

Applying Automatic Heuristic-Filtering to Improve
Hyper-heuristic Performance

Andres E. Gutierrez-Rodŕıguez∗, José C. Ortiz-Bayliss∗, Alejandro Rosales-Pérez∗,
Ivan M. Amaya-Contreras∗, Santiago E. Conant-Pablos∗, Hugo Terashima-Maŕın∗, Carlos A. Coello Coello†

∗ School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, 64849, Mexico
Email: {aegr82, jcobayliss, arosalesp, iamaya2, sconant, terashima}@itesm.mx

† Evolutionary Computation Group (EVOCINV), CINVESTAV-IPN, Mexico City, 07360, Mexico
Email: ccoello@cs.cinvestav.mx

Abstract—Hyper-heuristics have emerged as an im-
portant strategy for combining the strengths of differ-
ent heuristics into a single method. Although hyper-
heuristics have been found to be successful in many
scenarios, little attention has been paid to the subsets
of heuristics that these methods manage and apply. In
several cases, heuristics can interfere with each other
and can be harmful for the search. Thus, obtaining
information about the differences among heuristics,
and how they contribute to the search process is very
important. The main contribution of this paper is an
automatic heuristic-filtering process that allows hyper-
heuristics to exclude heuristics that do not contribute
to improving the solution. Based on some previous
works in feature selection, two methods are proposed
that rank heuristics and sequentially select only suit-
able heuristics in a hyper-heuristic framework. Our ex-
periments over a set of Constraint Satisfaction Problem
instances show that a hyper-heuristic with only selected
heuristics obtains significantly better results than a
hyper-heuristic containing all heuristics, in terms of
running times. In addition, the success rate of solving
such instances is better for the hyper-heuristic with the
suitable heuristics than for the hyper-heuristic without
our proposed filtering process.

I. Introduction
Heuristic-based methods have been successfully adopted

to solve complex combinatorial optimization problems.
In recent years, hyper-heuristics [1] have emerged as an
important strategy for combining the strengths of different
heuristics into a single method, with the aim of providing
more flexibility for solving a wide variety of problems.
Thus, selection hyper-heuristics [1] attempt to learn pat-
terns of different human-designed heuristics to robustly
tackle several problems of different domains such as bin
packing [2], vehicle routing [3] and the multi-dimensional
knapsack problem [4], to mention just a few.

Hyper-heuristics rely on a mechanism that interprets
the problem state and decides the most suitable heuristic
to apply based on such state. Although hyper-heuristics
have been found to be successful in many scenarios, little
attention has been paid to the subsets of heuristics that
these methods manage and apply. In most hyper-heuristic
related works, the set of heuristics is empirically chosen
without a formal justification. The most common criterion
for including a heuristic in the hyper-heuristic process is

based on the isolated performance of such heuristics. The
general assumption is that one heuristic that solves ‘well’ –
given a certain metric of performance– a set on instances,
is expected to contribute to the hyper-heuristic process.
In other words, we assume that two ‘good’ heuristics in
isolation will benefit from working together; unfortunately,
this is not always the case. It is reported that, in several
cases, heuristics can interfere with each other and be harm-
ful for the search [5]–[8]. Obtaining information about the
differences between heuristics, and how they contribute
to the search process is an important topic with many
applications in the field of optimization and, particularly,
to the hyper-heuristics community.

The main contribution of our work is the proposal of
an automatic heuristic-filtering process that allows hyper-
heuristics to exclude heuristics that do not contribute to
improving the solution process, in such a way that such a
process is optimized. Based on some works on feature se-
lection [9], we propose two methods for heuristic selection.
These methods rank the heuristics and sequentially select
only suitable heuristics for a hyper-heuristic framework. In
this paper, we use an evolutionary-based hyper-heuristic
generation model [10] to produce hyper-heuristics for Con-
straint Satisfaction Problems (CSP) [10], but our proposal
can be naturally extended to other domains.

The remainder of this paper is organized as follows. We
present the previous related work in Section II. Section III
describes the two heuristic-filtering strategies that we
propose. Our experimental results are shown in Section IV.
Finally, our conclusions and some possible paths for future
research are presented in Section V.

II. Related Work
Since our goal is to efficiently select only useful heuris-

tics for hyper-heuristics, in this section we briefly describe
some relevant feature selection methods which are related
to our proposal. Additionally, we also describe the hyper-
heuristic framework used to solve CSP, because our exper-
iments were conducted over this domain.

A. Feature Selection Methods
In the specialized literature, we can find several tech-

niques to address the problem of reducing irrelevant and

redundant features in challenging tasks [9]. In machine
learning [11], the focus of feature selection is to select a
subset of features from the inputs which can efficiently
describe the data while reducing effects from noise or
irrelevant features, and still provide good prediction re-
sults [12]. We based our proposal on these techniques, with
the aim of selecting suitable heuristics.

Some feature selection methods use feature ranking
techniques as the principal criteria for feature selection
by ordering. One of the simplest criteria adopts Pearson’s
correlation coefficient [13]. In this method, all the features
with a correlation greater than a predefined threshold
are removed from the data before the prediction process
starts. Similar methods are based on Mutual Informa-
tion [14], Conditional Mutual Information [15], and sta-
tistical tests [14].

Other feature selection methods, called Wrapper meth-
ods, depend on classification results for obtaining a useful
feature subset. The Wrapper methods are classified in
Sequential Selection and Heuristic Search methods. The
sequential selection methods start with an empty set and
add features while the prediction results are improved.
For example, the Sequential Feature Selection method [16]
starts with an empty set and adds one feature for the
first step which gives the highest value for the objective
function. From the second step onwards, the remaining
features are added individually to the current subset if the
classification accuracy is improved. On the other hand,
the heuristic search methods evaluate different feature
subsets to select the one with the best prediction results.
For example, the Branch and Bound method [17] uses a
tree structure to evaluate different feature subsets; thus,
the feature subset with the best classification accuracy
in the training phase is selected. Several heuristic search
techniques such as Genetic Algorithms [18] and Particle
Swarm Optimization [19] are also adopted to select useful
features.

In spite of the fact that there are several feature selec-
tion methods based on classification results, in practical
applications the training phase could be computationally
complex, or the class labels can be unknown. In these
cases, various feature selection methods based on unsuper-
vised learning have been proposed [20]. In addition, semi-
supervised learning is another class wherein both labeled
and unlabeled data are used for selecting features [21].
Finally, ensemble feature selection [22] is a relatively new
technique used to obtain a stable feature subset. A single
feature selection algorithm is run on different subsets of
data samples obtained from the bootstrapping method.
The results are aggregated to obtain a final feature subset.

The use of feature selection methods improves the re-
sults of several tasks, mainly related to learning. Fea-
ture ranking techniques and sequential selection methods
obtain good results, in spite of the fact that they are
computationally simple. Since the methods based on clas-
sification results repeatedly train and test a classifier to

select useful features, most of them are computationally
complex, and their results can be difficult to understand.
Additionally, they can be impractical in real world ap-
plications. Thus, in this paper, we propose two heuristic
filtering methods similar to some techniques used for
feature selection. The proposed filtering methods are based
on ranking the heuristics, and they sequentially select
useful heuristics for hyper-heuristics.

B. Hyper-heuristic for CSP
Even when the methods proposed in this paper can be

applied to different domains, here we apply them to solve
CSP as our means to validate them. We selected this prob-
lem mainly because of its many practical applications [23],
[24]. Before describing our proposal, we briefly describe the
framework adopted to solve CSPs.

The CSPs considered for this research are defined by
a set of variables and the constraints among them. Each
variable can be assigned a value from a finite domain. To
solve a CSP, we are requested to assign a value to every
variable in the problem such that their values satisfy all
the constraints [25]. CSPs are usually solved by traversing
a depth-first search tree. At each node in the search tree,
the algorithm must select an unassigned variable and
one suitable value from its corresponding domain. If the
current assignment of the variables breaks at least one
constraint, the search backtracks and changes the value
of a previously assigned variable, and continues the search
from there.

At each node, the variable to assign, as well as the
value used for the assignment, are usually selected by
heuristics. In this work, we have included five different
heuristics: DOM, DEG, KAPPA, WDEG, and DOMDEG.
A description of these heuristics appears in [10]. Once a
variable has been selected by using any of the previously
heuristics, the first available value in the domain of the
selected variable is assigned to such variable.

In our experiments, we use the hyper-heuristic described
in [10] for solving CSP. This hyper-heuristic decides the
best heuristic to apply in each decision point of the
solution search, based on the expected performance of
such heuristic on the current problem state. In order
to estimate the performance of the heuristics on new
instances, a learning process is conducted on a set of
training instances, using the heuristics’ running time as
metric of their performance. Thus, the heuristic with the
smallest expected running time for the current problem
state should be applied (the most suitable to solve the
remaining instance starting at this point).

The learning process runs a Genetic Algorithm for
generating a set of rules between the characteristics of
the training instances and their corresponding heuristic
with the lowest running time. The ideal result for the
hyper-heuristic is to select, based on these rules, the most
suitable heuristic for each problem instance in the test set
(the oracle). However, some heuristics are irrelevant, or

noise, and they hinder the training process. In addition,
the training phase of the Genetic Algorithm can be very
slow if we consider all the heuristics. Thus, selecting
suitable heuristics is necessary for obtaining good solutions
in the testing set.

III. Heuristic Filtering Methods
Based on the core ideas from feature selection, we pro-

pose two ranking methods for selecting suitable heuristics.
The first one, measures the correlation and the gain ratio
between heuristics. The second is based on a statistical
test.

Heuristic filtering is performed in a sequential manner.
First, the heuristic with the lowest average of running
times in the training set is selected. Then, step by step,
the rest of suitable heuristics are selected according to the
restrictions of the proposed methods. The details of these
methods are given below.

A. Heuristic filtering based on Gain and Correlation
The first proposed method for heuristic filtering is based

on two frequently used criteria in feature selection: (1) gain
and (2) correlation. Once the best heuristic is selected, the
next heuristics are selected if their gain and correlation
fulfill the thresholds determined by the user (in this paper,
these parameters are empirically determined).

We measure the gain (see Eq. (1)) as the difference
between the sum of the minimum running time values for
the previously selected heuristics, and the sum of these
values adding the new heuristic.

Gain(x, y) = x̄ − ȳ (1)

In Eq. (1), x̄ and ȳ are the mean of the execution
times for the selected heuristics and the added heuristic,
respectively. All the heuristics (y) having this difference
greater than a certain threshold (5% of the average of
running times for the best heuristic) is considered as a
candidate heuristic. Then, we analyze their correlations
with the selected heuristics.

All the new heuristics with a Pearson Correlation (see
Eq. (2)) in the range from -0.75 to 0.75 with all the selected
heuristics, are also considered as candidates, because they
are not ”strongly correlated” with any other of the selected
heuristics. The candidate heuristic with the highest value
of gain is selected, and the process is repeated, step by
step, for the rest of the non-selected heuristics until no
heuristic can be added.

Pearson(x, y) = n
∑

xy −
∑

x
∑

y√[
n

∑
x2 − (

∑
x)2

] [
n

∑
y2 − (

∑
y)2

]
(2)

In Eq. (2), n is the number of instances; and x and y
are the minimum running times for the previous selected
heuristics and the addition of the new heuristic, respec-
tively.

B. Heuristic filtering based on Z-score
A drawback of the previous method is the selection of

correct thresholds. Hence, we propose another method for
heuristic filtering based on a statistical test. The second
method also follows the idea that each selected heuris-
tic brings new minimum running times for the hyper-
heuristic, and the new average of the running times must
be smaller than the previous average. This new method
measures if the average differences are statistically signif-
icant based on the Z-score [26] test (see Eq. (3)). We
used the formula for Z-score Two Sample One Tailed test
because the new vector of times will always be smaller
than the vector with the times of the previously selected
heuristics.

Z-score(x, y) = x̄ − ȳ√
σ2

x

n
+

σ2
y

n

(3)

In Eq. (3), x̄ and ȳ are the mean of the execution
times for the selected heuristics and the added heuristic,
respectively; σ2

x and σ2
x are their standard deviations; and

n is the number of instances.
Since we perform the Z-score test for two samples with

one tailed, all heuristics which the value of Eq. (3) greater
than 1.65 (95 percent of confidence) are considered as
candidates. Then, the heuristic with the highest value of
Z-score is selected. This process is repeated, step by step,
for all the non-selected heuristics until a heuristic can no
longer be added.

C. Automatic heuristic filtering
For automatic heuristic filtering, we propose its general

steps in Algorithm 1.

Algorithm 1 AHF: Automatic Heuristic Filtering.
Require: T: dataset, H: heuristics
Ensure: S: selected heuristics

1: Compute the average of running times for all heuristics
2: Select the heuristic with the highest average of running

times
3: Create a reference set with the obtained running times
4: repeat
5: for all non-selected heuristics do
6: Create a new set of running times by adding to

the reference set the smallest values provided by
the non-selected heuristic

7: Compare both sets of running times, using the
proposed methods, in order to determine if the
non-selected heuristic is a feasible candidate

8: end for
9: If there are candidate heuristics, select the best one,

and update the reference set of running times
10: until a heuristic can no longer be selected
11: return S

By using these automatic filtering methods, we can ob-
tain a subset of suitable heuristics that allow us improving
the performance of our hyper-heuristics. With the next
experiments over CSP data, we validate our proposal.

IV. Experimental Results
In this section, we first describe the setup of the ex-

periments. Second, we show the results obtained for the
proposed methods in the selection of suitable heuristics ac-
cording to the training set. Third, we compare the results
obtained for the hyper-heuristic using all the heuristics,
and using only the suitable heuristics, in the test set.
Fourth, we compare our proposal with each one of the
simple heuristics. Finally, we discuss the obtained results.

A. Experimental Setup
We generated the hyper-heuristics following the

methodology described in [10] and using the set of in-
stances for this work. The latter was splitted into two
halves, one for training and one for testing. In both
cases, we stopped each heuristic runs in an instance if
the running time was greater than 20000 milliseconds. In
such cases, we considered that the instance could not be
properly solved by such heuristic.

B. Results of the filtering method based on Gain and
Correlation in the training set

Prior to running a hyper-heuristic, we first ran all
heuristics with the training dataset. Table I shows the
average of running times for each heuristic in the training
dataset. The KAPPA heuristic outperformed all the other
heuristics, exhibiting an average time of 5516.64 millisec-
onds. Thus, KAPPA was the first heuristic selected for our
methods.

TABLE I: Average of running times for each heuristic in
the training dataset.

Heuristic Runtime (ms)
DOM 6030.80
DEG 14397.37
KAPPA 5516.64
WDEG 8199.51
DOMDEG 7970.12

Once the first heuristic has been selected, we analyzed
the remaining heuristics. Table II shows the correlation
across all heuristics, according to Eq. (2), in order to
determine which is a proper candidate. Since no combi-
nation of heuristics yields a correlation out of the range of
-0.75 to 0.75, all of them are feasible candidates. Thus, we
measured the effect of adding them to KAPPA.

For all the instances in the training set, we measured
the minimum of running times between KAPPA and the
rest of heuristics, one at a time. The newly generated
values are considered as a new reference set. The differ-
ences between them and the average of running times
for KAPPA are considered as the gain of selecting each
heuristic (Table III).

TABLE II: Pearson Correlation across all heuristics.
- DOM DEG KAPPA WDEG DOMDEG
DOM 1.00 0.23 0.05 0.55 0.73
DEG 0.23 1.00 0.38 0.29 0.13
KAPPA 0.05 0.38 1.00 -0.02 -0.06
WDEG 0.55 0.29 -0.02 1.00 0.60
DOMDEG 0.73 0.13 -0.06 0.60 1.00

TABLE III: Gain from adding each heuristic to KAPPA.
heuristics Gain
KAPPA&DOM 3520.00
KAPPA&DEG 112.34
KAPPA&WDEG 3181.10
KAPPA&DOMDEG 3419.29

Joining DOM and KAPPA yields the highest gain. 5% of
the average of running times for KAPPA is 275.83 millisec-
onds, and the gain of joining DOM (3520.00 millisecond)
is greater than this threshold; thus, we selected DOM as
another suitable heuristic.

The process of selecting suitable heuristics continues
until no heuristic can be added. Table IV shows the new
gain values of KAPPA&DOM with the rest of the non-
selected heuristics. Non of these gains fulfill the gain
threshold, so no more heuristics are selected1.

TABLE IV: Gain values of adding the rest of the heuristics
to KAPPA&DOM.

heuristics Gain
KAPPA&DOM&DEG 14.25
KAPPA&DOM&WDEG 117.74
KAPPA&DOM&DOMDEG 22.68

According to gain and correlation, we select KAPPA
and DOM as the suitable heuristics for our hyper-heuristic.

C. Results of the filtering method based on Z-score in the
training set

We perform the same analysis, but using the Z-score
test. The heuristic filtering method based on Z-score is also
initialized by selecting the heuristic with the smallest av-
erage of running times, i.e. KAPPA. Then, we evaluate the
Z-score test, according to Eq. (3), between KAPPA and
the remaining heuristics (Table V). The highest Z-score is
5.79, resulting from the union of KAPPA and DOM. Since
this value is greater than 1.65 (95% of confidence), we also
selected DOM as a suitable heuristic.

TABLE V: Z-score values of adding each heuristic to
KAPPA.

heuristics Z-score
KAPPA&DOM 5.79
KAPPA&DEG 0.15
KAPPA&WDEG 5.24
KAPPA&DOMDEG 5.58

1Note that, at this point, adding the DOMDEG heuristic has a
gain value smaller than the one produced by adding WDEG; this is
because DOMDEG has a high correlation with DOM.

In the next step, new vectors are created for the re-
maining heuristics (Table VI). None of the new Z-score
values is greater than 1.65, hence adding a new heuristic
to KAPPA&DOM cannot add a statistically significant
difference to the final result. According to the heuristic
filtering method based on Z-score, we also select KAPPA
and DOM as the only suitable heuristic for our hyper-
heuristic.

TABLE VI: Z-score values of adding each heuristic to
KAPPA&DOM.

heuristics Z-score
KAPPA&DOM&DEG 0.03
KAPPA&DOM&WDEG 0.28
KAPPA&DOM&DOMDEG 0.05

D. Comparison between the hyper-heuristics with KAPPA
and DOM, and with all heuristics

With the selected heuristics KAPPA and DOM, we
trained the hyper-heuristic in the training dataset, and
a set of rules was generated in order to use it in the
test dataset. To validate our approach, we compared the
results of the hyper-heuristic in the test dataset trained
with the five initial heuristics with respect to the results
of the hyper-heuristic trained with the two selected heuris-
tics. Each hyper-heuristic predicts, for each instance, one
heuristic to solve the instance, and we capture the running
time of such heuristic solving the instance. Then, the
vector of running times for the different hyper-heuristics
were also compared.

We ran three times the Genetic Algorithm to reduce
random effects. In Table (VII), we show the average of
running times for these three runs of both hyper-heuristics.
In the three cases, the average of running times for the
hyper-heuristic with KAPPA and DOM are smaller than
those of the other hyper-heuristic.

TABLE VII: Average of running times of the three runs
for the hyper-heuristics with five and two heuristics, re-
spectively.

Runs HHw5 HHw2
Run1 7972.51 3105.39
Run2 7220.88 3000.59
Run3 5964.96 2799.60

Two new running time vectors are created from cal-
culating, for each hyper-heuristic, the average of running
times of each instance in the three generated runs. Fig. 1
shows, in logarithmic scale, these new vectors of running
times, sorted in ascending order according to the hyper-
heuristic with five heuristics. In Fig. 1, we can see that,
in a few cases, the hyper-heurisitc with KAPPA and
DOM has greater running times than the hyper-heuristic
with all heuristics. In most cases, the hyper-heuristic with
KAPPA and DOM obtains smaller running times. When
the hyper-heuristic with all heuristics obtains running
times greater than 20000 milliseconds, the running times

for the hyper-heuristic with KAPPA and DOM are signif-
icantly smaller. Moreover, according to the Success Rate
(percent of instances solved), the hyper-heuristic with
KAPPA and DOM solved 95% of the testing instances,
while the hyper-heuristic with all heuristics only solved
80% of such instances.

The BoxPlots for these vectors of running times appear
in Fig. 2. In this figure, we can also note that, except
for some outliers, the maximum running time for the
hyper-heuristic with KAPPA and DOM is considerably
smaller than the maximum running time of the hyper-
heuristic with all heuristics. Additionally, we can see than
the median of running times for the hyper-heuristic with
KAPPA and DOM is smaller than the median of the other
hyper-heuristic.

In order to know if the differences between the two
hyper-heuristics are statistically significant, we performed
a Wilcoxon Signed-Rank Test with α = 0.05, accord-
ing to [27]. The p-value for the test is 0.001, thus, the
differences between both hyper-heurisitcs are statistically
significant.

E. Comparison between each heuristic and the hyper-
heuristic with KAPPA and DOM

A comparison between the hyper-heuristic with KAPPA
and DOM, and each heuristic, is also performed. The Box-
Plots for the vectors with the average of running times for
the hyper-heuristic, and running times for each heuristic,
appear in Fig. 3. In this figure, the high running time
values for DEG heuristic are relevant. On the other hand,
the median of the running times for the hyper-heuristic,
and the 50% of their running times, are significantly
smaller than the running times of the heuristics.

Additionally, we perform a Friedman Aligned Test with
α = 0.05, suggested in [27] for comparing the algorithms.
The ranking values for the test appear in Table VIII. The
p-value of the test is equal to 9.5e-11; hence, the differences
between the hyper-heuristic with KAPPA and DOM, and
the simple heuristics, are statistically significant.

TABLE VIII: Average rankings for our proposal and each
heuristic (Freedman Aligned Test).

Algorithm Ranking
HHw2 433.72
DOM 628.79
DEG 1107.18
KAPPA 585.12
WDEG 808.49
DOMDEG 777.70

Since the differences among all the algorithms compared
are statistically significant, we performed a Post Hoc com-
parison, also suggested in [27]. The goal is to determine
which of the simple heuristics, separately, have statistically
significant differences with the hyper-heuristic. Table IX
shows the results of applying the Holm procedure with
α = 0.05. In all cases, p is less or equal than the
adjusted α according to Holm. Thus, the hyper-heuristic

1

10

100

1000

10000

)
s

d
n

o
c

e
silli

m(
e

mit
n

u
R

Instances

HHw2 HHw5

Fig. 1: Average of running times for the hyper-heuristics with two and five heuristics.

Fig. 2: Boxplots of the average of running times for the
hyper-heuristics with two and five heuristics.

has differences statistically significant with respect to each
of the simple heuristics.

TABLE IX: Pos Hoc comparison for α = 0.05.
Algorithm p Holm
DEG 0 0.01
WDEG 0 0.0125
DOMDEG 0 0.016667
DOM 0 0.025
KAPPA 6.9e-5 0.05

Fig. 3: Boxplots of the running times for each heuristic
and the hyper-heuristics with KAPPA and DOM.

F. Discussion
Building a hyper-heuristic with only suitable heuristics

contributes to yield better results. In our experiments,
the hyper-heuristic with KAPPA and DOM obtained bet-
ter performance results than the hyper-heuristic with all
heuristics, and also than each heuristic considered inde-
pendently. Moreover, our hyper-heuristic obtained a better
Success Rate. One of the advantages of our proposal is that
the training phase has a smaller computational complexity
than training the hyper-heuristic with all heuristics. As
another advantage, the set of generated rules with only
two heuristics are more understandable for users.

V. Conclusions and Future Work

Automatic heuristic-filtering allows hyper-heuristics to
ease its learning stage by discarding irrelevant (or noise)
heuristics that do not contribute significantly to improve
the results. Based on some related feature selection meth-
ods, this paper proposes two methods for selecting suitable
heuristics. Both of them are ranking methods, and they
sequentially add one heuristic at each step to the final
solution. The first method selects heuristics with a high
gain of running times, and small correlations across them.
The second method uses the Z-score test to measure
if the gain in running times is statistically significant.
Although the experiments were conducted over CSP data,
the proposed methods can be naturally extended to other
optimization domains.

In the experiments, only KAPPA and DOM were se-
lected as suitable heuristics for the hyper-heuristic frame-
work to solve CSP. Trained with these two heuristics,
the hyper-heuristic outperformed its results in terms of
average of running times for solving the test instances, ob-
taining differences which are statistically significant. Addi-
tionally, the learning stage was faster, while the generated
rules were smaller and easier to understand for users. In
comparison with each heuristic considered separately, the
hyper-heuristic with two selected heuristics also obtained
differences which were statistically significant, in terms of
running times. As future work, we will focus on extending
the obtained results to different optimization domains, and
we will test them not only with constructive heuristics, but
also with perturbative heuristics.

Acknowledgments

This research was supported in part by CONACyT Ba-
sic Science Projects under grants 241461 and 221551, and
ITESM Research Group with Strategic Focus in Intelligent
Systems.

References

[1] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and R. Qu, “Hyper-heuristics: A survey of the state
of the art,” Journal of the Operational Research Society, vol. 64,
no. 12, pp. 1695–1724, 2013.

[2] K. Sim, E. Hart, and B. Paechter, “A lifelong learning hyper-
heuristic method for bin packing,” Evolutionary computation,
vol. 23, no. 1, pp. 37–67, 2015.

[3] R. J. Marshall, M. Johnston, and M. Zhang, “Developing a
hyper-heuristic using grammatical evolution and the capaci-
tated vehicle routing problem,” in Asia-Pacific Conference on
Simulated Evolution and Learning. Springer, 2014, pp. 668–
679.

[4] J. H. Drake, E. Özcan, and E. K. Burke, “Modified choice
function heuristic selection for the multidimensional knapsack
problem,” in Genetic and Evolutionary Computing. Springer,
2015, pp. 225–234.

[5] G. Ochoa, J. A. Vazquez-Rodriguez, S. Petrovic, and E. Burke,
“Dispatching rules for production scheduling: A hyper-heuristic
landscape analysis,” in 2009 IEEE Congress on Evolutionary
Computation, May 2009, pp. 1873–1880.

[6] J. C. Ortiz-Bayliss, H. Terashima-MarÃŋn, E. ÃŰzcan, A. J.
Parkes, and S. E. Conant-Pablos, “Exploring heuristic interac-
tions in constraint satisfaction problems: A closer look at the
hyper-heuristic space,” in 2013 IEEE Congress on Evolutionary
Computation, June 2013, pp. 3307–3314.

[7] S. Petrovic and S. L. Epstein, “Random subsets support learning
a mixture of heuristics,” International Journal on Artificial
Intelligence Tools, pp. 501–520, 2008.

[8] R. J. Wallace, Analysis of Heuristic Synergies. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 73–87.

[9] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1,
pp. 16–28, 2014.

[10] J. C. Ortiz-Bayliss, H. Terashima-Maŕın, and S. E. Conant-
Pablos, “Combine and conquer: an evolutionary hyper-heuristic
approach for solving constraint satisfaction problems,” Artificial
Intelligence Review, vol. 46, no. 3, pp. 327–349, 2016.

[11] E. Alpaydin, Introduction to machine learning. MIT press,
2014.

[12] I. Guyon and A. Elisseeff, “An introduction to variable and
feature selection,” Journal of machine learning research, vol. 3,
no. Mar, pp. 1157–1182, 2003.

[13] R. Battiti, “Using mutual information for selecting features in
supervised neural net learning,” IEEE Transactions on neural
networks, vol. 5, no. 4, pp. 537–550, 1994.

[14] G. Forman, “An extensive empirical study of feature selection
metrics for text classification,” Journal of machine learning
research, vol. 3, no. Mar, pp. 1289–1305, 2003.

[15] F. Fleuret, “Fast binary feature selection with conditional
mutual information,” Journal of Machine Learning Research,
vol. 5, no. Nov, pp. 1531–1555, 2004.

[16] P. Pudil, J. Novovičová, and J. Kittler, “Floating search meth-
ods in feature selection,” Pattern recognition letters, vol. 15,
no. 11, pp. 1119–1125, 1994.

[17] P. M. Narendra and K. Fukunaga, “A branch and bound al-
gorithm for feature subset selection,” IEEE Transactions on
Computers, vol. 26, no. 9, pp. 917–922, 1977.

[18] D. E. Goldberg and J. H. Holland, “Genetic algorithms and
machine learning,” Machine learning, vol. 3, no. 2, pp. 95–99,
1988.

[19] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
machine learning. Springer, 2011, pp. 760–766.

[20] M. H. Law, M. A. Figueiredo, and A. K. Jain, “Simultane-
ous feature selection and clustering using mixture models,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 26, no. 9, pp. 1154–1166, 2004.

[21] Z. Zhao and H. Liu, “Semi-supervised feature selection via spec-
tral analysis,” in Proceedings of the 2007 SIAM International
Conference on Data Mining. SIAM, 2007, pp. 641–646.

[22] T. Abeel, T. Helleputte, Y. Van de Peer, P. Dupont, and
Y. Saeys, “Robust biomarker identification for cancer diagno-
sis with ensemble feature selection methods,” Bioinformatics,
vol. 26, no. 3, pp. 392–398, 2010.

[23] J. Berlier and J. McCollum, “A constraint satisfaction algorithm
for microcontroller selection and pin assignment,” in Proceedings
of the IEEE SoutheastCon 2010 (SoutheastCon), march 2010,
pp. 348–351.

[24] S. V. Bochkarev, M. V. Ovsyannikov, A. B. Petrochenkov,
and S. A. Bukhanov, “Structural synthesis of complex elec-
trotechnical equipment on the basis of the constraint satisfaction
method,” Russian Electrical Engineering, vol. 86, no. 6, pp. 362–
366, 2015.

[25] R. Dechter, “Constraint networks,” in Encyclopedia of Artificial
Intelligence. Wiley, 1992, pp. 276–286.

[26] V. Agarwal and R. J. Taffler, “Twenty-five years of the taffler z-
score model: Does it really have predictive ability?” Accounting
and Business Research, vol. 37, no. 4, pp. 285–300, 2007.

[27] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practi-
cal tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence
algorithms,” Swarm and Evolutionary Computation, vol. 1,
no. 1, pp. 3–18, 2011.

