Citations to publications of
Dr. Carlos A. Coello Coello
Total: 9246 (excluding self-citations and citations from his co-authors)

Libros

1También se incluyen aquí las citas a la primera edición:

956. Murat Kiliç, “Multiobjective Genetic Algorithm Approaches to Project Scheduling under Risk”, Masters thesis, Graduate School of Engineering and Natural Sciences, Sabanci University, Turkey, Spring 2003.

Capítulos de Libros

Tesis Doctoral

Journals Internacionales

121

70. Tiago Oliveira Weber and Wilhelmus A.M. Van Noije, “Analog circuit synthesis performing fast Pareto frontier explo-

67. Siwadol Kanyakam and Sujin Bureerat, “Multiobjective Optimization of a Pin-Fin Heat Sink Using Evolutionary Algo-

66. Tessa Page, Thi Huynh Nguyen Huong, Lindsey Hilts, Lorena Ramos and Grady Hanrahan, “Biologically driven neural

65. S. Ganguly, N.C. Sahoo and D. Das, “Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for

58. Martin Pilat and Roman Neruda, “Aggregate meta-models for evolutionary multiobjective and many-objective opti-

57. Sujin Bureerat and Krit Sriworamas, “Simultaneous topology and sizing optimization of a water distribution network

56. Enrico Rigoni, Carlos Kavka, Alessandro Turco, Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria and Giovanni

55. Matthaus M. Woolard and Jonathan E. Fieldsend, “On the Effect of Selection and Archiving Operators in Many-

53. Yu-Jun Zheng and Sheng-Yong Chen, “Cooperative particle swarm optimization for multiobjective transportation plan-

52. Yu-Jun Zheng and Sheng-Yong Chen, “Cooperative particle swarm optimization for multiobjective transportation plan-

51. Yu-Jun Zheng and Sheng-Yong Chen, “Cooperative particle swarm optimization for multiobjective transportation plan-

50. Yu-Jun Zheng and Sheng-Yong Chen, “Cooperative particle swarm optimization for multiobjective transportation plan-

208

303. Antoine Dymond, “Multiple Objective Optimization of an Airfoil Shape”, Masters Thesis, Department of Mechanical and Aeronautical Engineering, Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria, Pretoria, South Africa, February 2011.

223

null

97. Murat Kiliç, “Multiobjective Genetic Algorithm Approaches to Project Scheduling under Risk”, Masters thesis, Graduate School of Engineering and Natural Sciences, Sabancı University, Turkey, Spring 2003.

297. David Santo Orcero, Simulación y Optimización Paralela de Agregados del Silicio, Tesis de Maestría, Universidad de Málaga, Málaga, España, mayo de 2002.

575. Lei Shi and Pingjing Yao, “Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis”,
578. Brahim Rekiek, Pierre De Lit, Fabrice Pellichero, Thomas L’Englise, Patrick Fouda, Emanuel Falkenauer and Alain
579. Pierre De Lit, Patrice Latinne, Brahim Rekiek and Alain Delchambre, “Assembly Planning with an Ordering Genetic

275

519. S. Rajasekaran, “Optimal laminate sequence of non-prismatic thin-walled composite spatial members of generic section”,

523. N.D. Lagaros, D.C. Charmpis and M. Papadrakakis, “An adaptive neural network strategy for improving the computa-
tional performance of evolutionary structural optimization”, *Computer Methods in Applied Mechanics and Engineering*,

524. Özgür Yeniay, “Penalty Function Methods for Constrained Optimization with Genetic Algorithms”, *Mathematical and

525. Mirecea Negoiţa, Daniel Neagu and Vasile Palade, “Computational Intelligence: Engineering of Hybrid Systems”, Springer,

526. David Juan Greiner Sánchez, “Optimización Multiobjetivo de Pórticos Metálicos Mediante Algoritmos Evolutivos”, PhD
thesis, Universidad de las Plumas de Gran Canaria, Escuela Técnica Superior de Ingenieros Industriales, Departamentos
de Informática y Sistemas, Matemática Aplicada e Ingeniería Civil, Las Palmas de Gran Canaria, España, Mayo de 2005.

528. T.P. Runarsson and X. Yao, “Search biases in constrained evolutionary optimization”, *IEEE Transactions on Systems,

Applied to Water Distribution System Optimization”, *IEEE Transactions on Evolutionary Computation*, Vol. 9, No. 2,

533. Q.S. Ren, J. Zeng and F.H. Qi, “History information based optimization of additively decomposed function with con-
straints”, *Computational and Information Science, Proceedings*, Springer-Verlag, Lecture Notes in Computer Science

535. Xavier Bonnaire and María-Cristina Riff, “Adapting Evolutionary Parameters by Dynamic Filtering for Operators
Inheritance Strategy”, in Christian Lemaître, Carlos A. Reyes and Jesús A. González (editors), *Advances in Artificial
México, November 2004.

536. R.F. Coelho and P. Bouillard, “A multicriteria evolutionary algorithm for mechanical design optimization with expert

537. Steven Orla Kimbrough, Ming Lu, and David Harlan Wood, “Exploring the Evolutionary Details of a Feasible-Infeasible

538. R. Filomeno Coelho, PH. Bouillard and H. Bersini, “PAMUC: A New Method to Handle Constraints and Multiobjectivity
in Evolutionary Algorithms”, in Tadeusz Burczyński and Andrzej Oszczeka (editors), *IUTAM Symposium on Evolutionary

539. Anders Angantyr and Jan Olov Aidanpää, “A Pareto-Based Genetic Algorithm Search Approach to Handle Damped
Natural Frequency Constraints in Turbo Generator Rotor System Design”, *Journal of Engineering for Gas Turbines and

Congresos Internacionales

388

81. M.J. Mahmoodabadi, S. Arabani Mostaghim, A. Bagheri and N. Nariman-zadeh, “Pareto optimal design of the de-

439

461

• Carlos A. Coello Coello and Ricardo Landa Becerra, “Adding Knowledge and Efficient Data Structures to Evolutionary Programming: A Cultural Algorithm for Constrained Optimization”, in W.B. Langdon,

10. David Santo Orcero, Simulación y Optimización Paralela de Agregados del Silicio, Tesis de Maestría, Universidad de Málaga, Málaga, España, mayo de 2002.

