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Abstract— In this work we present a simple way to in-
troduce gradient-based information as a means to improve
the search performed by a multi-objective evolutionary algo-
rithm (MOEA). Our proposal can be easily incorporated into
any MOEA, and is able to improve its performance when
solving continuous bi-objective problems. We propose a novel
mechanism to control the balance between the local search,
and the global search performed by a MOEA. We discuss
the advantages of the proposed method and its possible use
when dealing with more objectives. Finally, we provide some
guidelines regarding the use of our proposed approach.


I. I NTRODUCTION


A Multi-objective Optimization Problem (MOP) is defined
as


Minimize {f1(x), f2(x), . . . , fm(x)}


subject to x ∈ S (1)


wherefi : R
n → R are known as the objective functions


of the problem. The solution set of this problem is given
by the Pareto dominance relation [1], and is known as the
Pareto optimal set. The image of the functions is called the
Pareto frontof the problem.


Introducing gradient information of a MOP, when avail-
able, into a multi-objective evolutionary algorithm (MOEA)
is a research topic that has attracted a lot of interest in recent
years. We identify some advantages of this sort of coupling
as the following: First, it can accelerate convergence towards
the Pareto front [2], [3], [4], [5]. Second, it can produce
more accurate solutions [3]. A possible third advantage is
that the use of gradient information could be useful to deal
with the so-called “dominance resistant solutions” [6], but
this idea has not been properly explored yet, to the authors’
best knowledge. Here, we will be focusing only on the first
two advantages previously indicated.


There are several hybrids of MOEAs and gradient-based
methods currently available in the specialized literature[5],
[7], [8], [3], [9]. Such approaches normally replace [5] or add
[3], [9] existing evolutionary operators such that the available
gradient information is used to guide the search.


Gradient information provides a MOEA with search di-
rections that make it perform more accurate movements.
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However, computing such search directions is also a multi-
objective problem since each objective provides its own
(gradient-based) search direction; therefore, all of these di-
rections need to be properly combined into a single one,
in order to perform a line search procedure —particularly
adapted for the multiobjective case. First results using these
ideas are presented in [10], [11], [12] and [2].


Another major issue when incorporating gradient infor-
mation into a MOEA is how to provide a proper balance
between the local search (i.e., using the gradient information)
and the global search (i.e., using the MOEA) [13]. In fact,
such a balance is problem-dependent. For example, in [7]
the use of the local search is proposed after the evolutionary
process, and the interleaving between the local and the
global search takes place after a certain (fixed) number of
objective function evaluations. However, other proposalsuse
the gradient information to overtake solutions towards the
Pareto optimal set, and adopt the evolutionary search in a
second stage (see for example [8], [4]). In any case, none of
these types of strategy are really ideal,since the best would
be to have an adaptive mechanism that allows the two types
of search to interleave during the run of the MOEA, such
that each of them intervenes whenever needed.


The aim of the work reported here is precisely to propose
an adaptive mechanism that allows the local and global
search strategies to interleave. In our proposed approach,
based on the observation of the cones conformed by the
gradients of the functions, the algorithm can automatically
assign more or less resources either to the local or to the
global search procedure, as deemed necessary.


We will focus on the solution of unconstrained bi-objective
optimization problems, since only two gradients can effort-
less be combined into a common descent direction. However,
the control part of our proposed approach could be used for
problems with a higher number of objectives.


The remainder of this paper is organized as follows. In
the next section, we provide the basic theoretical background
required to understand the rest of the paper. We also provide
a mathematical justification for the effectiveness of our
proposal. In Section III, we describe the proposed memetic
MOEA (i.e., a global search engine hybridized with a local
search mechanism that is based on the use of gradient
information). Then, we present some experimental results on
several test problems. A discussion of some of the theoretical
and practical aspects of our proposed approach is provided in
Section V. Finally, our conclusions, as well as some potential







paths for future research are provided in Section VI.


II. BASIC BACKGROUND


A. Descent Directions and Cones


Let f1, . . . , fm : R
n → R, fi ∈ C1 and 〈·, ·〉 denotes the


standard inner product inRn. We assume thatm ≤ n, and
let ∇fi(x) be the gradient of the functionfi in x.


Definition 2.1: For eachi ∈ {1, . . . , m} we define:


Hx,i =


{


v ∈ R
n :


〈


∇fi(x)


||∇fi(x)||
, v


〉


= 0


}


H+
x,i =


{


v ∈ R
n :


〈


∇fi(x)


||∇fi(x)||
, v


〉


≥ 0


}


H−
x,i =


{


v ∈ R
n :


〈


∇fi(x)


||∇fi(x)||
, v


〉


≤ 0


}


and call it theDescent Coneof x to the set


Cx(−,−, . . . ,−) = ∩m
i=1H


−
x,i.


Definition 2.2: A vector ν ∈ R
n is called a descent


direction of the pointx ∈ R
n if


ν ∈ Cx(−,−, . . . ,−).
In other words, a descent direction is such that the direc-


tional derivatives with respect toν in x are non positive,
i.e. 〈∇fi(x), ν〉 ≤ 0 for all i ∈ 1, . . . , m. This means that
if we perform a small movement overν, we obtain a local
improvement (decrease) simultaneously for all the objective
functions.


B. The Computed Direction


We base the computation of the descent direction on the
next Proposition. This fact has been already observed (e.g.
[14]) but has not been exploited in memetic algorithms yet.


Proposition 2.1:Let x ∈ R
n, andf1, f2 : R


n → R define
a bi-objective MOP. Then, the direction


∇x = −


(


∇f1(x)


||∇f1(x)||
+
∇f2(x)


||∇f2(x)||


)


, (2)


where|| · || = || · ||2, is a descent direction atx for the MOP.
Proof: Let us denote∇i := ∇fi(x)


||∇fi(x)|| for i = {1, 2},
andθ be the angle between∇1 and∇2. Then


〈∇x,∇1〉 = 〈−(∇1 +∇2),∇1〉


=− 1 (〈∇1,∇1〉+ 〈∇2,∇1〉)


=− 1 (1 + ||∇2|| ||∇1|| cos(θ))


=− 1− cos(θ)


≤ 0. (3)


Similarly, 〈∇x,∇2〉 ≤ 0; then,∇x is a descent direction
of the pointx for the defined MOP. �


Unfortunately, Proposition 2.1 cannot be generalized for
more than two objective functions. Nevertheless, the re-
mainding parts of this proposal can still be used in the general
multi-objective case, by just applying other approaches (see
Section V) to obtain the descent direction.


III. O UR PROPOSEDALGORITHM


Next, we present in Algorithm 1 our version of a MOEA
hybridized with gradient information. To show our proposed
coupling, we chose the widely used NSGA-II [15] as our
global search engine. Nevertheless, the coupling with other
MOEAs is also possible as will be later discussed.


Algorithm 1 Hybrid GH-NSGA
1: procedure GH-NSGA(N ,G)
2: Generate a Random PopulationP.
3: Evaluate Objective Function Values.
4: Fast Non-Dominated Sort
5: Crowding Distance Assignment
6: for i← 1, . . . , G do
7: Generate Offspring PopulationPoffs


8: SetP ← P ∪ Poffs:
9: Fast Non-Dominated Sort


10: Crowding Distance Assignment
11: LOCALSEARCH(i, P )
12: end for
13: end procedure


14: procedure LOCALSEARCH(i, P )
15: if i ≡ 0 (mod k) then
16: Computee as in equation (4).
17: Form the setE taking e individuals
18: randomly selected out ofR1(P ).
19: for all a ∈ E do
20: if local improvement is possiblethen
21: Apply line search to obtaina′.
22: Replacea← a′.
23: Seta′ ∈ R1(P ).
24: Set the crowding distance ofa′ as∞.
25: end if
26: end for
27: end if
28: end procedure


The procedures “Fast Non-Dominated Sort”, “Crowding
Distance Assignment” and “Generate Offspring Population”
are well-known components of the NSGA-II. Their details
can be found in [15]. The parametersN and G in Algo-
rithm 1, represent the population size and the maximum
number of generations, respectively.


Algorithm 1 places the local search inside the NSGA-II
just after the reproduction and the ranking-crowding process.
The local search is applied only to non-dominated individ-
uals, but not to all of them. Our control mechanism (global
vs. local) uses information that has already emerged from
the original ranking process.


One of the main issues when using gradient-based tools is
how to balance the computational cost of the method with
the improvements achieved. The currently available MOEAs
that use descent directions as local search engines have two
sources of computational cost: the first is associated to the
fitness function evaluations required to estimate the gradients







and to perform the line search. The second source is related
to the computation of the descent direction itself. In this
sense, and unlike previous approaches, our proposal has the
advantage of having a zero cost for the computation of
the descent directions. We claim that this procedure is the
simplest way to combine two functions gradients and that
it can not be generalized to more than two functions since
the arithmetic combination of them does not produce descent
directions in general.


A. Line Search


To apply the line search (line 21 of Algorithm 1) we
calculate the descent direction∇x using equation (2), and
we obtain the individualx′ as


x′ = x + tx∇x.


To estimatetx, we use an Armijo-like rule starting from a
size tmax, and we reducet ← t/2 at each iteration, until
fi(x


′) ≤ fi(x) ∀i (or the Armijo condition) is fulfilled. The
procedure is sensitive to thistmax parameter as any other
line-search procedure is to the initial step length choice.


B. Stopping Criterion


Since it could happen that a certain pointx is too close to a
Pareto optimum point, we propose to set a stopping criterion
(line 20 of Algorithm 1) to apply the steepest descent. This
criterion is related to certain small tolerance0 < ǫtol < 0.01
and is given by the next rule: if


〈∇1,∇2〉 < −1 + ǫtol


holds, then, no local search movement is performed for the
point x. This stopping criterion is inspired on the Karush-
Kuhn-Tucker (KKT) optimality conditions [16].


C. Balance Control


In order to have an adaptive strategy, we introduced a
control mechanism that incorporates the local search based
on the number of non-dominated elements available at each
iteration (we discuss this in more detail in Section V).


To calculate the control parametere we propose the next
rule:


e =

















0 if |R1(P )| < (0.1)(N)


⌊


|R1(P )|
(0.1)(N)


⌋


otherwise.
(4)


where |R1(P )| is the cardinality of the subsetR1(P )
(lines 18 and 23 of Algorithm 1) formed by the elements
in P whose rank is one.N is the population size and⌊·⌋
represents thefloor function.


The idea behind the parameterk (line 151 of Algorithm 1)
is that the local search is improving only a few individuals
at a certain moment and, since we have a population-based
approach (the MOEA acting as our global search engine)
we should let the evolution do its job. In other words, we


1a ≡ b (mod m) is that both numbersa and b leave the same residue
when divided bym.


are expecting that most of the effort will come from the
global procedure, and that the gradient-based local search
will only refine the solutions generated by the global engine.
Not applying the local search at each iteration will help us
to make its cost more affordable. At the same time, this will
allow us to push the population of the MOEA towards better
solutions. Thus, parameterk determines how often do we
apply the local search. We believe that this parameter must
be varied adaptively during the search as a second control
mechanism for resources balance.


IV. T EST PROBLEMS AND RESULTS


For assessing the performance of our proposed approach,
and in order to get unconstrained problems, we used the
modified Zitzler-Deb-Thiele (ZDT) problems presented in [5]
and [17] (with the difference that we do not need the twice
differentiability property). These test functions are defined
in Table I (ZDT5 was not included because it is a binary
problem).


TABLE I


TEST PROBLEMSADOPTED


Problem Functions Domain


ZDT 1
f1(x) = x1


f2(x) = g(x)(2 −
p


f1(x)/g(x)) [0, 1] × [−1, 1]n


g(x) = 1 + 9


n−1


P


n


i=2
x2


i


ZDT 2
f1(x) = x1


f2(x) = g(x)(2 − (f1(x)/g(x))2) [0, 1] × [−1, 1]n


g(x) = 1 + 9


n−1


P


n


i=2
x2


i


ZDT 3
f1(x) = x1


f2(x) = g(x)(2 −
p


f1(x)/g(x)− [0, 1] × [−1, 1]n


(f1(x)/g(x)) sin(10πf1))
g(x) = 1 + 9


n−1


P


n


i=2
x2


i


ZDT 4
f1(x) = x1


f2(x) = g(x)(2 −
p


f1(x)/g(x)) [0, 1] × [−5, 5]n


g(x) = 1 + 10(n − 1)+
P


n


i=2
(x2


i
− 10 cos 4πf1)


ZDT 6
f1(x) = 1 − exp−4x1


f2(x) = g(x)(2 − (f1(x)/g(x))2) [0, 1] × [−1, 1]n


g(x) = 1 + 9


n−1


P


n


i=2
x2


i


TABLE II


NUMBER OF DECISION VARIABLES USED FOR EACH TEST PROBLEM


Problem Original Size Extended Size
ZDT 1 30 variables 60 variables
ZDT 2 30 variables 60 variables
ZDT 3 30 variables 60 variables
ZDT 4 10 variables 15 variables
ZDT 6 10 variables 15 variables


All the experiments were coded using C language. We took
the implementation of NSGA-II available from its author at
http://www.iitk.ac.in/kangal/codes.shtml.
The parameters used in our experiments were the following:
Population sizeN = 100, ǫtol = 0.0001,k = 2 (but similar
results were obtained for values under 10) andtmax = 2.


Regarding the computational costs involved in practice,
we are assuming that the user estimates the gradients of
the objective functions using an evaluations-saver method







such as Automatic Differentiation [18]. This sort of approach
introduces significant savings in the computational cost ofthe
gradient values.


It is worth noting that we adopted the previously described
test problems both, with their original dimensionality and
with a higher number of decision variables. The specific
dimensionalities adopted are indicated in Table II.


TABLE III


COMPARISON OF RESULTS USING THESET COVERAGE INDICATOR FOR


THE ORIGINAL VERSIONS OF THE TEST PROBLEMS.


Problem NSGA-II
Set Coverage


5,000 f. evals. 10,000 f. evals.
version: Mean σ Mean σ


ZDT 1
Hybrid < Plain 0.98 0.03 0.78 0.08
Plain < Hybrid 0.00 0.00 0.00 0.00


ZDT 2
Hybrid < Plain 0.91 0.21 0.88 0.08
Plain < Hybrid 0.01 0.07 0.00 0.00


ZDT 3
Hybrid < Plain 0.90 0.11 0.60 0.09
Plain < Hybrid 0.03 0.06 0.01 0.03


20,000 f. evals. 40,000 f. evals
Mean σ Mean σ


ZDT 4
Hybrid < Plain 0.66 0.29 0.32 0.19
Plain < Hybrid 0.11 0.27 0.00 0.00


ZDT 6
Hybrid < Plain 1.00 0.00 1.00 0.00
Plain < Hybrid 0.00 0.00 0.00 0.00


TABLE IV


COMPARISON OF RESULTS USING THESET COVERAGE INDICATOR, FOR


THE EXTENDED VERSIONS OF THE TEST PROBLEMS.


Problem NSGA-II
Set Coverage


5,000 f. evals. 10,000 f. evals.
version: Mean σ Mean σ


ZDT 1
Hybrid < Plain 0.99 0.02 1.00 0.01
Plain < Hybrid 0.00 0.00 0.00 0.00


ZDT 2
Hybrid < Plain 0.86 0.30 0.90 0.24
Plain < Hybrid 0.05 0.17 0.00 0.00


ZDT 3
Hybrid < Plain 0.88 0.17 0.95 0.05
Plain < Hybrid 0.10 0.18 0.01 0.03


20,000 f. evals. 40,000 f. evals
Mean σ Mean σ


ZDT 4
Hybrid < Plain 0.55 0.49 0.70 0.29
Plain < Hybrid 0.52 0.48 0.13 0.32


ZDT 6
Hybrid < Plain 1.00 0.00 1.00 0.00
Plain < Hybrid 0.00 0.00 0.00 0.00


We compared the plain NSGA-II with respect to our
proposed hybrid approach. All the experiments were run
until reaching a certain number of function evaluations (5,000
for ZDT1, ZDT2 and ZDT3; 20,000 for ZDT4 and ZDT6)
which corresponds to the moment when certain reasonable
proximity to the front has been reached (see the right
handside plots of Figures 6 to 10). Then, we allowed the
algorithms to perform twice these numbers of evaluations.
It is worth noting that the same number of evaluations were
adopted for the two cases: for the original test problems and
for their extended versions.


Tables III to VI show the mean and the standard deviations
over 30 independent runs, regarding the indicatorsSet Cover-
ageandInverted Generational Distance(IGD), as defined in


[19]. The calculation ofIGD was done using the parameter
p = 1.


Table III shows that, for the first number of evaluations, the
hybrid approach almost always set-covers the plain MOEA
(its values are close to one), while the plain NSGA-II almost
never set-covers the hybrid approach (its values are close to
zero). The only exceptions are ZDT6, where the values of
the coverage are exactly one and zero (which means total
coverage of the hybrid over the original approach and never
the opposite) and ZDT4 in which the coverage difference was
reduced. When performing twice the number of evaluations,
the plain NSGA-II was able to converge closer to the true
Pareto front, but was never able to set-cover the hybrid
approach.


In Table IV, we show the results obtained for the extended
versions of the test problems. We can see here similar results
to those obtained when dealing with the original versions of
the test problems. However, in this case the outperformance
of the hybrid over the plain NSGA-II improved as the number
of iterations was increased. Tables V and VI support these
results, and show the IGD which measures both, proximity
to the front and spread of solutions.


It is worth noticing that, since ZDT4 is a highly mul-
tifrontal MOP, then, a gradient-based method is expected
to get stuck when attempting to solve it, producing, as a
consequence, a negative impact on the performance of the
hybrid MOEA. However, our results do not indicate that this
is always the case, but this and ZDT2 were the least stable
in terms of the standard deviation for the IGD indicator.


Since the two algorithms compared use the same crowding
selection procedure, the distance towards the Pareto front
does not decrease monotonically at the last stages of the
search, since some good solutions could be deleted at further
iterations. This is also the reason why no useful information
(for comparison purposes) can be obtained from letting the
algorithms to perform a higher number of objective function
evaluations.


Figures 1 to 5 show the Pareto fronts generated for each
of the test problems in their two instances (original and
extended), and for the two numbers of iterations adopted.
These Pareto fronts correspond to randomly selected runs.


Figures 6 to 10 show the average over 30 runs for the
number of non-dominated points—the basis of our control
mechanism—and theGenerational Distance(GD) [19] as the
number of function evaluations increases. These comparisons
are presented in the original and also in the extended size
versions of the problems.


V. GENERAL DISCUSSION


When hybridizing MOEAs with gradient-based proce-
dures, an obvious question that arises is if this sort of hybrid
scheme is more cost-effective than the use of a plain MOEA.
This cannot be easily answered, and few studies that look into
this are currently available. However, it is known that the
answer to this question depends on two things: the specific
features of the problem to be solved, and the effectiveness
of the mechanism that balances the local search with the







 1


 1.2


 1.4


 1.6


 1.8


 2


 2.2


 0  0.2  0.4  0.6  0.8  1


ZDT 1 original size, after 5000 function evals.


Plain NSGA-II
Hybrid NSGA-II


True Front


 1


 1.2


 1.4


 1.6


 1.8


 2


 2.2


 2.4


 2.6


 0  0.2  0.4  0.6  0.8  1


ZDT 1 extended size, after 5000 function evals.


Plain NSGA-II
Hybrid NSGA-II


True Front


 1


 1.2


 1.4


 1.6


 1.8


 2


 2.2


 0  0.2  0.4  0.6  0.8  1


ZDT 1 original size, after 10000 function evals.


Plain NSGA-II
Hybrid NSGA-II


True Front


 1


 1.2


 1.4


 1.6


 1.8


 2


 2.2


 0  0.2  0.4  0.6  0.8  1


ZDT 1 extended size, after 10000 function evals.


Plain NSGA-II
Hybrid NSGA-II


True Front


Fig. 1. Pareto fronts corresponding to a random run (seed 0.39) for ZDT1.
Original (top) and extended sizes (bottom), 5000 (left) and10000 (right)
evaluations
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Fig. 2. Pareto fronts corresponding to a random run (seed 0.39) for ZDT2.
Original (top) and extended sizes (bottom), 5000 (left) and10000 (right)
evaluations
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Fig. 3. Pareto fronts corresponding to a random run (seed 0.39) for ZDT3.
Original (top) and extended sizes (bottom), 5000 (left) and10000 (right)
evaluations
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Fig. 4. Pareto fronts corresponding to a random run (seed 0.39) for ZDT4.
Original (top) and extended sizes (bottom), 20000 (left) and 40000 (right)
evaluations
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Fig. 5. Pareto fronts corresponding to a random run (seed 0.39) for ZDT4.
Original (top) and extended sizes (bottom), 20000 (left) and 40000 (right)
evaluations
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Fig. 6. Average over 30 runs for ZDT1 with both its original size (top)
and its extended size (bottom). We also show the number of non-dominated
elements (left), and the Generational Distance (right).
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Fig. 7. Average over 30 runs for ZDT2 with both its original size (top)
and its extended size (bottom). We also show the number of non-dominated
elements (left), and the Generational Distance (right).
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Fig. 8. Average over 30 runs for ZDT3 with both its original size (top)
and its extended size (bottom). We also show the number of non-dominated
elements (left), and the Generational Distance (right).
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Fig. 9. Average over 30 runs for ZDT4 with both its original size (top)
and its extended size (bottom). We also show the number of non-dominated
elements (left), and the Generational Distance (right).
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Fig. 10. Average over 30 runs for ZDT6 with both its original size (top)
and its extended size (bottom). We also show the number of non-dominated
elements (left), and the Generational Distance (right).


TABLE V


COMPARISON OF RESULTS FOR THEIGD INDICATOR, ADOPTING THE


TEST PROBLEMS WITH THEIR ORIGINAL SIZES.


Problem NSGA-II
IGD


5,000 function evals. 10,000 function evals.
version: Mean Std. Dev. Mean Std. Dev.


ZDT 1
Hybrid 9.059E-03 9.080E-03 4.798E-03 5.318E-04
Plain 5.134E-02 1.129E-02 9.349E-03 8.545E-04


ZDT 2
Hybrid 4.437E-02 1.109E-01 7.108E-03 1.264E-02
Plain 1.114E-01 1.396E-01 1.446E-02 1.398E-02


ZDT 3
Hybrid 1.959E-02 1.252E-02 6.084E-03 4.021E-03
Plain 3.722E-02 9.161E-03 7.443E-03 6.264E-04


20,000 function evals. 40,000 function evals
Mean Std. Dev. Mean Std. Dev.


ZDT 4
Hybrid 1.237E-01 1.233E-01 4.511E-03 1.441E-04
Plain 6.191E-02 8.149E-02 5.483E-03 9.147E-04


ZDT 6
Hybrid 2.859E-03 3.342E-04 2.422E-03 1.828E-04
Plain 3.262E-01 7.280E-02 1.806E-01 3.616E-02


TABLE VI


COMPARISON OF RESULTS FOR THEIGD INDICATOR, ADOPTING THE


TEST PROBLEMS IN THEIR EXTENDED VERSIONS.


Problem NSGA-II
IGD


5,000 function evals. 10,000 function evals.
version: Mean Std. Dev. Mean Std. Dev.


ZDT 1
Hybrid 1.269E-02 5.371E-03 4.816E-03 1.682E-04
Plain 1.899E-01 3.366E-02 3.273E-02 5.349E-03


ZDT 2
Hybrid 1.785E-01 3.038E-01 4.189E-02 1.016E-01
Plain 3.167E-01 1.102E-01 5.197E-02 4.667E-02


ZDT 3
Hybrid 1.086E-01 2.525E-02 1.206E-02 7.814E-03
Plain 1.487E-01 2.186E-02 2.632E-02 9.028E-03


20,000 function evals. 40,000 function evals
Mean Std. Dev. Mean Std. Dev.


ZDT 4
Hybrid 2.018E+00 9.879E-01 1.137E-01 9.409E-02
Plain 2.086E+00 8.390E-01 3.600E-02 2.234E-02


ZDT 6
Hybrid 1.080E-02 1.044E-02 2.439E-03 1.434E-04
Plain 1.023E+00 1.293E-01 4.985E-01 9.087E-02







global search. Excluding the computation of the descent
direction (Proposition 2.1), the ideas presented in this paper
can be used to hybridize MOEAs to deal with more than
two objectives. For those cases, we suggest to use either
the procedure proposed by Fliege et al. [10] or the one by
Schäffler et al. [11]. It is worth noting that, in this case, it is
necessary to use a solver for convex quadratic optimization
or, at least, a linear optimization solver.


A. Adaptive Switch


One observation taken from [20] is that the descent cone is
wider for farther points than for those close to KKT points.
In particular, the descent cone shrinks down while the search
gets closer to the optimum. Thus, the probability to locally
improve the pointx with any kind of perturbation is high
when x is far, being this the case during the first stages
of the search when many points are likely to be replaced
by non-dominated ones. On the other hand, when a point
improves, it is unlikely that many points from the population
are non-dominated and will remain in this state for several
iterations. This is the case when a trusty movement towards a
descent direction is more necessary, and, therefore, the use of
local search becomes cost-effective. However, since different
MOPs have different fitness landscapes, we do not really
know if this state is reached at the end of the search (or at
any other stage, for that sake). Thus, it becomes desirable to
have an adaptive mechanism that can recognize when the use
of local search is useful and when it will produce no gains
with respect to the use of the global search engine alone.


Based on this reasoning, we propose a control mechanism
based on the cardinality of the set of non-dominated points.
The idea is that when the evolutionary search is promising,
the local search is scarcely used. On the other hand, when
the number of non-dominated solutions grows, our method
allows the local search mechanism to be applied more often.


B. Computing The Descent Direction


The advantage of this proposal over other currently avail-
able for multi-objective descent directions [11], [10], [2] is
that no additional effort is needed for its computation itself.
While all the other alternatives need to solve a quadratic or
lineal optimization problem for each point, we emphasize
that for bi-objective problems just an arithmetic operation (a
geometrical “average”) over the gradients is necessary. This
could be attractive for the user because no additional code
for solvers has to be added, and the procedure can be directly
plugged into the MOEA used.


C. Step Size Control


Once the descent directionν has been found, a line search
must be performed. If a bad step size control is chosen, the
local search could consume an extremely high number of
function evaluations. The way in which we controlled the
step size worked fine for the test problems adopted, but it is
advisable that, in general, a limit on the number of allowable
function evaluations for the local search strategy is imposed.


Let us point out that the calculation of a suitable step size
for the line search in multi-objective optimization is an open
problem (in fact, it is a multi-objective problem itself) which
clearly deserves more attention.


D. Surviving the Crowding Bound


It can be noticed from Figures 6 to 10 (right handside)
that the crowding procedure truncation does not allow the
method to converge. In other words, the zero value is never
reached when assessing GD for a large number of function
evaluations. The worst part is that there is a positive proba-
bility to lose, during the selection (when using the crowding
procedure), points which have already been improved (by
the steepest descent). The alternative that we adopted in
this work was to skip the calculation of the crowding value
for the elements resulting from the application of the local
search (by assigning a special value to them). However,
this mechanism only saves these elements for the next
generation and it does not prevent that, at future generations,
the improved individuals are deleted. Otherwise, we could
interfere with the original diversity control process of the
MOEA and this could have a negative effect.


As a final suggestion, if guaranteed convergence is
searched for the procedure, the observation presented next
motivates the study and use of different types of archivers
for MOEAs.


VI. CONCLUSIONS ANDFUTURE WORK


Most of current multi-objective memetic algorithms have
focused on discrete problems (e.g. [13]) in which the lo-
cal search over neighborhoods is well studied; but for the
continuous case, there is not direct comparison with these
proposals. On the other hand, gradient-based line search isa
powerful tool which implies a high cost but is also a reliable
way to produce improvements. This work addresses different
aspects related to the hybridization of MOEAs with local
search mechanisms based on gradient information. First,
we incorporated the gradient of two functions in the most
simple possible way, compared with other works which use
gradient-based multi-objective line search—since these other
procedures require the solution of SQP or linear problems
(e.g. [21], [2], [7]). In this way we developed a “plug and
play” method that can be easily coupled to many MOEAs
with little effort. The hybrid algorithm showed advantages
over the plain MOEA in the test problems adopted in their
two instances (i.e., with their original dimensionality and
with higher dimensionality). The most important advantage
of the proposed approach is that no additional quadratic
or linear optimization solvers are required to calculate the
descent direction for bi-objective problems. This makes our
approach cost-free for such types of problems. Our proposal
also includes a tolerance controlled stopping criterion in
order to avoid applying local search in a particular (almost
optimal) point.


Second, we tackled the problem of the balance between
local search and global search. This is not a trivial issue, and
it has been indeed recognized as one of the main difficulties







when designing memetic MOEAs. This work was a first
step towards developing a fully adaptive method that can
automatically balance the role of each of the two search
engines (i.e., the global search and the local search engines)
when dealing with continuous problems. We presented a
criteria to switch between the local and the global search
procedures based on the analysis of the descent cones.
The aim of such mechanism is precisely to balance the
resources (i.e., function evaluations) assigned to each ofthe
two engines.


As part of our future work, we are interested in coupling
alternative archiving methods (see for example [22]) with
our approach. Such type of mechanism should be able to
preserve good solutions during a longer time, which would be
beneficial for the performance of the final algorithm. It is also
necessary to develop a deeper investigation about the stability
of our proposed balancing mechanism, in order to establish
if it is more applicable for general problems than using a
fixed probability for the local search application —since this
last option is very sensitive to this probability value, and
completely dependent of the problem. Finally, assessing and
comparing procedures that use evolutionary approaches for
the estimation of descent directions (such as [9] and [23])
within multi-objective memetic algorithms is also part of our
future work.
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