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1.1 Introduction

In most real-world problems, achieving optimal (or at least good) solutions results

in saved resources, time and expenses. These problems where optimal solutions are

desired are known as optimization problems. In general, optimization algorithms

search among the set of possible solutions (search space), evaluating the candi-

dates —perhaps also analyzing their feasibility— and choosing from among them

the final solution —or solutions— to the problem. Another perspective is that an

optimization problem consists of finding the values of those variables that min-

imize/maximize the objective functions while satisfying any existing constraints.

All optimization problems involve variables that somehow define the search space.

However, constraints are not mandatory: many unconstrained problems have been

formulated and studied in the literature. In the case of the objective function,

most optimization problems have been formulated on the basis of a single objective

function. However, in many problems it is actually necessary to optimize several

different objectives at once [Coello Coello et al. (2007)]. Usually, such objectives are

mutually competitive or conflicting, and the values of the variables that optimize

one objective may be far from optimal for the others. Thus, in multi-objective opti-

mization there is no single and unique optimal solution, but rather a set of optimal

solutions, none of them better than the others.
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Fig. 1.1 Classification of optimization methods

Optimization problems can be simple or more complex depending on the number

of objectives, the solution space, the number of decision variables, the constraints

specified, etc. Some optimization problems that satisfy certain properties are rel-

atively easy to solve [Nocedal and Wright (2006)]. However, many optimization

problems are quite difficult to solve; in fact many of them fit into the family of

NP-hard problems [Brassard and Bratley (1996)]. Assuming that P 6= NP , there

is no approach which guarantees that the optimal solution for these problems is

achieved in polynomial time. In the same way, optimization algorithms can be very

simple or complex depending on whether they are able to give exact or approxi-

mate solutions, whether they are less or more efficient or even whether they need

to be specifically designed for a particular problem or not. Moreover, algorithms

can be also classified by the amount of completion time required in comparison

to their input size. Some problems may have multiple related algorithms of dif-

fering complexity, while other problems might have no algorithms, or, at least, no

known efficient algorithms. Taking the above into account, when deciding which

algorithmic technique to apply, much depends on the properties of the problem to

be solved, but also on the expected results: the quality of the solution, efficiency of

the approach, flexibility and generality of the method, etc.

Since many optimization algorithms have been proposed, with different pur-

poses and from different perspectives, there is no single criterion that can be used

to classify them. We can find different categories of algorithms in the literature

depending on the features related to their internal implementation, their general

behavior scheme, the field of application, complexity, etc. For the purposes of this

chapter, the classification presented in Figure 1.1 provides a meaningful starting

point.

In general, most solution techniques involve some form of exploration of the set
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of feasible solutions. Exact approaches are usually based on an enumerative, exhaus-

tive or brute-force search that yields the optimal solution to the problem. However,

in most problems dealing with real or large instances, the search space may be far

too large, or there may not even exist a convenient way to enumerate it. In such

situations, it is common to resort to some kind of approximate method. These ap-

proaches do not generally ensure optimal solutions, but some of them at least ensure

a certain level of solution quality, e.g. approximation algorithms. Ad-hoc heuristics

are another kind of approximate method that incorporate information about the

problem at hand in order to decide which candidate solution should be tested next

or how the next candidate can be produced [Weise (2008)]. Since they are based on

specific knowledge of the problem, such ad-hoc methods have the drawback of be-

ing problem dependent. That is, a wide variety of heuristics can be specifically and

successfully designed to optimize a given problem, but unfortunately, they cannot

be directly extrapolated to another problem. The specific mechanisms or decisions

that work well in one case may not work at all for related problems that share

common features, e.g. problems belonging to the same family of problems. As

a result, such procedures are unable to adapt to particular problem instances or

to extend to different problems. Re-starting and randomization strategies, as well

as combinations of simple heuristics, offer only partial and largely unsatisfactory

answers to these issues [Glover and Kochenberger (2003)].

Metaheuristics appear as a class of modern heuristics whose main goal is to

address these open challenges [Talbi (2009)]. A metaheuristic is an approximate

method for solving a very general class of problems. It combines objective func-

tions and heuristics in an abstract and hopefully efficient way, usually without

requiring a deeper insight into their structure. Metaheuristics have been defined as

master strategies to guide and modify other heuristics to produce solutions beyond

those normally identified by ad-hoc heuristics. Compared to exact search methods,

metaheuristics are not able to ensure a systematic exploration of the entire solution

space, so they cannot guarantee that optimal solutions will be achieved. Instead,

with the aim of increasing efficiency, they seek to examine only parts where “good”

solutions may be found.

In most metaheuristics, a single solution, or a set of them, is maintained as

active solutions and the search procedures are based on movements within the

search space. New candidate solutions are built mainly in two ways: from scratch

or as an evolution of current solutions. In many cases, these new candidate solutions

are generated by means of a neighborhood definition, although different strategies

are also used. At each process iteration, the metaheuristic evaluates different kinds

of moves, some of which are selected to update the current solutions as determined

by certain criteria (objective value, feasibility, statistical measures, etc. [Glover and

Kochenberger (2003)]. Well-designed metaheuristics try to avoid being trapped in

local optima or to repeatedly cycle through solutions that were already visited. It is

also important to provide a reasonable assurance that the search does not overlook
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promising regions.

A wide variety of metaheuristics have been proposed in the literature. In many

cases, these criteria or combinations of moves are often performed stochastically

by utilizing statistics obtained from samples from the search space, or based on

a model of some natural phenomenon or physical process [Blum and Roli (2003)].

Another interesting feature that arises when analyzing the internal operation of

a metaheuristic involves the number of candidate solutions or states that are be-

ing managed at a time. Trajectory-based metaheuristics maintain a single current

state at any given instant, which is replaced by a new one at each generation.

In contrast, population-based metaheuristics maintain a current pool with several

candidate states instead of a single current state.

As described before, in its search for better solutions and greater quality, the

research in the field of optimization has focused its attention on the design of meta-

heuristics as general purpose techniques to guide the construction of solutions with

the aim of improving the resulting quality. In recent decades, research in this field

has led to the creation of new hybrid algorithms, by combining different concepts

from various fields such as genetics, biology, artificial intelligence, mathematics,

physics, and neurology, among others. In this context, Evolutionary Computation

(ec) is a research area within Computer Science that studies the properties of a

set of algorithms —usually called Evolutionary Algorithms (eas)— that draw their

inspiration from natural evolution. Initially, several algorithms intended to better

understand the population dynamics present in evolution were designed [Crosby

(1967)]. However, although the design of the ec schemes is based on drawing in-

spiration from natural evolution, a faithful modeling of biologic processes is not

usually incorporated. Thus, since eas are usually overly simplistic versions of their

biological counterparts, using eas to model population dynamics is not too widely

accepted by the evolutionary biology community [Mitchell (1998)]. Instead, the

advances achieved in recent decades have shown that the main strength of ec is

that it can be successfully applied to numerous practical problems that appear

in several areas such as process control, machine learning and function optimiza-

tion [Fogel (1995)]. For this reason, ec should be seen as a general and robust

evolution-inspired framework devoted to problem-solving.

Although it is not easy to classify the kinds of problems that can be solved

with ec, some taxonomies have been proposed. For instance, Everett distinguished

between two main uses of eas [Everett (2000)]: optimizing the performance of

operating systems, and the testing and fitting of quantitative models. Another

view was proposed by Eiben and Smith [Eiben and Smith (2003)] by providing

an analogy between problems and systems. In working systems, the three main

components are: inputs, outputs and the internal model connecting these two. They

distinguished between three kinds of problems that can be solved with ec depending

on which of the three components is unknown. In any case, the important fact is that

ec has been successfully used in a huge number of applications such as numerical
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optimization, design of expert systems, training of neural networks, data mining and

many others. In general, ec might be potentially applied to any problem where we

can identify a set of candidate solutions and a quality level associated with each of

them.

This chapter is devoted to presenting the history and philosophy behind the use

of ec, as well as introducing the reader to the design of eas. In Section 1.2, a

brief review of natural evolution theories is provided. In addition, some of the main

concepts from the fields of evolution and genetics that have inspired developments

in ec are introduced. Then, Section 1.3 presents the history and philosophy of the

first ec approaches ever developed. Some of the latest developments, as well as

the current unifying view of ec, are summarized in Section 1.4. Section 1.5 offers

some observations on the design of eas and describes some of the most popular

components that have been used when tackling optimization problems with ec.

Finally, some concluding remarks are given in Section 1.6.

1.2 The Fundamentals of Evolution

The term “evolution” is defined by the Oxford Dictionary as the process by which

different kinds of living organisms are thought to have developed and diversified from

earlier forms during the history of the Earth. A much more general definition of

this term is the gradual development of something, especially from a simple to a

more complex form. The word “evolution” originated from the Latin word “evolu-

tio”, which means unrolling, from the verb “evolvere”. Early meanings related to

physical movement, first recorded in describing a tactical “wheeling” maneuver in

the realignment of troops or ships. Current senses stem from a notion of “opening

out” and “unfolding”, giving rise to a general sense of “development”. The term

appeared a couple of centuries before Darwin wrote “On the Origin of Species”. In

fact, Darwin did not even use the word evolution in his book until the last line:

There is grandeur in this view of life, with its several powers, having been

originally breathed by the Creator into a few forms or into one; and that, whilst

this planet has gone circling on according to the fixed law of gravity, from so

simple a beginning endless forms most beautiful and most wonderful have been,

and are being evolved.

1.2.1 A Historical Review

During the eighteenth century, a group of researchers, called naturalists, managed

to gather a great deal of information on the flora and fauna in many different areas

of our planet. In an attempt to organize and classify this remarkable amount of

information, Carl Linnaeus (1707-1778) proposed a set of rules to assign genus

and species labels to all known living beings. His taxonomy, called System Nat-
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urae [Linnaeus (1735)], focused solely on the morphological properties of living

beings to define the classification. Since this classification criterion was purely mor-

phological, to Linnaeus species identified distinct groups with no relation of origin.

This perspective, called fixity of species, considered that each species was created

as it was, and individuals did not experience changes over time. Linnaeus began

his study believing this concept, but later rejected it after observing interbreeding

between various species. Due to his extensive work in the field, he is considered the

founding father of our current taxonomic system.

The accumulation of information provided by naturalists and the progress

achieved in the taxonomies led to the adoption of new approaches, different from the

fixity of species, and based on the fact that some species came from other species.

This idea required defining a new classification that reflected the relationships

among organisms. It was called “natural classification”. Although Georges-Louis

Leclerc, Comte de Buffon (1707-1788), was the first to question Linnaeus’s fixity

of species, the first to propose a hypothesis for how one species could come from

another was Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck

(1744-1829). Lamarck, in his Zoological Philosophy [de Monet de Lamarck (1809)]

presented a systematic description for the evolution of living beings. For Lamarck,

species develop as a result of their reaction and adaptation to the environment.

These changes, therefore, must be gradual and will occur over long periods of time.

Lamarck believed that certain organs are strengthened by the use that animals

make of them, mainly due to the specific nature of their environment. Other or-

gans, in contrast, are atrophied and eventually eliminated because they fall into

disuse. For Lamarck, nature developed in the following way: circumstances cre-

ate a need, that need creates habits, habits produce the changes resulting from

the use or disuse of the organ and the means of nature are responsible for setting

these modifications. Lamarck believed that these physiological changes acquired

over the life of an organism could be transmitted to offspring. This hypothesis is

known as the “inheritance of acquired characteristics” and is also commonly re-

ferred to as Lamarckism. We can say, therefore, that Lamarck was the first to

formulate a strictly evolutionary hypothesis, although the word “evolution” was at

that time reserved for the development of the embryo, so his proposal was referred

to as “transformism”. Despite Lamarck’s hypothesis, there was no experimental

evidence for the existence of mechanisms by which individuals could transmit the

alleged improvements acquired over the course of their lives. In fact, Lamarckism is

now considered an obsolete theory. The principles governing the transformation of

the individual characters, which are now commonly accepted by science, were first

established by Darwin and Wallace. The principles governing the transmission or

inheritance of these characteristics were first established by Mendel.

In 1858, Charles Robert Darwin (1809-1882) and Alfred Russel Wallace

(1823-1913) gave a presentation at the Linnean Society of London on a theory

of the evolution of species by means of “natural selection” [Darwin and Wallace
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(1858)]. One year later, Darwin published On the Origin of Species [Darwin (1859)],

a work in which he provided a detailed explanation of his theory supported by

numerous experiments and observations of nature. Darwin’s theory - usually known

as Darwinism - is based on a set of related ideas which try to explain different

features of biological reality:

• Living beings are not static; they change continuously: some new organisms

are created and some die out. This process of change is gradual, slow and

continuous, with no abrupt or discontinuous steps.

• Species diversify, by adapting to different environments or ways of life,

thus branching out. The implication of this phenomenon is that all species

are somehow related - to varying degrees - and ultimately all species have

a single origin in one common and remote ancestor. That is, all living

organisms can be traced back to a single and common origin of life.

• Natural selection is the key to the system. It is conceived as a result of

two factors: the inherited natural variability of the individuals of a species,

and the selection through survival in the struggle for life, i.e., the fittest

individuals, who were born with favorable spontaneous modifications better

suited to the environment, and are thus more likely to survive, reproduce

and leave offspring with these advantages. This implies that each slight

variation, if useful, is preserved.

Although Darwin knew that there should be a mechanism for transmitting these

characteristics from parents to offspring, he was unable to discover the transmis-

sion mechanism. It was Gregor Johann Mendel (1822 - 1884) who suggested

a number of hypotheses which would set the basic underlying principles of hered-

ity. Mendel’s research [Mendel (1865)] focused on plants (peas) and, especially on

individual features, all unequivocally different from each other and having the pe-

culiarity of not being expressed in a graduated form, i.e., the feature is only present

or not present. This research led Mendel to three important conclusions:

• The inheritance of each trait is determined by “units” or “factors” that are

passed on to descendants unchanged. These units are now called “genes”.

• An individual inherits one such unit from each parent for each trait.

• A trait may not show up in an individual but can still be passed on to

the next generation. In this sense, the term “phenotype” refers to the set

of physical or observable characteristics of an organism, while the term

“genotype” refers to the individual’s complete collection of genes. The

difference between genotype and phenotype is that the genotype can be

distinguished by looking at the deoxyribonucleic acid (DNA) of the cells and

the phenotype can be established from observing the external appearance

of an organism.

Mendel’s laws are the foundation of modern genetics and abolished the idea
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that characteristics are transmitted from parents to children through bodily fluids

so that, when mixed, cannot be separated, thus causing the offspring to have charac-

teristics that will mix the characteristics of the parents. This theory is called “pan-

genesis” and was mainly based on observations such as how crossing plants with red

flowers with plants with white flowers produces plants with pink flowers. Starting

from Mendel’s advances in genetics and the concept of natural selection, in the thir-

ties and forties the “modern evolutionary synthesis” was established [Fisher (1930);

Wright (1931); Haldane (1932)]. Basically, this theory [Huxley (1942)] served as a

link between the unity of evolution (“the gene”) and the mechanism of evolution

(“the selection”), i.e., gradual changes and natural selection in populations are the

primary mechanism of evolution. According to this theory, genetic variation in

populations arises mainly by chance through mutation (alteration or change in the

genetic information - genotype - of a living being) and recombination (the mixing

of chromosomes produced at meiosis).

Finally note that there are also theories that relate learning and evolution. This

is the case of the Baldwin effect[Baldwin (1986)], which was proposed by James

Mark Baldwin. This theory has also inspired some advances in ec.

1.2.2 Main Concepts

In the above description, some important definitions related to evolution and ge-

netics were introduced. This section is devoted to describing some other terms that

have been used in some popular books and papers on ec. A complete list of the

terms contained in the papers on ec would be too extensive to be included. For

this reason, we have selected the most broadly used terms:

• DNA (deoxyribonucleic acid): nucleic acid that consists of two long chains

of nucleotides twisted into a double helix and joined by hydrogen bonds

between the complementary bases adenine and thymine or cytosine and

guanine. It is the main constituent of the chromosome and carries the

genes as segments along its strands.

• Chromosome: structure within the nucleus of eukaryotic cells that bears

the genetic material as a threadlike linear strand of DNA.

• Gene: as seen in the previous section, Mendel regarded “genes” as inherited

factors which determine the external features on living beings. In modern

genetics, a “gene” is defined as a sequence of DNA that occupies a specific

location on a chromosome.

• Diploid cell : cell that contains two sets of paired chromosomes. For exam-

ple, humans have 2 sets of 23 chromosomes, for a total of 46 chromosomes.

Exact replicas of diploid cells are generated through a process denominated

mitosis.

• Haploid cell : cell that contains only one complete set of chromosomes. The

genesis of a haploid cell can occur by meiosis of diploid cells or by mitosis
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of haploid cells. A haploid cell will merge with another haploid cell at

fertilization, i.e., sperm and ova (also known as “gametes”).

• Locus: specific position of the chromosome where a gene or other DNA

sequence is located.

• Genetic linkage: tendency of genes that are located proximal to each other

on a chromosome to be inherited together.

• Alleles: variant or alternative forms of a gene which are located at the same

position - locus - on a chromosome.

• Genotype: genetic information of an organism. This information - con-

tained in the chromosomes of the organism - may or may not be manifested

or observed in the individual.

• Phenotype: property observed in the organism, such as morphology, devel-

opment, or behavior. It is the expression of the genotype in relation to a

particular environment.

• Epistasis: type of interaction between genes located at different loci on

the same chromosome consisting of one gene masking or suppressing the

expression of the other.

1.3 History of Evolutionary Computation

ec is a field of research with a fascinating but complex history. In its origins, several

independent researchers proposed numerous approaches with the common feature

of using natural evolution to inspire their implementations. Some of the develop-

ments were also inspired from other related fields such as artificial life [Conrad and

Pattee (1970)] and other areas of artificial intelligence. ec had many independent

beginnings, so different terms have been used to refer to concepts that are broadly

similar. Given the similarities of the different schemes proposed, the term ec was

invented in the early 1990s in an effort to unify the field of evolution-inspired algo-

rithms [Fogel (1995)].

Determining the merits of the various authors is not easy, which is why several

different versions of the history of ec have been told [Fogel (1998)]. In this section,

we review the origins of ec, focusing on the most important milestones. Many of

the bases of ec were developed in the 1960s and 1970s. During that period, three

different popular schemes inspired by natural evolution were devised: Evolution-

ary Programming (ep), Evolution Strategies (ess) and Genetic Algorithms (gas).

These schemes were inspired by the same ideas but some details, like the nature of

the representation and the operators applied, were different. In addition, there were

several earlier attempts that highly influenced the advances in this area. Some of

these proposals can be considered to be the first designed Evolutionary Algorithms

(eas). In other cases, the schemes were substantially different from what is cur-

rently known as an ea. In any case, they are historically important because they

had a significant impact on the subsequent studies carried out in the field. This
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section reviews the origins along with the three aforementioned types of eas.

1.3.1 Origins

Wright and Cannon [Wright (1932); Cannon (1932)] were probably the first re-

searchers to influence the subsequent development of ec. They viewed natural

evolution as a learning process where the genetic information of species is continu-

ously changed through a trial and error mechanism. In this way, evolution can be

regarded as a method whose aim is to maximize the adaptiveness of species to their

environment. Wright went further and introduced the concept of fitness landscape

as a representation of the space of all possible genotypes along with their fitness

values. This concept is widely used today to study the performance of eas [Richter

(2014)]. In addition, he developed one of the first studies where selection and mu-

tation were linked, concluding that a proper balance between them is required to

proceed successfully. These ideas were extended by Campbell [Campbell (1960)].

He claimed that a blind-variation-and-selective-survival process is one of the main

underlying principles of evolution, and hypothesized that “in all processes lead-

ing to expansions of knowledge, a blind-variation-and-selective-survival process is

involved”. This is one of the principles behind Universal Darwinism, a proposal

that extends the applicability of Darwin’s theory to other areas beyond natural

evolution.

Turing can also be considered another ec pioneer. In [Turing (1950)], Turing

recognized a connection between machine learning and evolution. Specifically, Tur-

ing claimed that in order to develop an intelligent computer that passes the famous

Turing test, a learning scheme based on evolution might be used. In this regard, the

structure of the evolved machine is related to hereditary material, changes made

to the machine are related to mutation and the use of an experimenter to evaluate

the generated machines are related to natural selection. In addition, Turing had

previously suggested that these kinds of methods might be used to train a set of

networks which were akin to current neural networks [Turing (1948)]. Turing used

the term “genetical search” to refer to these kinds of schemes. However, this paper

was not published until 1968 [Evans and Robertson (1968)] because his supervisor

considered it to be a “schoolboy essay” [Burgin and Eberbach (2013)]. By the time

of its publication, other eas had already appeared and the term “genetical search”

was never adopted by the ec community.

Some important advances were made in the late 1950s and early 1960s, coinciding

with the period in which electronic digital computers became more readily available.

In this period, several analyses of the population dynamics appearing in evolution

were carried out. A survey of the application of digital computers in this field was

presented in [Crosby (1967)]. Crosby identified three kinds of schemes:

• Methods based on studying the mathematical formulations that emerge in

the deterministic analysis of population dynamics. These schemes usually
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assume an infinite population size and analyze the distributions of genes

under different circumstances. An example of this type of scheme is the one

developed by Lewontin [Lewontin (1964)], where the interactions between

selection and linkage are analyzed.

• Approaches that simulate evolution but do not explicitly represent a popu-

lation [Crosby (1960)]. In these methods, the frequencies of the different po-

tential genotypes are stored for each generation, resulting in a non-scalable

scheme in terms of the number of genes. In addition, a faithful mathemat-

ical representation of the evolutionary system is required.

• Schemes that simulate evolution by explicitly maintaining a representation

of the population. Fraser and some of his colleagues pioneered these kinds

of methods and they analyzed this approach in a set of papers published

over the course of a decade [Fraser (1957); Fraser and Burnell (1967)]. The

main conclusions drawn from these studies were gathered in their semi-

nal book [Fraser and Burnell (1970)]. From its inception, this model was

widely accepted, and several researchers soon adopted it [Gill (1965); Young

(1966)]. In fact, even though there are several implementation details that

differ from those used in current eas, several authors regard the works of

Fraser as representing the first invention of a ga [Fogel (1995)]. As for

the implementation details, the main difference with respect to gas is that

individuals are diploid instead of haploid. However, in our opinion, the key

difference is not the implementation but the philosophy behind the use of

the scheme. Fraser used its algorithms as a way to analyze population dy-

namics and not to solve problems, which is the typical current application

of eas.

There were other authors who proposed schemes resembling current eas. Among

them, the works of Friedman, Box and Friedberg are particularly important and

often-cited papers. Friedman [Friedman (1956)] hypothesized on the automatic

design of control circuits by using a scheme inspired by natural evolution that was

termed “selective feedback”. His proposals were very different from current ones.

For instance, there was no notion of population and/or generations. Moreover,

Friedman did not implement his method, and some of his assumptions seem to be

overly optimistic [Fogel (1998)]. In any event, his research can be considered as the

first efforts in the field of evolvable hardware.

Box proposed a technique called “Evolutionary Operation” (evop) [Box (1957)]

to optimize the management processes of the chemical industry. His technique

essentially used a single parent to generate multiple offspring by modifying a few

production parameters at a time. Then, one individual was selected to survive to

the next generation by considering certain statistical evidence. The system was

not autonomous. Specifically, the variation and selection processes required human

intervention, so it can be considered as the first interactive ea.

The most important contribution of Friedberg et al. to the field of ec was
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their attempt to automatically generate computer programs using an evolutionary

scheme [Friedberg (1958); Friedberg et al. (1959)]. In the previous papers, Fried-

berg et al. did not identify any relationship between their proposal and natural

evolution. However, in subsequent publications by his coauthors, such a relation-

ship was explicitly identified [Dunham et al. (1963)]. In their first attempts, the

aim was to automatically generate small programs with some simple functionalities

that relied on a tailor-made instruction set. In order to direct the search to promis-

ing regions, problem-dependent information was considered by defining a variation

scheme specifically tailored to the problem at hand. Even with this addition, their

success was limited. Even so, some of the analyses they carried out were particularly

important to subsequent achievements in ec. Among their contributions, some of

the most important are the following:

• The idea of dividing candidate solutions into classes is a precursor of the

notions of intrinsic parallelism and schema, proposed years later by Hol-

land [Holland (1975)].

• Several instruction sets were tested, showing, for the first time, the influence

of genotype-to-phenotype mapping.

• A credit assignment algorithm was used to measure the influence of the

single instructions. This idea is closely related to the work of Holland on

gas and classifier systems.

There are several more papers that did not elicit much attention when they

were first published, but that proposed techniques very similar to others that were

later reinvented. For instance, the work by Reed, Toombs and Barricelli [Reed et al.

(1967)] provides several innovations closely related to self-adaptation, crossover and

coevolution1.

1.3.2 Evolutionary Programming

Evolutionary Programming (ep) was devised by Fogel [Fogel (1962)] while he was

engaged in basic research on artificial intelligence for the National Science Founda-

tion. At the time, most attempts to generate intelligent behavior used man as a

model [Fogel (1999)]. However, Fogel realized that since evolution had been able to

create humans and other intelligent creatures, a model mimicking evolution might

be successful. Note that, as previously described, some research into this topic had

already been published by then. The basic ideas adopted by Fogel are similar: use

variation and selection to evolve candidate solutions better adapted to the given

goals. However, Fogel was not aware of the existing research and his proposals

differed substantially from them, meaning that his models can be considered as a

reinvention of evolution-based schemes.

Philosophically, the coding structures utilized in ep are an abstraction of the

1Some preliminary work on coevolution was started in [Barricelli (1962)].
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phenotype of different species [Fogel (1994)]. As a result, the encoding of candidate

solutions can be freely adapted to better support the requirements of the problems

at hand. Since there is no sexual communication between different species, this view

of candidate solutions also justifies the lack of recombination operators in ep. Thus,

the non-application of recombination operators is due to a conceptual rather than

a technical view. The lack of recombination, the freedom to adapt the encoding

and the use of a probabilistic survivor selection operator —not used in the initial

versions of ep— might be considered the main features that distinguished ep from

other ec paradigms [Fogel and Chellapilla (1998)].

In his first designs, Fogel reasoned that one of the main features that characterize

intelligent behavior is the capacity to predict one’s environment, coupled with a

translation of said predictions into an adequate response so as to accomplish a

given objective. A finite state transducer is a finite state machine (fsm) that allows

a sequence of input symbols to be transformed into a sequence of output symbols.

Depending on the states and given transitions, they can be used to model different

situations and cause different transformations. Thus, Fogel viewed fsms as a proper

mechanism for dealing with the problem of generating intelligent behavior. In his

initial experiments, the aim was to develop a fsm capable of predicting the behavior

of an environment. The environment was considered to be a sequence of symbols

belonging to a given input alphabet. The aim was to develop a fsm that, given the

symbols previously generated by the environment, could predict the next symbol

to emerge from the environment.

The initial ep proposal operates as follows. First, a population with N random

fsms is created. Then, each member of the population is mutated, creating as many

offspring as parents. Five mutation modes are considered: add a state, delete a state,

change the next state of a transition, change the output symbol of a transition, or

change the initial state. Mutation operators are chosen randomly —other ways

were also tested—, and in some cases the offspring are subjected to more than one

mutation. Finally, the offspring are evaluated and the best N fsms are selected to

survive. fsms are evaluated in light of their capacity to correctly predict the next

symbols in known sequences. Initially, the fitness is calculated by considering a small

number of symbols, but as the evolution progresses more symbols are attached to

the training set.

In the first experiments carried out involving ep, different prediction tasks were

tested: periodic sequences of numbers, sequences with noise, non-stationary envi-

ronments, etc. Subsequently, more difficult tasks were considered. Among other

applications, ep was used to tackle pattern recognition, classification and control

system design. All this research resulted in the publication of the first book on

ec [Fogel et al. (1966)]. ep was also used to evolve strategies for gaming [Fogel and

Burgin (1969)]. This work is particularly important because it is one of the first

applications of coevolution.

It is also important to remark that in most of the initial studies on ep, the
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amount of computational results was not ample because of the limited computa-

tional power at the time of its inception. Most of these initial experiments were

recapitulated and extended in a later period [Fogel and Fogel (1986)], providing a

much deeper understanding of ep.

In the 1970s, most of the research into ep was conducted under the guidance

of Dearholt. One of the main contributions of his work was the application of

ep to practical problems. ep was applied to pattern recognition in regular ex-

pressions [Lyle (1972)] and handwritten characters [Cornett (1972)] and to classify

different types of electrocardiograms [Dearholt (1976)]. These works incorporated

several algorithmic novelties. Among them, the most influential were the use of

several simultaneous mutation operators and the dynamic adaptation of the prob-

abilities associated with the different mutation schemes.

Starting in the 1980s, ep diversified by using other arbitrary representations of

candidate solutions in order to address different problems. The number of applica-

tions that have been addressed with ep is huge. In [Fogel and Fogel (1986)], ep was

used to solve routing problems by considering a permutation-based encoding. In

order to tackle the generation of computer programs, tree-based encoding was used

in [Chellapilla (1997)]. Real-valued vectors were used to deal with continuous opti-

mization problems in [Yao et al. (1999)] and to train neural networks in [Porto and

Fogel (1995)]. During this period, the feeling was that by designing problem-specific

representations with operators specifically tailored to face a given problem, more

efficient searches might be performed [Fogel (1999)]. In fact, most ep practitioners

defended that by designing intelligent mutation schemes, the use of recombination

operators might be avoided [Fogel and Atmar (1990); Chellapilla (1997)].

Among the aforementioned topics, the application of ep to continuous optimiza-

tion problems saw a large expansion in the 1990s. Over this period, great efforts

were made into developing self-adaptive schemes. In self-adaptation, some of the

parameters required by the algorithm are bound to each individual and evolved with

the original variables. The variables of the problem are called object parameters,

while those newly attached are called strategy parameters. Initial proposals adapted

the scale factor of Gaussian mutation [Fogel et al. (1991)]. In more advanced vari-

ants of ep, several mutation operators are considered simultaneously [Yao et al.

(1999)]. Since self-adaptive schemes surpassed more traditional ep variants, self-

adaptation was adopted by practitioners addressing problems where real encoding

was not used, becoming a common mechanism in ep [Fogel et al. (1995)]. Self-

adaptive ep for continuous optimization presents several similarities with ess. One

of the most important differences is that ep does not include recombination. In

addition, some implementation details were also different in the first variants de-

vised [Eiben and Smith (2003)]. For instance, the order in which the object and

strategy parameters were subjected to mutation was different in the two schemes,

though these differences vanished over time. Moreover, it has been shown that

there are cases where mutation alone can outperform schemes with recombination
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and vice versa [Richter et al. (2008)]. There is also evidence that indicates that it is

promising to adapt the parameters associated with crossover [Jain and Fogel (2000)],

which further stretches the barriers between ep and ess. Since self-adaptation for

continuous optimization was first proposed in ess, the history of and advances in

self-adaption for continuous optimization is presented in the section devoted to ess.

1.3.3 Evolution Strategies

In the mid-1960s, three students at the Technical University of Berlin —Bienert,

Schwefel and Rechenberg— were studying practical problems that arise in fluid

mechanics and some related fields. Their desire was to build robots that could

autonomously solve engineering problems [Fogel (1998)]. They formulated these

engineering tasks as optimization problems and developed autonomous machines

that were automatically modified using certain rules. They also made some initial

attempts at using traditional optimization schemes. However, since the problems

were noisy and multimodal, their schemes failed to provide promising solutions.

In order to avoid these drawbacks, they decided to apply mutation and selection

methods analogous to natural evolution. Rechenberg published the first report

on ess by applying these ideas to minimizing the total drag of a body in a wind

tunnel [Rechenberg (1965)]. Subsequently, other problems like the design of pipes

and efficient flashing nozzles were addressed [Fogel (1998)].

Philosophically, the coding structures utilized in ess are an abstraction of the

phenotype of different individuals [Fogel (1994)]. This is why the encoding of can-

didate solutions can be freely adapted to better support the requirements of the

problems at hand. In addition, recombination among individuals is allowed in spite

of not being implemented in the initial variants of ess.

In the first problems tested, a set of quantitative discrete variables had to be

adjusted. The initial proposal was very similar to the current (1+1)-es and works

as follows. First, a random solution is created and considered to be the current

solution. Then, the current solution is mutated by slightly changing each variable.

Specifically, mutation is implemented by emulating a Galton pin-board, so binomial

distributions are used. The principle behind the design of this operator is to apply

small mutations more frequently than large mutations, as is the case in nature. The

current solution is replaced by the mutant only if the mutant solution is at least as

good. This process is repeated until the stopping criterion is reached. Empirical

evidence revealed the promising behavior of these kinds of schemes with respect to

more traditional optimization methods.

In 1965, Schwefel first implemented an es in a general computer [Schwefel

(1965)]. In this case, ess were mainly applied to continuous optimization. The

most important contribution of the new variant was the incorporation of Gaussian

mutation with zero mean, which is still the most typical distribution used nowadays.

The mutation operator could be controlled by tuning the standard deviations —or
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step size— of the Gaussian distribution. Studies on the step size resulted in the

first theoretical analyses of ess.

As previously discussed, initial es variants only kept a single solution at a time.

However, in the late 1960s, the use of populations with several individuals was intro-

duced. The first population-based scheme tested is now known as (µ+1)-es. This

scheme uses a population with µ individuals. These individuals are used to create

a new individual through recombination and mutation. Then, the best µ individ-

uals from the µ+ 1 individuals are selected to survive. This scheme resembles the

steady state selection that was popularized much later in the field of gas [Whitley

and Kauth (1988)].

ess were extended further to support any number of parents and offspring. In

addition, two different selection schemes and a notation that is still in use were

proposed. The first selection comprises the (µ+λ)-es. In this case, λ offspring are

created from a population with µ individuals. Then, the best µ individuals from the

union of parents and offspring are selected to survive. Schemes that consider the

second kind of selection are known as (µ,λ)-es. In this case, the best µ individuals

from the λ offspring are selected to survive.

When ess were first developed, the papers were written in German, meaning they

were accessible to a very small community. However, in 1981 Schwefel published

the first book on ess in English [Schwefel (1981)]. Since then, several researchers

have adopted ess and the number of studies in this area has grown enormously.

Schwefel’s book focuses on the use of ess for continuous optimization, which is in

fact the field where ess have been more successful. In his book, Schwefel discusses,

among other topics, the use of different kinds of recombinations and the adaptation

of the Gaussian distributions adopted for mutation. Regarding recombination, some

controversies and misunderstandings have appeared. The use of adaptive mutation

is one of the distinguishing features of ess, and the history of and advances in both

topics are described herein. Most of the papers reviewed in this chapter involve

continuous single-objective optimization problems. However, it is important to

note that the application of ess has not been limited to these kinds of problems.

For instance, multi-objective [Igel et al. (2007)], mixed-integer [Li et al. (2013)] and

constrained problems [Mezura-Montes and Coello Coello (2005)] have also been

addressed.

1.3.3.1 Recombination

Initially, four different recombination schemes were proposed by combining two

different properties [Schwefel (1981)]. First, two choices were given for the number

of parents taking part in creating an offspring: bisexual or multisexual. In bisexual

recombination —also known as local— two parents are selected and they are used

to recombine each parameter value. In the case of multisexual recombination —

also known as global—, different pairs of parents are selected for each parameter

value. Thus, more than two individuals can potentially participate in the creation
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of each offspring. In addition, two different ways of combining two parameter values

were proposed. In the discrete case, one of the values is selected randomly. In the

intermediary case, the mean value of both parameters is calculated.

In the above recombination schemes, the number of parents taking part in each

recombination cannot be specified. Rechenberg proposed a generalization that

changed this restriction [Rechenberg (1978)]. Specifically, a new parameter, ρ, is

used to specify the number of parents taking part in the creation of each individual.

The new schemes were called (µ/ρ,λ) and (µ/ρ+λ). Further extensions of the in-

termediary schemes were developed by weighting the contributions of the different

individuals taking part in the recombination [Bäck and Schwefel (1993)]. Different

ways of assigning weights have been extensively tested. Previous schemes were not

proper generalizations of the initial schemes, in the sense that the intermediary case

calculates the mean of ρ individuals, and not the mean of two individuals selected

from among a larger set, as was the case in the initial schemes. A more powerful

generalization that allowed for both the original operators and those proposed by

Rechengerg to be implemented was devised [Eiben and Bäck (1997)]. Thus, using

the notation proposed in this last paper is preferable.

The situation became even more complicated because of a misinterpretation

of the initial crossover schemes. In the survey presented in [Bäck et al. (1991)],

the authors showed a formula indicating that in global recombination one parent

is chosen and held fixed while the other parent is randomly chosen anew for each

component.2 This new way of recombination was adopted by many authors over

the following years, so when using global recombination, the exact definition must

be carefully given.

1.3.3.2 Adaptive Mutation

One of the main features that characterizes ess is its mutation operator. In the

case of continuous optimization, mutation is usually based on Gaussian distributions

with zero mean. In most cases, individuals are disturbed by adding a random vector

generated from a multivariate Gaussian distribution, i.e., the candidate solutions

xi are perturbed using equation (1.1). In this equation, C represents a covariance

matrix.

x′i = xi +Ni(0, C) (1.1)

From the inception of ess, it was clear that the features of C might have a

significant effect on search performance. As a result, several methods that adapt C

during the run have been developed. Many es variants can be categorized into one

of the following groups depending on the how C is adapted [Hansen and Ostermeier

(2001)]:

2To the best of our knowledge, [Bäck et al. (1991)] was the first paper where this definition was
given.
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• Schemes where the surfaces of equal probability density are hyper-spheres.

In these cases, the only free adaptive parameter is the global step size or

standard deviation.

• Schemes where the surfaces of equal probability density are axis-parallel

hyper-ellipsoids. In these cases, the most typical approach is to have as

many free adaptive parameters as there are dimensions.

• Schemes where the surfaces of equal probability density are arbitrarily ori-

ented hyper-ellipsoids. In these cases, any positive-definite matrix can be

used, resulting in (n2 + n)/2 free adaptive parameters.

The first adaptive es considered the global step size as the only free parameter.

These schemes originated from the studies presented in [Rechenberg (1973)], which

analyzed the convergence properties of ess depending on the relative frequency of

successful mutations. These analyses led to the first adaptive scheme [Schwefel

(1981)], where the global step size is adjusted by an online procedure with the aim

of producing successful mutations with a ratio equal to 1/5. This rule is generally

referred to as the “ 1
5 success rule of Rechenberg”. However, this rule is not general

so it does not work properly for many functions, which is why self-adaptive ess were

proposed. In the first of such variants, the only strategy parameter was the global

step size, and this strategy parameter was subjected to variation using a lognormal

distributed mutation.

In the case of schemes where the surfaces of equal probability are axis-parallel

hyperellipsoids, a larger number of methods have been devised. A direct extension

of previous methods considers the self-adaptation of n strategy parameters, where

n is the number of dimensions of the optimization problem at hand. In such a case,

each strategy parameter represents the variance in each dimension. Another popular

es variant is the derandomized scheme [Ostermeier et al. (1994a)]. Ostermeier et

al. realized that in the original self-adaptive es, the interaction of the random

elements can lead to a drop in performance. The scheme is based on reducing

the number of random decisions made by ess. Another interesting extension is

termed accumulation [Ostermeier et al. (1994b)]. In these variants, the adaptation

is performed considering information extracted from the best mutations carried out

during the whole run, and not only in the last generation. Note that these last

variants favor adaptation instead of self-adaptation.

By adapting the whole covariance matrix, correlations can be induced among

the mutations performed involving the different parameters, thus making ess more

suitable for dealing with non-separable functions. The first adaptive scheme where

the whole matrix is adapted was presented in [Schwefel (1981)]. In this case, the

coordinate system in which the step size control takes place, as well as the step sizes

themselves, are self-adapted. In general, this method has not been very success-

ful because it requires very large populations to operate properly. A very efficient

and popular scheme is covariance matrix adaptation (cma-es) [Hansen and Oster-
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meier (2001)]. In this scheme, derandomization and accumulation are integrated

in an adaptive scheme whose aim is to build covariance matrices that maximize

the creation of mutation vectors that were successful in previous generations of

the execution. This scheme is very complex and the practitioner must specify a

large number of parameters. This has led to simpler schemes being devised. For

instance, the covariance matrix self-adaptation scheme (cmsa) [Beyer and Sendhoff

(2008)] reduces the number of parameters required by combining adaptation and

self-adaptation. Many other not so popular schemes that are capable of adapting

the whole covariance matrix have been devised. The reader is referred to [Rudolph

(2012)] for a broader review of these kinds of schemes.

Finally, it is important to note that several schemes that favor some direc-

tions without adapting a full covariance matrix have been devised. For instance,

in [Poland and Zell (2001)], the main descent direction is adapted. The main advan-

tage of these kinds of schemes is the reduced complexity in terms of time and space.

Since the time required for matrix computation is usually negligible in compari-

son to the function evaluation phase, these schemes have not been very popular.

Still, they might be useful especially for large-scale problems, where the cost of

computing the matrices is much higher. In addition, several other adaptive and

self-adaptive variants that do not fit into the previous categorization have been

devised. For instance, some schemes that allow the use of Gaussian distributions

with a non-zero mean have been proposed [Ostermeier (1992)]. In addition, some

methods not based on Gaussian mutation have been designed [Yao and Liu (1997)].

In this chapter, we have briefly described the fundamentals of different methods.

The reader is referred to [Rudolph (2012); Bäck et al. (2013)] for a discussion of the

implementation details for several es variants.

1.3.4 Genetic Algorithms

Holland identified the relationship between the adaptation process that appears

in natural evolution and optimization [Holland (1975)], and conjectured that it

might have critical roles in several other fields, such as learning, control and/or

mathematics. He proposed an algorithmic framework inspired by these ideas, which

was initially called the “Genetic Plan” and was subsequently renamed the “Genetic

Algorithm”. gas are based on progressively modifying a set of structures with the

aim of adapting them to a given environment. The specific way of making these

modifications is inspired by genetics and evolution. His initial aim was to formally

study the phenomenon of adaptation. However, gas were soon used as problem

solvers. Specifically, gas have been successfully applied to numerous applications,

such as machine learning, control, search and function optimization. A very popular

use of gas appeared in the development of learning classifier systems, which is an

approach to machine learning based on the autonomous development of rule-based

systems capable of generalization and inductive learning. The application of gas
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as function optimizers was also soon analyzed [De Jong (1975)], defining metrics,

benchmark problems and methodologies to perform comparisons. This is probably

the field where gas have been most extensively and successfully applied.

The evolutionary schemes devised by Holland are very similar to those previ-

ously designed by Bremermann [Bremermann (1962)] and Bledsoe [Bledsoe (1961)].

In fact, “by 1962 there was nothing in Bremermann’s algorithm that would distin-

guish it from what later became known as genetic algorithms” [Fogel and Anderson

(2000)]. Moreover, they pioneered several ideas that were developed much later,

like the use of multisexual recombination, the use of real-encoding evolutionary

approaches and the adaptation of mutation rates. Moreover, since Bremermann’s

algorithm was very similar to the schemes described earlier by Fraser, some authors

regard gas as having been reinvented at least three times [Fogel (1995)].

Philosophically, the coding structures utilized in gas are an abstraction of the

genotype of different individuals [Fogel (1994)]. Specifically, each trial solution is

usually coded as a vector, termed chromosome, and each element is denoted with the

term gene. A candidate solution is created by assigning values to the genes. The set

of values that can be assigned are termed alleles. In the first variants of gas, there

was an emphasis on using binary representations —although using other encodings

is plausible—, so even when continuous optimization problems were addressed, the

preferred encoding was binary. Goldberg claimed that “gas work with a coding of

the parameter set, not the parameters themselves” [Goldberg (1989)], which is a

distinguishing feature of gas. This results in the requirement to define a mapping

between genotype and phenotype.

The working principles of gas are somewhat similar to those of ep and ess.

However, unlike other schemes, in most early forms of gas, recombination was em-

phasized over mutation. The basic operation of one of the first gas —denoted as

canonical ga or simple ga— is as follows. First, a set of random candidate solutions

is created. Then, the performance of each individual is evaluated and a fitness value

is assigned to each individual. This fitness value is a measure of each individual’s

quality, and in the initial ga variants it had to be a positive value. Based on the fit-

ness values, a temporary population is created by applying selection. This selection

process was also called reproduction in some of the first works on gas [Goldberg

(1989)]. The best-performing individuals are selected with larger probabilities and

might be included several times in the temporary population. Finally, in order to

create the population of the next generation, a set of variation operators is applied.

The most popular operators are crossover and mutation, but other operators such as

inversion, segregation, and translocation have also been proposed [Goldberg (1989)].

In most of the early research on gas, more attention was paid to the crossover oper-

ator. The reason is that crossover was believed to be the major source of the power

behind gas, while the role of mutation was to prevent the loss of diversity [Mitchell

(1998)]. This first variant was soon extended by Holland’s students. Some of these

extensions include the development of game-playing strategies, the use of diploid
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representations and the use of adaptive parameters [Bäck et al. (1997)].

Among Holland’s many contributions, the schema theorem was one of the most

important. Holland developed the concepts of schemata and hyperplanes to explain

the working principles of gas. A schema is basically a template that allows grouping

candidate solutions. In a problem where candidate solutions are represented with

l genes, a schema consists of l symbols. Each symbol can be an allele of the corre-

sponding gene or “*”, which is the “don’t care” symbol. Each schema designates

the subset of candidate solutions in which the corresponding representations match

every position in the schema that is different from “*”. For instance, the candidate

solutions “0 0 1 1” and “0 1 0 1” belong to the schema “0 * * 1”. Note that the can-

didate solutions belonging to a schema form a hyperplane in the space of solutions.

Holland introduced the concept of intrinsic parallelism — subsequently renamed as

implicit parallelism —, to describe the fact that the evaluation of a candidate so-

lution provides valuable information on many different schemata. He hypothesized

that gas operate by better sampling schemata with larger mean fitness values.

The concept of schema was also used to justify the use of binary encoding.

Specifically, Holland showed that by using binary encoding the number of schemata

sampled in each evaluation can be maximized. However, the use of binary encoding

was not extensively tested in his preliminary works, and its application has been

a source of controversy. One of the first problems detected with the use of binary

encoding is that, depending on the length of the vector, precision or efficiency might

be sacrificed. It is not always easy to strike a proper balance, so dynamic param-

eter encoding methods have also been proposed [Schraudolph and Belew (1992)].

Goldberg weakened the binary-encoding requirement by claiming that “the user

should select the smallest alphabet that permits a natural expression of the prob-

lem” [Goldberg (1989)]. A strict interpretation of this means that the requirement

for binary alphabets can be dropped [Bäck et al. (1997)]. In fact, several authors

have been able to obtain better results by using representations different from the

binary encoding, such as floating point representations. For instance, Michalewicz

carried out an extensive comparison between binary and floating point represen-

tations [Michalewicz (1994)]. He concluded that gas operating with floating-point

representations are faster, more consistent and provide a higher precision. Subse-

quently, Fogel and Ghozeil demonstrated that there are equivalences between any

bijective representation [Fogel and Ghozeil (1997)]. Thus, for gas with bijective

representations, the interactions that take place between the representation and

other components are one of the keys to their success.

Holland used the above concepts to develop the schema theorem, which provides

lower bounds to the change in the sampling rate for a single hyperplane from one

generation to the next. For many years, the schema theorem was used to explain

the working operation of gas. However, several researchers have pointed out some

weaknesses that call into question some of the implications of the theorem [Altenberg

(1995)]. Some of the most well-known weaknesses pointed out by several researchers
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are the following. First, the schema theorem only provides lower bounds for the next

generation and not for the whole run. Second, the schema theorem does not fully

explain the behavior of gas in problems that present large degrees of inconsistencies

in terms of the bit values preferred [Heckendorn et al. (1996)]. Finally, considering

the typical population sizes used by most practitioners, the number of samples

belonging to high-order schemata — those with few “*”— is very low, so in these

cases the theorem is not very accurate. In general, the controversies are not with the

formulae, but with the implications that can be derived from them. The reader is

referred to [Whitley and Sutton (2012)] for a more detailed discussion of this topic.

Finally, we should note that other theoretical studies not based on the concept of

schema have also been proposed to explain the behavior of gas. In some cases, the

model is simplified by assuming infinitely large population sizes [Vose and Liepins

(1991)]. In other cases, the Markov model has been used to analyze simple gas

with finite population sizes [Nix and Vose (1992)].

Due to the complexity of analyzing the mathematics behind gas, there is a

large amount of work focused on the practical use of gas. For instance, the initial

ga framework has been extended by considering several selection and variation

operators. Regarding the former, note that initially, selection was only used to

choose the individuals that were subjected to variation. This operator is now known

as parent selection or mating selection [Eiben and Smith (2003)]. However, in most

current gas, a survivor selection or environmental selection is also carried out. The

aim of this last selection —also called replacement— is to choose which individuals

survive to the next generation. In its most general form, survivor selection can

operate on the union of parents and offspring. The number of selection operators

defined in recent decades is very large, ranging from deterministic to stochastic

schemes. Parent selection is usually carried out with stochastic operators. Some of

the most well-known stochastic selectors are: fitness proportional selection, ranking

selection and tournament selection. Alternatively, survivor selection is usually based

on deterministic schemes. In the case of the survivor selection schemes, not only is

the fitness used, but the age of individuals might also be considered. Some of the

most-well known schemes are age-based replacement and replace-worst. Also of note

is the fact that elitism is included in most current gas. Elitist selectors ensure that

the best individual from among parents and offspring is always selected to survive.

In these kinds of schemes, and under some assumptions, asymptotic convergence

is ensured [Eiben et al. (1991)] and, in general, there is empirical evidence of its

advantages. A topic closely related to replacement is the steady state model [Whitley

and Kauth (1988)]. In the steady state model, after the creation of one or maybe

a few offspring, the replacement phase is executed. Note that this model is closely

related to the generation gap concept previously defined in [De Jong (1975)]. The

generation gap was introduced into gas to permit overlapping populations.

In the same way, several crossover schemes have been proposed in the literature.

The first gas proposed by Holland operated with one-point crossover, whose oper-
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ation is justified in light of the schemata theorem. Specifically, Goldberg [Goldberg

(1989)] claimed that in gas with one-point crossover, short, low-order and highly fit

schemata —which received the name of building blocks3— are sampled, recombined

and resampled to form strings of potentially higher fitness. However, this hypoth-

esis has been very controversial. One of the basic features of one-point crossover

is that bits from a single parent that are close together in the encoding are in-

herited together, i.e., it suffers from positional bias. This idea was borrowed in

part from the biological concept of coadapted alleles. However, several authors have

questioned the importance of this property [Whitley and Sutton (2012)]. In fact,

Goldberg claimed that since many encoding decisions are arbitrary, it is not clear

that a ga operating in this way might obtain the desired improvements [Goldberg

(1989)]. The inversion operator might in some way alleviate this problem by al-

lowing the reordering of genes so that linkages between arbitrary positions can be

created. Another popular attempt to identify linkages was carried out in the messy

ga [Goldberg et al. (1989)], which explicitly manipulates schemata and allows link-

ing non-adjacent positions. More advanced linkage learning mechanisms have been

depicted recently [Chen and Lim (2008)]. In addition, given the lack of a theory that

fully justifies the use of one-point crossover, several different crossover operators, as

well as alternative hypotheses to explain the effectiveness of crossover, have been

proposed. Among these hypotheses, some of the widely accepted consider crossover

as a macro-mutation or as an adaptive mutation [Sivanandam and Deepa (2007)].

Regarding alternative definitions of crossover operators, it has been shown empiri-

cally that depending on the problem, operators different from one-point crossover

might be preferred. For instance, Syswerda showed the proper behavior of uniform

crossover with a set of benchmark problems [Syswerda (1989)]. In the case of bi-

nary encoding, some of the most well-known crossover operators are the two-point

crossover, multi-point crossover, segmented crossover and uniform crossover [Eiben

and Smith (2003)]. Note that some multisexual crossover operators have also been

provided. In fact, well before the popularization of gas, Bremermann had proposed

their use [Fogel (1998)]. For other representations, a large set of crossover operators

have been devised [Eiben and Smith (2003)].

As mentioned earlier, several components and/or parameters in gas have to be

tuned. The first ga variants lacked procedures to automatically adapt these parame-

ters and components. However, several adaptive gas have also been proposed [Lobo

et al. (2007)]. In these schemes, some of the parameters and/or components are

adapted by using the feedback obtained during the search. In addition, most cur-

rent gas do not operate on binary strings, relying instead on encodings that fit

naturally with the problem at hand. As a result, several variation operators specific

to different chromosome representations have been defined. The reader is referred

to eas [Eiben and Smith (2003)] for a review of these operators.

3The term building block has also been used with slightly different definitions [Radcliffe (1997)].
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1.4 A Unified View of Evolutionary Computation

The three main branches of ec —(ep, gas, and ess)— developed quite indepen-

dently of each other over the course of about 25 years, during which several con-

ferences and workshops devoted to specific types of eas were held, such as the

Evolutionary Programming Conference. However, in the early 1990s, it was clear

to some researchers that these approaches had several similarities, and that findings

in one kind of approach might also be useful for the other types of eas. Since these

researchers considered that the topics covered by the conferences at the time pe-

riod were too narrow, they decided to organize a workshop called “Parallel Problem

Solving From Nature” that would accept papers on any type of ea, as well as papers

based on other metaphors of nature. This resulted in a growth in the number of

interactions and collaborations among practitioners of the various ec paradigms,

and as a result the different schemes began to merge naturally. This unification

process continued at the Fourth International Conference on Genetic Algorithms,

where the creators of ep, gas and ess met. At this conference, the terms ec and ea

were proposed and it was decided to use these terms as the common denominators

of their approaches. Basically, an ea was defined as any approach towards solving

problems that mimics evolutionary principles.4 Similar efforts were undertaken at

other conferences, such as in the Evolutionary Programming Conference. Finally,

these unifying efforts resulted in the establishment in 1993 of the journal Evolution-

ary Computation, published by MIT Press. Furthermore, the original conferences

were soon replaced by more general ones, like the Genetic and Evolutionary Com-

putation Conference5 and the IEEE Congress on Evolutionary Computation. In

addition, other journals specifically devoted to ec have appeared, like the IEEE

Transactions on Evolutionary Computation.

It is worth noting that since the different types of eas were developed in an

independent way, many ideas have been reinvented and explored more than once.

In addition, there was no clear definition for each kind of scheme, so the boundaries

between ec paradigms become blurred. Thus, for many contemporary eas it is very

difficult and even unfair to claim that they belong to one or another type of ea.

For instance, a scheme that adopts proportional parent selection, self-adaptation

and stochastic replacement merges ideas that were originally depicted in each of

the initial types of eas. For this reason, when combining ideas that were originated

by practitioners of the different ec paradigms — which is very typical —, it is

preferable to use the generic terms ec and ea.

In recent decades, several papers comparing the differences and similarities of the

different types of eas have appeared [Bäck et al. (1993)]. In addition, some authors

have proposed unifying and general frameworks that allow for the implementation

4See http://ls11-www.cs.uni-dortmund.de/rudolph/ppsn
5The conference originally known as “International Conference on Genetic Algorithms” was re-

named “Genetic and Evolutionary Computation Conference”.

http://ls11-www.cs.uni-dortmund.de/rudolph/ppsn
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Algorithm 1.1 Pseudocode of an Evolutionary Algorithm - A Unified View

1: Initialization: Generate an initial population with N individuals

2: Evaluation: Evaluate every individual in the population

3: while (not fulfilling the stopping criterion) do

4: Mating selection: select parents to generate the offspring

5: Variation: Apply variation operators to the mating pool to create a child

population

6: Evaluation: Evaluate the child population

7: Survivor selection: Select individuals for the next generation

8: end while

of any of these schemes [Bäck (1996); De Jong (2006)]. In fact, note that with a

pseudocode as simple as the one shown in Algorithm 1.1, any of the original schemes

can be implemented. Although this simple pseudocode does not fit with every

contemporary ea, it does capture the main essence of ec by combining population,

random variation and selection. Two interesting books where the unifying view is

used are: [Eiben and Smith (2003); De Jong (2006)].

The last two decades have seen an impressive growth in the number of ec prac-

titioners. Thus, the amount of research that has been conducted in the area is huge.

For instance, eas have been applied to several kinds of optimization problems, such

as constrained [Mezura-Montes (2009)] and multi-objective [Coello Coello et al.

(2007)] optimization problems. Also, several efforts have been made to address the

problem of premature convergence [Črepinšek et al. (2013)]. Studies conducted on

this topic include the use of specific selection schemes such as fitness sharing [Gold-

berg and Richardson (1987)], crowding schemes [De Jong (1975)], restarting mech-

anisms [Eshelman (1991)] and the application of multi-objective concepts to tackle

single-objective problems [Segura et al. (2016)]. Other highly active topics include

the design of parallel eas [Alba (2005)] and memetic [Moscato (1989)] algorithms—

related to Lamarck’s hypothesis and Baldwin effect which were discussed before—

which allows hybridizing eas with more traditional optimization schemes. Note

that for most of the topics that have been studied over these past decades, there

were some preliminary works that were developed in the 1960s. For instance, the

island-based model — which is one of the most popular parallel models — was

proposed in [Bossert (1967)], while some preliminary works on hybrid models were

presented as early as 1967 [Kaufman (1967)]. The aforementioned works represent

only a very small cross-section of the topics that have been covered in recent years.

It is beyond the scope of this chapter to present an extensive review of current

research, so readers are referred to some of the latest papers published in some of

the most popular conferences and journals in the field.

Interestingly, it is also remarkable that while considerable efforts have been made

to unify the different ec paradigms, some new terms for referring to specific classes

of eas have also appeared in recent decades. However, in these last cases, their
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distinguishing features are clear, so there is no ambiguity in the use of such terms.

For instance, Differential Evolution [Storn and Price (1995)] is a special type of ea

where the mutation is guided by the differences appearing in the current population.

Another popular variant is Genetic Programming [Koza (1990)], which focuses on

the evolution of computer programs.

Finally, we would like to state that while there has been considerable research

into ec in the last decade, the number of topics that have yet to be addressed and

further explored in the field is huge. Moreover, in recent years there has been a

remarkable increase in the number of proposals based on alternative nature-inspired

phenomena. In some cases, they have been merged with evolutionary schemes.

Thus, similarly to the period where synergies were obtained by combining ideas that

arose within different evolutionary paradigms, the interactions among practitioners

of different nature-inspired algorithms might be beneficial for advancing this field.

1.5 Design of Evolutionary Algorithms

ec is a general framework that can be applied to a large number of practical ap-

plications. Among them, the use of ec to tackle optimization problems is probably

the most popular one [Eiben and Smith (2003)]. The generality of ec and the large

number of different components that have been devised imply that when facing new

problems, several design decisions must be made. These design decisions have an

important impact on the overall performance [Rothlauf (2011)], meaning they must

be made very carefully. Thus, while eas are usually referred to as general solvers,

most successful eas do not treat problems as black-box functions. Instead, informa-

tion on the problem is used to alter the definition of the different components of the

ea [Grefenstette (1987)]. This section discusses some of the main decisions involved

in the design of eas and describes some of the most well-known components that

have been used to handle optimization problems.

One of the first decisions to make when applying eas is the way in which indi-

viduals are represented. The representation of a solution involves selecting a data

structure to encode solutions [Ashlock et al. (2012)] and, probably more importantly,

a way to transform this encoding (genotype) into the phenotype [Rothlauf (2006)].

Note that in direct representations, there is no transformation between genotype

and phenotype, whereas in cases where such a transformation is required, the repre-

sentation is said to be indirect. Note that while in many cases a direct representation

is effective, indirect representations allow for the introduction of problem-specific

knowledge, the use of standard genetic operators and, in some cases, it facilitates

the treatment of constraints, among other benefits. Several efforts to facilitate the

process of designing, selecting and comparing representations have been developed.

The recommendations given by Goldberg (1990), Radcliffe (1992), Palmer (1994)

and Ronald (1997) are interesting but too general, and in some cases there is a

lack of theory behind the recommendations. A more formal framework is given by
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Values of variables Binary representation Integer representation

x = 5, y = 8, z = 3

x = 7, y = 0, z = 11

0 0 0 0 0 01 1 1 1 10

0 1 0 0 1 01 1 0 1 10

5 8 3

7 0 11

Fig. 1.2 Individuals with binary and integer encoding

Rothlauf [Rothlauf (2006)] that introduces some important features that should be

taken into account, such as redundancy, scaling and locality. The aim of this last

framework is to reduce the black art behind the selection of proper representations.

However, since analyses and recommendations are based on simplifications of eas,

there is usually a need to resort to trial and error mechanisms, which are combined

with the analyses of these recommendations and features. Finally, it is important

to note that the representation chosen influences other design decisions. For in-

stance, variation operators are applied to the genotype, so its design depends on

the representation.

In order to illustrate the encoding process, let us consider a simple optimization

problem such as the minimization of the function f(x, y, z) (Equation 1.2), where

each variable is an integer number in the range [0, 15].

f(x, y, z) = (x− 1)2 + (y − 2)2 + (z − 7)2 − 2 (1.2)

Considering some of the first gas designed, an alternative is to represent each

number in base-2 with 4 binary digits. In such a case, individuals consist of a

sequence of 12 binary digits or genes (based on the gas nomenclature). Another

possible choice — which is more widespread nowadays — is to use a gene for each

variable, where each gene can have any value between 0 and 15. Figure 1.2 shows

some candidate solutions considering both the binary and integer representations.

Each cell represents a gene of the chromosome. Note that for this case, the base-2

encoding is an example of an indirect representation, whereas the second encoding

is a direct representation. Another example of an indirect representation appeared

at the Second Edition of the Wind Farm Layout Optimization Competition [Wil-

son et al. (2018)]. The purpose of this contest was to design optimizers to select

the positions of turbines. Several of the top-ranked contestants noted that most

high-quality solutions aligned several of the turbines in specific directions. Thus,

instead of directly optimizing the positions, having problem-dependent information

—relationship among directions and positions— can be used to design an indirect

encoding, which focuses the search on promising regions of the search space. Con-

sequently, instead of looking for thousands of positions, just a few parameters had

to be optimized.

Another important component of eas is the fitness function. The role of the

fitness function is to assign a quality measure to each individual. Note that some
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problems might involve several requirements and objectives. In order to deal with

these multiple aims, they might be combined into the fitness function to generate a

global notion of quality. A taxonomy regarding typical kinds of requirements and

methods to combine them are discussed in [Wilkerson and Tauritz (2011)]. In simple

eas, the fitness function is used mainly in the selection stages. However, in more

complex algorithms, such as memetic algorithms, other components also take the

fitness function into account. The term fitness function is usually associated with

maximization [Eiben and Smith (2003)], but it has caused some controversy because

in some papers minimization fitness functions are employed. Changing minimization

into maximization or vice versa in the implementation of eas is in many cases trivial,

but when connecting selection operators and fitness functions, both components

should agree in the optimization direction. Moreover, as discussed later, some

selection operators only make sense when the fitness function is maximized and

every candidate solution attains a positive fitness. Thus, when designing the fitness

function, the way in which it will be used must be taken into account.

In order to illustrate the definition of a fitness function, let us consider an even

simpler optimization problem, such as the minimization of the function f(x) (Equa-

tion 1.3), where x is a real number in the range [0, 15]. In this case, a plausible

fitness function for the minimization of f(x) that guarantees that the fitness value

of any candidate solution is positive is given by f1 (Equation 1.4). Note that 191 is

the maximum value of the function f(x) in the range considered. Usually, this value

is not known. Any value greater than 191 might also be used if positive values are

desired. However, depending on the other components — especially the selection

operators — this specific constant might affect the performance of the optimization

process. Alternatively, a fitness function that might produce negative values is given

by the simpler function f2(x) = −f(x). In this last case, estimating the maximum

value of the function is not a requirement. However, not every selection operator

can be used with f2.

f(x) = (x− 1)2 − 5 (1.3)

f1(x) = −f(x) + 191 (1.4)

Regarding the task of designing a fitness function, this is a straightforward

process in some cases because it is just equal to (or a simple transformation of)

the objective function. In these cases, the objective function is said to be self-

sufficient [Talbi (2009)]. For instance, in the case of the Traveling Salesman Prob-

lem, most effective optimizers just consider the minimization of the distance trav-

eled, so the fitness function is viewed as the inverse of the distance. However, in

other cases, this task is more complex. For instance, let us consider the Satisfiability

Problem. In this case, each solution is mapped in the original problem to a 0 or

1 value, and the aim is to find a solution whose value is 1. Using just the binary
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value is not enough to guide the optimization process, so there is a need to define

a more complex fitness function.

The definition of the fitness function heavily impacts the expected performance

of eas. The analysis of the fitness landscape is complex, especially for combina-

torial optimization, but it is useful to identify drawbacks of the proposed fitness

function [Reeves (2000)]. Recent advances such as local optima networks [Adair

et al. (2019)] facilitate the analyses, especially when dealing with high-dimensional

problems. As an example, in the case of maximizing the non-linearity of Boolean

functions, the direct use of the non-linearity as the fitness function causes large

plateaus that hinder the proper performance of eas. Extending the fitness function

by including additional information from the Walsh-Hadamard transform provides a

better guide that results in improved performance [Clark et al. (2004); López-López

et al. (2020)]. Finally, note that in some cases, the fitness function is adapted online

once certain issues with the optimization process are detected [Majig and Fukushima

(2008)].

An additional issue that might emerge with the design of fitness functions is

that they might be too computationally expensive. This would result in just a few

generations being evolved, with potentially poor results. Surrogate models can be

used to alleviate this difficulty [Shi and Rasheed (2010)]. The main idea behind

surrogate models is to approximate the fitness function with a more inexpensive

process than the one initially designed. Different ways of building surrogate models

have been proposed. Problem-dependent models rely on ad-hoc knowledge of the

problem and on the fact that in order to distinguish between very poor and high

quality solutions, very accurate functions are not required. Thus, functions with

different trade-offs between accuracy and computational cost might be designed

and applied at different stages of the optimization process [Jin (2011)]. In contrast,

problem-independent models usually rely on machine learning methods and other

statistical procedures [Jin (2005)]. Note that while the most typical use of surro-

gate models is to reduce the computational cost by providing inexpensive fitness

functions, they have also been applied to redesign other components of an ea [Shi

and Rasheed (2010)].

The selection operator is another important component that has a large impact

on the overall performance of eas [Blickle and Thiele (1996)]. One of the aims

of selection is to focus the search on the most promising regions. Some of the

first selectors designed made their decisions considering only the individuals’ fitness

values. However, other factors, such as age or diversity, are usually considered in

state-of-the-art eas [Segura et al. (2013)]. Selection operators are applied in two

different stages: parent selection and replacement. In both cases, stochastic and

deterministic operators can be used, though the most popular choice is to apply

stochastic operators in the parent selection stage and deterministic operators in the

replacement phase [Eiben and Smith (2003)].

A very popular stochastic selection operator is the fitness proportional operator.
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Table 1.1 Fitness values and selection probabili-

ties induced by the fitness proportional selection

Individual Fitness Selection Prob.

x = 2 195 0.43

x = 5 180 0.40
x = 12 75 0.17

In the fitness proportional selection, the total fitness F is first calculated as the

sum of the fitness values of the individuals in the current population. Then, the

selection probability of an individual Ii (pi) is calculated using Equation 1.5, where

fit represents the fitness function. In order to apply this selection scheme, the

fitness function of every individual must be positive. Let us assume that we are

using the fitness function given in Equation 1.4 and that our current population

consists of three individuals with x = 2, x = 5 and x = 12. Table 1.1 shows the

fitness value and the selection probability associated with each individual. One of

the weaknesses of this operator is that it is susceptible to function transposition,

which means that its behavior changes if the fitness function of every individual

is transposed by adding a constant value. This is illustrated in Figure 1.3. In

this figure, a population consisting of individuals A, B and C is used. Two fitness

functions are considered: the first one (f1) is shown in Equation 1.4, while the

second one (f2) is generated by replacing the value 191 in Equation 1.4 with the

value 1000. Figure 1.3 shows the fitness values of the different individuals, as well

as the selection probabilities associated with the individuals when f1 and f2 are

applied. Since the selection scheme is susceptible to function transposition, these

probabilities differ, as can be seen in the pie charts. In addition, note that with f2,

the selection pressure is very low, i.e. all individuals are selected with very similar

probabilities. The reason is that when the differences between the fitness values are

small with respect to their absolute values, the selection pressure vanishes. This

last effect is another of the known weaknesses that can affect fitness proportional

selection.

pi =
fit(Ii)

F
(1.5)

Another quite popular stochastic selection operator is the tournament selec-

tion. In this case, each time an individual must be selected, there is a competition

between k randomly selected individuals, with the best one being chosen. Tourna-

ment selection has very different features than fitness proportional selection. For

instance, it is invariant to transposition of the fitness function. However, this does

not mean that it is superior to fitness proportional selection. For instance, when fac-

ing some fitness landscapes, fitness proportional selection can induce a larger focus

on exploitation than tournament selection. Depending on the problem at hand, on

the stopping criterion and on the other components applied, this might be desired
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Fig. 1.3 Effect of transposition on fitness proportional selection

or counterproductive, so it is the task of the designer to analyze the interactions

between the selectors and the fitness landscape.

The variation phase is another quite important component that is usually

adapted to the problem at hand. Among the different operators, the crossover and

mutation operators are the most popular, and a large number of different choices

have been devised for each of them. For instance, [Eiben and Smith (2003)] presents

several operators that can be applied with binary, integer, floating-point and per-

mutation representations. In order to better illustrate the working operation of

crossover, two popular crossover operators that can be applied with binary, integer

and floating-point representations are presented: the one-point and the uniform

crossover. One-point crossover (Figure 1.4) operates by choosing a random gene,

and then splitting both parents at this point and creating the two children by ex-

changing the tails. Alternatively, uniform crossover (Figure 1.5) works by treating

each gene independently, and the parent associated with each gene is selected ran-

domly. This is implemented by generating a string with L random variables from a

uniform distribution over [0, 1], where L is the number of genes. In each position,

if the value is below 0.5, the gene is inherited from the first parent; otherwise, it
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0 0 0 0 0 01 1 1 1 10 0 1 0 0 1 01 1 0 1 10

Parent 1 Parent 2

0 01 1 0 0 1 00 1 10 0 11 1 0 0 0 01 1 10

Offspring 1 Offspring 2

Fig. 1.4 Operation of one-point crossover

0 0 0 0 0 01 1 1 1 10 0 1 0 0 1 01 1 0 1 10

Parent 1 Parent 2

Offspring 1 Offspring 2

0.2 0.2 0.20.7 0.70.90.1 0.4 0.6 0.80.8 0.3

Uniform [0,1] random variables

0 01 10 11 10 10 00 00 00 10 1 1 0 1 1

Fig. 1.5 Operation of uniform crossover

is inherited from the second parent. The second offspring is created using inverse

mapping.

It is important to note that the crossover schemes discussed induce different

linkages between the genes. For instance, in the one-point crossover, genes that are

close in the chromosome are usually inherited together, while this is not the case in

the uniform crossover. Depending on the meaning of each gene and on its position

in the chromosome, introducing this kind of linkage might make sense or not. Thus,

when selecting the crossover operator, the representation of the individuals must be

taken into account. Finally, operators that try to learn a proper linkage between

genes have been devised [Chen and Lim (2008)]. These kinds of operators have

yielded significant benefits in several cases.

Note also that in many cases, problem-dependent crossover and mutation op-

erators are designed. Properly designed crossover operators detect characteristics

that are important for the problem and that are present in the parents. They then

create offspring by combining these features. For instance, in the Graph Coloring

Problem, the authors noted that the important feature is not the specific color as-

signed to each node, but the groups of nodes sharing the same color. Thus, ad-hoc

operators that inherit these kinds of features have been designed [Galinier and Hao

(1999)]. Additionally, ad-hoc operators might establish a linkage between genes

by considering problem-dependent knowledge. For instance, in the Frequency As-
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signment Problem, antennas that interact strongly with one another are inherited

and/or mutated together with a larger probability than unrelated antennas [Segura

et al. (2017)]. Finally, in the case of crossover operators, it is also important to

distinguish between the parent-centric and mean-centric operators because of the

impact that this feature has on the dynamics of the population [Deb et al. (2002)].

Properly designed operators that adapt this feature to the needs of the problem at

hand have excelled [Jain and Deb (2011)].

Note that while we have discussed different components involved in the design of

eas independently, there are important interactions among them. Thus, regarding

their performance, it is not possible to make categorical assertions. Depending on

the components used, different balances between exploitation and exploration can

be induced. It is therefore very important to recognize how to modify this balance,

since it is one of the keys to success. In some cases, there is no explicit mechanism

for managing the trade-off between exploration and exploitation. Note that due to

the way eas work, the diversity maintained in the population is one way to control

this trade-off. In fact, many authors regard the proper management of diversity

as one of the cornerstones of proper performance [Črepinšek et al. (2013)]. Thus,

several explicit strategies for managing diversity have been proposed [Pandey et al.

(2014)]. In some way, this can be viewed as another component of eas, but it

is not a completely independent component because it is highly coupled to some

of the components already discussed. For instance, in [Črepinšek et al. (2013)],

diversity management methods are classified as selection-based, population-based,

crossover/mutation-based, fitness-based and replacement-based, depending on the

sort of component that is modified. Additionally, some implicit mechanisms that

alter this degree, such as multi-objectivization, have been devised [Segura et al.

(2016)].

It is also important to note that for many problems, trajectory-based strate-

gies are usually considered more powerful than eas in terms of their intensifica-

tion capabilities. As a result, several state-of-the-art optimizers are hybrids that

incorporate trajectory-based strategies and/or other mechanisms to promote inten-

sification [Talbi (2009); Neri et al. (2011)]. Thus, knowing the different ways of

hybridizing algorithms is an important aspect of mastering the design of eas.

Finally, given the difficulties in understanding and theoretically analyzing the

interactions that appear in eas, several components and parameterizations are typ-

ically tested during the design phase. By analyzing the performance of different

components and the reasons for their good or poor performance, some alternative

designs might be tested until a good enough scheme is obtained. Moreover, note

that it is not just the components that have to be selected. A set of parameters

must also be adapted to the problem at hand, and it is important that it is done

systematically [Lobo et al. (2007); López-Ibáñez et al. (2016)]. In this regard, two

kinds of methodologies have been devised [Eiben et al. (1999)]. Parameter tuning

can be thought of as searching for good parameters and components before the
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Table 1.2 Some aspects to consider when designing eas

Component or aspect Related decisions

Individual
Representation

Evaluation (fitness function)

Population

Size

Population Sizing Scheme
Initialization

Evolution

Mutation operator

Crossover operator

Repair operator
Intensification operator

Probabilities for applying operators

Parent selection
Replacement scheme

Diversity Management Strategy
Hybridization

Stopping criterion

Number of evaluations of individuals
Generations

Time

Given signs of stagnation
A certain solution quality is achieved

Parameterization
Parameter Control

Parameter Tuning

algorithm is executed, whereas parameter control strategies alter the components

and parameters during the run. This can be used, for instance, with the aim of

applying an ensemble of variation operators whose probabilities and other internal

parameters are changed during the optimization process [Mallipeddi et al. (2011)].

Table 1.2 summarizes some of the most important aspects to define when de-

signing and running eas. Note that in addition to all of these aspects, we also

have to consider the internal parameters associated with many of the operators

mentioned above. We would like to remark that in the design of proper eas, it

is very important to ascertain the features and implications of using the different

components and parameter values and recognize the drawbacks that each of them

can circumvent. This is because of the impossibility of testing every parameter and

component combination, given how time and computationally consuming this task

is. Thus, designing efficient eas for new problems is a complex task that requires

knowledge in several areas that has been developed in recent decades through both

experimental and theoretical studies. Generic tools for developing metaheuristics

can facilitate this entire process [Luke et al. (2007); León et al. (2009); Liefooghe

et al. (2011); Durillo and Nebro (2011)].

1.6 Concluding Remarks

ec is a very active area of research that studies the design and application of a set
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of algorithms that draw their inspiration from natural evolution. The first studies

that influenced the development of ec date back to at least the 1930s. However,

it was during the 1960s when the roots of ec were established. During the first

stages of ec, several independent researchers devised different schemes that were

applied to a diverse number of applications. Three different types of schemes were

developed: ep, ess and gas. Although each type of scheme had its own features,

further developments made it clear that these schemes had a lot in common, so they

began to merge in a natural way. In the 1990s, the terms ec and ea were proposed

with the aim of unifying the terminology and they were soon widely adopted by the

community. In fact, it is now very difficult to claim that a given state-of-the-art

ea belongs to any of the previous classes because they usually combine components

from several types of schemes. The number of studies that have been carried out

in the last decades is vast. These studies have yielded significant advances in ec;

as a result, the number of problems that have been addressed with eas has grown

enormously.

One of the main handicaps of ec is that mastering eas is a very complex task.

One of the reasons is that despite the huge amount of research conducted in recent

years, the discipline cannot yet be considered as fully mature. For instance, we

are still in a period where different researchers have opposing views with respect

to several aspects of eas, and, therefore, much more research is still required to

fully understand eas and the large number of different components that have been

devised by various authors. Thus, designing eas to tackle new problems is a com-

plex task that involves trial-and-error processes and in-depth analyses in order to

understand the interactions and implications of the different components proposed

for the problem at hand. Fortunately, many tools that facilitate the use of eas are

now available and recent years have seen significant efforts made to facilitate the

application of eas. In the near future we expect this area to grow even more as it

continues to develop on its path to maturity.
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