of system
daemons or the reordenation of memory accesses, which may produce time
variations from one execution to another. Additionally, it is recommended to
compute the variance of the running times since a high variance may be a
symptom of high contention for locks, for instance. Alba defines a type of
speedup as the most appropriate for evaluating parallel evolutionary algo-
rithms, namely speedup with solution stop. In this type of speedup, instead
of using the number of evaluations as the stopping criterion, the “quality of
the solution” is employed. In single-objective optimization, it is straightfor-
ward to determine if two solutions have the same quality, i.e., if they have
the same fitness. In contrast, in multi-objective optimization, there is no con-
sensus regarding how to determine, in general, the quality of the Pareto front
generated by a moea. A practical approach is to use a unary performance
indicator that assesses both the distribution and the convergence of the ap-
proximation of the Pareto front produced. Some indicators that might be
adopted to determine the quality of the solution are: hypervolume [65], in-
verted generational distance [16] or the G-metric [44]. There are two variants
to compute the speedup with solution stop: (1) compare the pmoea against
a canonical sequential moea with a global population, and (2) compare the
parallel p-processor moea on a single processor and the same algorithm on p
processors.

In addition to these types of speedup, we can use a similar approach to
that adopted by the so-called fixed-time model [32], where a predefined a time
limit is used and the “work” increases as processors are added. In our case,
the work is defined as the approximation to the true Pareto front measured
with a suitable quality indicator. Thus, the fixed-time speedup is defined by

Sxp =
I(A1)

I(Ap)
,

where I is a unary quality indicator, Ap is the approximation set obtained
by the pmoea and A1 is the approximation set obtained by the sequential
moea using some fixed-time window in both algorithms. As in the previous

Applications of Parallel Platforms and Models in EMO 17

types of speedup, it is advised to use the p-processor moea on a single pro-
cessor as the sequential algorithm. This type of speedup has some advantages
over the speedup with solution stop. First, it is easier to incorporate the fixed-
time stopping criterion to an existing code. Second, the same output datasets
obtained in several runs can be used to compute the fixed-time speedup with
different quality indicators. In contrast with the speedup with solution stop,
we have to execute the algorithms again if we change the quality indicator
used as our stopping criterion.

Superunitary speedup

The condition when the speedup with p processors is greater than p is referred
to as superunitary speedup (also known as superlinear speedup). Although in
the past many works on parallel evolutionary algorithms have reported supe-
runitary speedup [43, 9, 6], in some cases this phenomenon is due to a com-
parison against an inefficient or ineffective sequential algorithm. Nonetheless,
many authors have identified a range of conditions that give rise to superuni-
tary speedup [32, 33, 3, 4] even if we compare against the same code on a single
processor. Some of the sources of superunitary speedup are the following:

• Increase of high-speed memories. When the number of processors is in-
creased, the number of high-speed memories (e.g., cache, cpu registers)
is also increased. While a large number of individuals might not fit into
small but high-speed memories, if the population is distributed in many
processors, it is possible that the resulting subpopulations can perfectly
fit in high-speed local memories instead of the low-speed ram.

• Reduced overhead. The reason is that the time consumed on some operating
system’s kernel calls on an n processor machine is only 1/n of the time
required on a single processor.

• Shift algorithm’s profile. When a fixed-time model is used, superunitary
speedup may result if a parallel algorithm spends more time in faster
routines.

Inasmuch as these are mainly hardware sources, it is important to present
details of the parallel architecture used, specially if superunitary speedup is
reported.

In the specialized literature, we can find other conditions under which
superunitary speedup may appear. For instance, time gains obtained from
traversing the search space in parallel or improvements due to the use of
smaller abstract data structures (e.g., a list for the primary population or
the external archive). However, these conditions may produce superunitary
speedup only when the parallel moea is compared to a sequential moea with
a global population or when a subefficient sequential algorithm is employed.

18 Antonio López Jaimes and Carlos A. Coello Coello

5.2 Other Parallel Performance Measures

• Efficiency (E). This metric [40] measures the fraction of time that a pro-
cessor is effectively utilized. It is defined by the ratio between the speedup
and the number of processors used. This metric is defined as:

Ep =
Sp

p
, (11)

where Sp is the speedup achieved with p processors. In an ideal system,
the efficiency is equal to 1. In reality, due to the communication costs,
and the idle time caused by the synchronization, the efficiency oscillates
between 0 and 1.

• Serial Fraction (F). This metric was defined by Karp and Flatt [38] to
estimate the serial fraction7 for measuring the performance of a parallel
algorithm on a fixed-size problem. Mathematically, it is defined as:

Fp =
1/Sp − 1/p

1 − 1/p
. (12)

where Sp the speedup achieved with p processors. Smaller values of F are
considered better. If F increases with the number of processors, then it is
a symptom of growing communications costs, and, therefore, an indicator of
poor scalability. Thus, if the speedup of an algorithm is small, we can still say
that it is efficient if Fp remains constant when increasing p. In this case, the
efficiency drops due to the limited parallelism of the algorithm. On the other
hand, if the value of F decreases with p, Karp and Flatt [38] consider that
the speedup tends to be superlinear.

6 Selection of Parallel MOEAs

Although several researchers have reported the use of parallel moeas [48, 16],
not many of them have actually proposed novel schemes to parallelize a moea.
Next, we will review the most representative work along these lines that we
were able to find in the specialized literature.

The Divided Range Multi-Objective Genetic Algorithm (drmoga) was
proposed by Hiroyasu et al. [35]. Here, the global population is sorted accord-
ing to one of the objective functions (which is changed after a number gen-
erations). Then, the population is divided into equally-sized sub-populations
(see Figure 8). Each of these sub-populations is allocated to a different pro-
cessor in which a serial moea is applied. At the end of a specific number of
generations, the sub-populations are gathered and the process is repeated,
but this time using some other objective function as the sorting criterion. The

7The ratio of the time taken by the inherently serial component of an algorithm
to its execution time on one processor.

Applications of Parallel Platforms and Models in EMO 19

main goal of this approach is to focus the search effort of the population on
different regions of the objective space. However, in this approach we cannot
guarantee that the sub-populations will remain in their assigned region. A
similar approach is followed by de Toro Negro et al. [19].

division 1 division 3division 2

f

f1

2

Fig. 8. Division of the population in drmoga.

Zhu & Leung proposed the Asynchronous Self-Adjustable Island Genetic
Algorithm (asaiga) [64]. In asaiga, rather than migrating a set of individuals,
the islands exchange information related to their current explored region. The
“exploration region” (ER) is the hypercube containing most of the individuals
of the archive maintained by the sequential moea (see Figure 9). Based on the
information coming from other islands, a “self-adjusting” operation modifies
the fitness of the individuals in the island to prevent two islands from exploring
the same region. In a similar way to drmoga, this approach cannot guarantee
that the sub-populations move tightly together throughout the search space,
hence the information about the explored region may be meaningless.

2

(L ,U)2 1(L ,U)1 1

21(L ,U) (L ,U)

Exploration region

2

The exploration region is defined by the
hypercube [L1, U1] × . . . × [LN , UN]. Let

{f1

i , f2

i , . . . , fn
′

i } be the permutation with the
ascending sorted values of the i-th (i =
1, . . . , N) objective, where n′ is the size of
the archive and N the number of objectives.

Then: Li = f
⌈ 1

4
n⌉

i
, Ui = f

⌈ 3

4
n⌉

i
for 1 ≤ i ≤ N .

Fig. 9. Exploration region used in ASAIGA.

20 Antonio López Jaimes and Carlos A. Coello Coello

Another island pmoea was introduced by Deb et al. [23]. In this case,
although all processors search on the entire decision variable space, the ap-
proach assigns each processor a different search region of the Pareto-optimal
front. In order to steer the search towards the assigned region, the authors
adopt a “guided domination” (see Figure 10) based on a concept defined by
Branke, Kaußler and Schmeck [13]. This concept uses a weighted function of
the objectives in order to achieve a larger dominated region for each vector.
Therefore, each processor using this new concept only finds a region of the
real Pareto front. The weakness of this approach is that we must have a pri-
ori knowledge of the shape of the Pareto front in order to define accurately
the search directions. Furthermore, this technique can only deal with convex
Pareto fronts.

21

(c)

1/a

a21

Dominated region Dominated region

(b)(a)

12

f2

f1

A

f2

f1

f2

f1

A

1/a12
a

region
Favored

Fig. 10. Dominated region with the usual Pareto domination (a); dominated region
with the concept of guided domination (b); “nondominated” region of the Pareto
front (c).

Streichert et al. [56] proposed an approach that partitions the overall pop-
ulation using a clustering algorithm aiming to specialize the exploration of
each island on different areas of the Pareto front. Periodically (after a specified
number of generations) the islands are gathered, clustered and redistributed
onto the available processors. The individuals are kept within their region by
considering this as their feasible zone and using the constrained dominance
principle defined by Deb et al. [21]. That is, any individual generated outside
its constrained region is marked as “invalid”. The main drawback of the ap-
proach is that the repeated gathering of all sub-populations produces a high
communication overhead, which is increased with the number of processors.

López Jaimes and Coello Coello [36] proposed an approach called Multiple
Resolution Multi-Objective Genetic Algorithm (mrmoga), which consists of
a pmoea based on the island paradigm, with heterogeneous nodes. The main
idea of this approach is to encode the solutions using a different resolution in
each island. Then, variable decision space is divided into hierarchical levels
with well-defined overlaps. Evidently, migration is only allowed in one direc-
tion (from low resolution to high resolution islands). mrmoga uses an external
population, and the migration strategy considers such population as well (see

Applications of Parallel Platforms and Models in EMO 21

Figure 11). The approach also uses a strategy to detect nominal convergence
of the islands in order to increase their initial resolution. The rationale behind
this approach is that the true Pareto front can be reached faster using this
change of resolution in the islands, because the search space of the low reso-
lution islands is proportionally smaller and, therefore, convergence is faster.
The results indicated that mrmoga outperforms a parallel version of nsga-ii,
with a more significant difference as the number of processor increases.

3

����
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

Replace the worst individuals
from the primary population

archive

primary pop.

1

2

Execute a serial MOEA during an epoch

archiveprimary pop.

Migrate randomly selected
individuals from the archive

x

primary pop.

archive

New

Removed

Fig. 11. Schematic view of mrmoga.

7 Summary and Final Remarks

This chapter has presented an overview of parallel multi-objective evolution-
ary algorithms (pmoeas). Firstly, we described the current parallel architec-
tures available. Secondly, we reviewed the most common models to implement
pmoeas. Then, we presented some performance indicators that have been used
to measure the efficiency of pmoeas. Finally, a selection of some pmoeas that
incorporate innovative strategies was presented.

Global metacomputing (see Section 3) is one of the most promising current
parallel architectures which is underused in evolutionary optimization. Grid
computing is starting to be explored in multi-objective evolutionary optimiza-
tion [46] and, to the best of our knowledge, no pmoea has yet been imple-
mented using volunteer computing in spite of the fact that both technologies
represent an inexpensive alternative for supercomputing using existing local
networks. Consequently, we expect that in the near future more researchers
and practitioners will exploit these new forms of parallel computing.

In this chapter, we outlined some general strategies to distribute the objec-
tive set in the master-slave model, and some migration/replacement strategies.
However, there is still room for new parallelization strategies.

Additionally, given the assessment methodology observed in the current
literature, it is clear that there is no standard way to compare and easily pon-

22 Antonio López Jaimes and Carlos A. Coello Coello

der the performances reported of two different pmoeas. In sequential moeas,
we compare new algorithms against well-established moeas such as nsga-ii

or spea2. Thus, we can appraise easily the value of new moeas reported in
different works. In contrast, for pmoeas there is no standard reference pmoea

to beat. Thereby, it is required a different methodology to assess performance
and report the results produced by pmoeas.

Acknowledgements

The first author acknowledges support from conacyt to pursue graduate
studies in computer science at cinvestav-ipn.

References

1. distributed.net project home page. url: http://www.distributed.net.
2. SETI@home project home page. url: http://setiathome.berkeley.edu.
3. Selim G. Akl and Lorrie Fava Lindon. Paradigms admitting superunitary be-

haviour in parallel computation. In CONPAR 94 - VAPP VI: Proceedings of the
Third Joint International Conference on Vector and Parallel Processing, pages
301–312, London, UK, 1994. Springer-Verlag.

4. Enrique Alba Torres. Parallel evolutionary algorithms can achieve super-linear
performance. Information Processing Letters, Elsevier, 82(1):7–13, April 2002.

5. Enrique Alba Torres and José Ma. Troya Linero. A survey of parallel distributed
genetic algorithms. Complexity, 4(4):31–51, 1999.

6. Enrique Alba Torres and José Ma. Troya Linero. Analyzing synchronous and
asynchronous parallel distributed genetic algorithms. Future Generation Com-
puter Systems, 17(4):451–465, Enero 2001.

7. Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of the April
18-20, 1967, spring joint computer conference, pages 483–485, New York, NY,
USA, 1967. ACM.

8. Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schif-
fleger. Cray X-MP: The birth of a supercomputer. Computer, 22(1):45–52,
1989.

9. Theodore C. Belding. The distributed genetic algorithm revisited. In Larry
Eshelman, editor, Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 114–121, San Francisco, CA, 1995. Morgan Kaufmann.

10. Gordon Bell. Ultracomputers: A teraflop before its time. Communications of
the ACM, 35(8):27–47, Agosto 1992.

11. Gordon Bell. Bell’s law for the birth and death of computer classes. Communi-
cations of the ACM, 51(1):86–94, 2008.

12. Tom Blank. The MasPar MP-1 architecture. In Compcon Spring’90. Intellectual
Leverage. Digest of Papers. Thirty-Fifth IEEE Computer Society International
Conference., pages 20–24, 1990.

13. Jürgen Branke, Thomas Kaußler, and Harmut Schmeck. Guidance in Evolution-
ary Multi-Objective Optimization. Advances in Engineering Software, 32:499–
507, 2001.

Applications of Parallel Platforms and Models in EMO 23

14. Dimo Brockhoff and Eckart Zitzler. Are All Objectives Necessary? On Dimen-
sionality Reduction in Evolutionary Multiobjective Optimization. In Parallel
Problem Solving from Nature IX, pages 533–542. Springer-Verlag, 2006.

15. Erick Cantú Paz. Efficient and Accurate Parallel Genetic Algorithms. Boston:
Kluwer Academic Publishers, 2002.

16. Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Springer, New York,
second edition, September 2007. ISBN 978-0-387-33254-3.

17. Yann Collette and Patrick Siarry. Multiobjective Optimization. Principles and
Case Studies. Springer, August 2003.

18. Lawrence A. Crowl. How to measure, present, and compare parallel perfor-
mance. IEEE Parallel Distrib. Technol., 2(1):9–25, 1994.

19. Francisco de Toro Negro, J. Ortega, E. Ros, S. Mota, B. Paechter, and J. M.
Martn. PSFGA: Parallel Processing and Evolutionary Computation for Mul-
tiobjective Optimisation. Parallel Computing, Elsevier, 30(5–6):721–739, May
2004.

20. Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

21. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Opti-
mization: NSGA-II. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph,
Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors,
Proceedings of the Parallel Problem Solving from Nature VI Conference, pages
849–858, Paris, France, 2000. Springer. Lecture Notes in Computer Science No.
1917.

22. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast
and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, April 2002.

23. Kalyanmoy Deb, Pawan Zope, and Abhishek Jain. Distributed Computing of
Pareto-Optimal Solutions with Evolutionary Algorithms. In Carlos M. Fonseca,
Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele, editors,
Evolutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003, pages 534–549, Faro, Portugal, April 2003. Springer. Lecture Notes
in Computer Science. Volume 2632.

24. Jack Dongarra, Thomas Sterling, Horst Simon, and Erich Strohmaier. High-
performance computing: Clusters, constellations, MPPs, and future directions.
Computing in Science and Engineering, 7(2):51–59, 2005.

25. Ralph Duncan. A survey of parallel computer architectures. Computer, 23(2):5–
16, 1990.

26. F. Y. Edgeworth. Mathematical Physics. P. Keagan, London, England, 1881.
27. Sven E. Eklund. A massively parallel architecture for distributed genetic algo-

rithms. Parallel Computing, 30(5-6):647–676, 2004.
28. Michael J. Flynn. Some computer organizations and their effectiveness. IEEE

Transactions on Computers, 21(9):948–960, Septiembre 1972.
29. Ian Foster and Carl Kesselman, editors. The grid: blueprint for a new computing

infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999.

30. Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl.,
15(3):200–222, 2001.

24 Antonio López Jaimes and Carlos A. Coello Coello

31. Wolfgang K. Giloi. Towards a taxonomy of computer architecture based on the
machine data type view. SIGARCH Comput. Archit. News, 11(3):6–15, 1983.

32. John L. Gustafson. Fixed time, tiered memory, and superlinear speedup. In In
Proceedings of the Fifth Distributed Memory Computing Conference (DMCC5,
1990.

33. David P. Helmbold and Charles E. McDowell. Modeling speedup (n) greater
than n. IEEE Trans. Parallel Distrib. Syst., 1(2):250–256, 1990.

34. W. Daniel Hillis. The Connection Machine. MIT Press, Cambridge, MA, USA,
1989.

35. Tomoyuki Hiroyasu, Mitsunori Miki, and Shinya Watanabe. The New Model of
Parallel Genetic Algorithm in Multi-Objective Optimization Problems–Divided
Range Multi-Objective Genetic Algorithm–. In 2000 Congress on Evolutionary
Computation, volume 1, pages 333–340, Piscataway, New Jersey, July 2000.
IEEE Service Center.

36. Antonio López Jaimes and Carlos A. Coello Coello. Mrmoga: a new parallel
multi-objective evolutionary algorithm based on the use of multiple resolutions:
Research articles. Concurr. Comput. : Pract. Exper., 19(4):397–441, 2007.

37. Eric E. Johnson. Completing an MIMD multiprocessor taxonomy. SIGARCH
Computure Architecture News, 16(3):44–47, 1988.

38. Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance.
Communications of the ACM, 33(5):539–543, 1990.

39. Joshua Knowles and David Corne. Properties of an Adaptive Archiving Algo-
rithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary
Computation, 7(2):100–116, April 2003.

40. Vipin Kumar and George Karypis Ananth Grama, Anshul Gupta. Introduction
to Parallel Computing: design and analysis of parallel algorithms. Benjamin
Cummings Publishing Company, Redwood City, California, USA, 1994.

41. Coromoto León, Gara Miranda, and Carlos Segura. Parallel hyperheuristic: a
self-adaptive island-based model for multi-objective optimization. In GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary com-
putation, pages 757–758, New York, NY, USA, 2008. ACM.

42. J. C. R. Licklider and Robert W. Taylor. The computer as a communication
device. Science and Technology, 76:21–31, 1968.

43. Shyh-Chang Lin, William F. Punch iii, and Erik D. Goodman. Coarse-grain
genetic algorithms, categorization and new approaches. In Sixth IEEE Sympo-
sium on Parallel and Distributed Processing, pages 28–37, Dallas, Texas, USA,
October 1994. IEEE Computer Society Press.

44. Giovanni Lizárraga Lizárraga, Arturo Hernández Aguirre, and Salvador Botello
Rionda. G-metric: an m-ary quality indicator for the evaluation of non-
dominated sets. In GECCO ’08: Proceedings of the 10th annual conference
on Genetic and evolutionary computation, pages 665–672, New York, NY, USA,
2008. ACM.

45. Antonio López Jaimes, Carlos A. Coello Coello, and Debrup Chakraborty. Ob-
jective Reduction Using a Feature Selection Technique. In 2008 Genetic and
Evolutionary Computation Conference (GECCO’2008), pages 674–680, Atlanta,
USA, July 2008. ACM Press. ISBN 978-1-60558-131-6.

46. Francisco Luna, Antonio J. Nebro, and Enrique Alba. Observations in us-
ing grid-enabled technologies for solving multi-objective optimization problems.
Parallel Comput., 32(5):377–393, 2006.

Applications of Parallel Platforms and Models in EMO 25

47. Hans Werner Meuer. The TOP500 project: Looking back over 15 years of su-
percomputing experience. Informatik-Spektrum, 31(3):203–222, June 2008.

48. Antonio J. Nebro, Francisco Luna, El-Ghazali Talbi, and Enrique Alba. Parallel
Multiobjective Optimization. In Enrique Alba, editor, Parallel Metaheuristics,
pages 371–394. Wiley-Interscience, New Jersey, USA, 2005. ISBN 13-978-0-471-
67806-9.

49. Shigeru Obayashi and Daisuke Sasaki. Multiobjective Aerodynamic Design and
Visualization of Supersonic Wings by Using Adaptive Range Multiobjective
Genetic Algorithms. In Carlos A. Coello Coello and Gary B. Lamont, editors,
Applications of Multi-Objective Evolutionary Algorithms, pages 295–315. World
Scientific, Singapore, 2004.

50. Tamaki Okuda, Tomoyuki Hiroyasu, Mitsunori Miki, and Shinya Watanabe.
DCMOGA: Distributed cooperation model of multi-objective genetic algorithm.
In Proceedings of the PPSN/SAB Workshop on Multiobjective Problem Solving
from Nature II (MPSN-II, 2002.

51. Andrzej Osyczka. Evolutionary Algorithms for Single and Multicriteria Design
Optimization. Physica Verlag, Germany, 2002. ISBN 3-7908-1418-0.

52. Vilfredo Pareto. Cours D’Economie Politique, volume I and II. F. Rouge,
Lausanne, 1896.

53. Luis F. G. Sarmenta. Volunteer Computing. PhD thesis, Massachusetts Institute
of Technology, March 2001.

54. H. Sawai and S. Adachi. Parallel distributed processing of a parameter-free GA
by using hierarchical migration methods. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’99), volume 1,
pages 579–586, San Francisco, California, USA, July 1999. Morgan Kaufmann.

55. W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, editor,
Multicriteria Optimization in Engineering and the Sciences, pages 1–25. Plenum
Press, New York, NY, 1988.

56. Felix Streichert, Holger Ulmer, and Andreas Zell. Parallelization of Multi-
objective Evolutionary Algorithms Using Clustering Algorithms. In Carlos A.
Coello Coello and Eckart Zitzler, editors, Evolutionary Multi-Criterion Opti-
mization. Fourth International Conference, EMO 2005, pages 92–107, Guanaju-
ato, Mexico, 2005. Springer-Verlag. Lecture Notes in Computer Science. Volume
3410.

57. El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao Ishibuchi, Günter
Rudolph, and Carlos A. Coello Coello. Parallel Approaches for Multi-objective
Optimization. In Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Ro-
man Slowinski, editors, Multiobjective Optimization. Interactive and Evolution-
ary Approaches, pages 349–372. Springer. Lecture Notes in Computer Science
Vol. 5252, Berlin, Germany, 2008.

58. K.C. Tan, E.F. Khor, and T.H. Lee. Multiobjective Evolutionary Algorithms
and Applications. Springer-Verlag, London, 2005. ISBN 1-85233-836-9.

59. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall, Upper Saddle River, New Jersey, EE. UU., Enero
2002.

60. Marco Tomassini. Parallel and distributed evolutionary algorithms: A review. In
K. Miettinen, M. Mäkelä, P. Neittaanmäki, and J. Periaux, editors, Evolutionary
Algorithms in Engineering and Computer Science, pages 113–133. John Wiley
and Sons, 1999.

26 Antonio López Jaimes and Carlos A. Coello Coello

61. David A. Van Veldhuizen, Jesse B. Zydallis, and Gary B. Lamont. Consid-
erations in engineering parallel multiobjective evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 7(3):144–173, April 2003.

62. Jasper A. Vrugt and Bruce A. Robinson. Improved evolutionary optimiza-
tion from genetically adaptive multimethod search. Proceedings of the National
Academy of Science, 104:708–711, January 2007.

63. Victor A. Vyssotsky, Fernando J. Corbató, and Robert M. Graham. Structure
of the Multics Supervisor. In Proceedings of the AFIPS 1965 Fall Joint Com-
puter Conference (FJCC), pages 203–212, Las Vegas, Nevada, November 1965.
Spartan Books, Volume 27, Part 1.

64. Zhong-Yao Zhu and Kwong-Sak Leung. Asynchronous Self-Adjustable Island
Genetic Algorithm for Multi-Objective Optimization Problems. In Congress on
Evolutionary Computation (CEC’2002), volume 1, pages 837–842, Piscataway,
New Jersey, May 2002. IEEE Service Center.

65. Eckart Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Meth-
ods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH),
Zürich, Switzerland, November 1999.

66. Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE Transac-
tions on Evolutionary Computation, 3(4):257–271, November 1999.

