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Abstract. This paper presents a genetic programming based approach
to the synthesis of logic functions by means of multiplexers. Our approach
is a bottom-up synthesis procedure that closely follows the “automatic
programming” goal of GP. Our method uses the 1-control line multi-
plexer as the only design unit for the synthesis of any logic function.
Logic design with multiplexers is similar to logic design with Binary De-
cision Diagrams, which can be transformed into Ordered Binary Decision
Diagrams. We argue that since the metric of our designs is the minumum
number of components, ordered diagrams are not a suitable approach for
this particular goal.

1 Introduction

The minimization of logic circuits is a problem born with the first computer. We
account some of the researchers found in the binary trees literature. Shannon
[19], found important mathematical properties (the Shannon expansion) that
now are part of the techniques used in ordered decision diagrams. Akers [2], pro-
posed binary decision diagrams as the vehicle to represent and minimize Boolean
functions. Bryant [4], proposed directed acyclic graphs for the same end. Both
approaches are based in the manipulation of the nodes of the graph, thus, the ini-
tial graph is transformed into functional equivalent subgraphs while preserving
the Boolean function encoded. The repetitive application of several node rules
derived from the problem domain (remove terminals, remove nonterminals, re-
move redundant tests [5], also reduce [10]) have proven to be sufficient to reduce
binary decision diagrams into ordered binary decision diagrams. In essence, the
goal is achieved by a top-down minimization strategy, that is, reduced graphs
are produced from complete graphs.

The evolutionary computation approach we describe follows essentially the
opposite direction. A bottom-up searching procedure (genetic programming)
constructs boolean functions by combining samples taken from the space of par-
tial solutions. Once a 100% functional solution is found, our goal is turned to



their minimization. Thus, the fitness function is updated to reward fully func-
tional solutions with fewer elements. Trees are therefore trimmed, and nodes are
replicated without having added any heuristic other than a simple change in the
fitness function. The enormous difference in the approaches is evident: in graph
techniques the “minimization rules” are derived from the problem domain. In
our evolutionary system we work with the purest form of genetic programming,
thus, no problem domain knowledge was included in the evolutionary process,
and yet, it is able to find excellent results.

The gate-level design of combinational circuits by means of evolutionary com-
putation techniques has been approached only recently by few researchers [17,
11,7,14,13].We propose a genetic programming approach to the circuit design
problem in which we encode a population of (candidate solution) circuits using
trees [1]. The trees encode Boolean functions where every non-terminal node of
the tree is a binary multiplexer. The hypothesis is that the replication of simple
and elemental binary multiplexers is a sound process for the synthesis of logic
functions. We emphasized the importance of replication by allowing the use of
only 1-control line multiplexers in the evolutionary process.

The design with multiplexers is akin to the design with binary trees. There
does exist, in fact, an isomorphism between trees representing Boolean functions,
and the multiplexer-based implementation. Binary trees can be transformed into
binary decision diagrams (BDD), BDDs tranformed into Ordered Binary Deci-
sion Diagrams (OBDD), and OBDDs into Reduced OBDDs (ROBDDs). ROB-
DDs provide a canonical representation of logic functions (the diagram repre-
senting the function is unique), therefore, they are a powerful tool for reasoning
about logic functions. For instance, to determine whether two Boolean functions
are identical, is equivalent to verify whether their ROBDDs are isomorphic.
Properties of this sort are highly cherised, but unfortunately, they can hide the
weaknesses of the methods. It is well known that ROBDDs are very sensitive
to the variable ordering. For almost any Boolean function, one variable ordering
can produce a diagram using an exponential number of nodes, while another
ordering can produce a better diagram (sub-exponential number of nodes). Fur-
ther more, the multiplication function (the only known so far) does not have any
sub-exponential OBDD for any variable ordering [4]. We believe ROBDDs are
excellent tools for reasoning about Boolean functions, but they are not suitable
for function minimization. Many reasearchers have attempted heuristics and al-
gorithms to find the optimum variable ordering that will produce the diagram
with the smallest number of nodes. We show in this paper examples at least
as good as the ROBBDs, and for support of our discussion, and example of
an optimal ROBDD that uses more nodes than the solution delivered by our
approach.

The organization of this paper is the following: first, we will describe the
problem that we wish to solve in a more detailed form. Then, we will intro-
duce a methodology based on genetic programming to synthesize logic functions
using multiplexers. To end, we will compare optimal solutions found by other
approaches (ROBDD) with the solutions delivered by our GP system.



2 Problem Statement

The problem of interest to us consists of designing a circuit that performs a de-
sired logic function using the least possible number of 1-control line multiplexers
(Mux). Any logic function with n variables can be implemented using 2" — 1
1-control line multiplexers. Therefore, any implementation using less than that
number of elements could be considered an improvement in the design. Since the
optimal minimum number needed is unknown for most of the logic functions, the
use of a heuristic technique such as genetic programming [12] seems adequate.
In our approach we permit only “1s” and “0s” to be fed into the multiplexers.
Thus, we allow the variables to be only used as control signals of the muxes.
This in fact makes a clear difference to well known tabular strategies where a
variable can be fed into a Mux.

3 Previous Work

It is possible to find in the literature several reports concerning the design of
combinational logic circuits using GAs. Louis [16] was one of the first researchers
who reported this class of work. Further work has been reported by Koza'[12],
Coello et al. [6,7], Iba et al. [11], and Miller et al. [17]. However, none of these
approaches has concentrated on the exclusive use of multiplexers to design com-
binational circuits using evolutionary techniques. Several strategies for the design
of combinational circuits using multiplexers have been reported after the concept
of universal logic modules [22]. Chart techniques [15], graphical methods for up
to 6 variables [21], and other algorithms more suitable for programming have
been proposed [18,9,3,20]. The aim of these approaches (muxes in cascade or
tree or a combination of both), is either to minimize the number of multiplexers,
or to find p control variables such that a boolean function is realizable by a
multiplexer with p—control signals.

The popular approach named Ordered Binary Decision Diagrams (OBDD),
make use of node transformations to reduce the size of the initial tree. Trees
of Boolean functions with n variables have size 2™ — 1, that is, the number of
non-terminal nodes. It is also shown in [2] the suitable transformation of trees
into logic functions by means of multiplexers. Thus, we will compare the circuits
delivered by BDD against the circuits delivered by our evolutionary system.

4 Multiplexers as Function Generators

A binary multiplezer with n selection lines is a combinational circuit that selects
data from 2" input lines and directs it to a single output line. The concept that
supports the use of this device as an universal logic unit is known as residues of
a function.

! Koza’s approach to the design of combinational circuits has only concentrated on
the generation of fully functional circuits and not in their optimization.



Definition 1. The residue of a boolean function f(x1,zs2,...,T,) with respect
to a variable x; is the value of the function for a specific value of x;. It is denoted
by fz;, for z; =1 and by fz, for x; =0.

Any Boolean function can then be expressed in terms of these residues in the
form of an expansion known as Shannon’s decomposition [19].

f=%;fle; + 2 fla;

The logic function y that represent the mapping of two inputs A and B
onto the output port of a multiplexer with one selector line s is: y = sA + 5B.
This output function quickly takes the Shannon’s expansion form if the same
function is used in both input ports. Say f = A = B is any logic function, then
y = sf + 5f. If we pick z; as the selector and the inputs are the residues f,,
and fz,, the output becomes y = xz; - f;, + T; - fz,. Further expansion of the
residues into selector-residue pairs leads to an expansion as shown in Figure 1.
As can be observed, every n-control signals multiplexer can be synthesized by
2™ — 1 1-control signal multiplexers. Notice that the number of layers or depth
of the array is equal to n.
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Fig. 1. Implementation of a multiplexer of 3-control signals by means of 7 1-control
signal muxes. Muxes class “A” and class “B”. Functional equivalence between both
classes

Multiplexers can be “active low” or “active high” devices, a quality that we
simply name class A and class B. For a class A multiplexer, when the control is
set to one the input labeled as “1” is copied to the output, and vice-versa, the
input labeled as “0” is copied to the output when the control is zero. For a class
B multiplexer the logic is exactly the opposite: copy the input labeled “0” when
the control line is one, and copy the input labeled “1” when the control is zero.
In order to differentiate this property, class A muxes have the control signal on
the right hand side and class B on the left, as can be seen in Figure 1. Therefore



the control signal is located on the side of the input to be propagated when the
control is in active state (The active state will be “1” for all our examples).

It is possible to use both classes of multiplexers simultaneously in a circuit.
The design criteria could allow them as well. Two characteristic properties of
circuits of this nature should be taken into consideration during the design pro-
cess:

— Class Transformation Property: Class A and class B multiplexers can
be converted freely from one class into the other, by just switching their
inputs, thus input labeled “1” goes to input “0” and input labeled “0” now
goes into “1” (see Figure 1).

— Complement Function Property: For every logic function F', its comple-
ment F' is derivable from the very same circuit that implements F' by just
negating the inputs, that is, by changing “0s” to “1s” and “ls” to “0s” [1].

The correspondent consequences of these properties are the following:

— Implementation in One Class: Every circuit can be implemented by
means of multiplexers of only one class (by the class transformation prop-
erty). Since we are aiming to replicate the same element as many times as
possible, this is a highly beneficial design quality [1].

— The Minimum Circuit Equivalence: If the function F' and its comple-
ment F’ are found to be implemented by particular and different size (i.e.,
number of elements) circuits, then both circuits are solutions for both func-
tions (by the complement function property). Therefore, the smallest circuit
is the desirable solution. This means that in practice the designer would have
an alternate procedure to verify the quality of the solution [1].

5 The Genetic Programming Environment

In the following we describe genetic programming issues that should help to
fully understand the approach. Representation, and the evolutionary operators:
selection, crossover, and mutation are covered.

— Representation Binary trees encoding the population are represented by
means of lists. Essentially each element of the list is the triplet (mux,left —
child, right — child) that encodes subtrees as nested lists. The tree captures
the essence of the circuit topology allowing only children to feed their parent
node. In other words, a multiplexer takes only inputs from the previous level.
This is shown in Figure 2.

Both classes of binary multiplexers are implemented. Since multiplexers A0
and B0 are controlled by C0, the former is depicted with the control signal
on its right side, and the latter with the signal on its left side.

— Selection operator The mating pool is created by ternary selection, thus,
three individuals are randomly chosen from the entire population and the one
with highest fitness is placed into the pool. The overall effect is the increment
of the selection pressure that should decrease the convergence time.
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Fig. 2. Truth table for logic function specification, circuit generated, and its coding

— Crossover operator The exchange of genetic information between two trees
is accomplished by exchanging subtrees. Our implementation does not im-
pose any kind of restriction to the selection of subtrees or crossover points.
Node-node, node-leaf, and leaf-leaf exchange are allowed. The particular case
when the root node is selected to be exchanged with a leaf is disallowed, so
that, no leaf may be mistakenly converted into a node thus avoiding the
generation of invalid trees (in such cases the valid children are replicated
twice).

— Mutation operator Mutation is implemented in a simple way: first a mu-
tation point is randomly chosen among the nodes and leaves. When a node
(multiplexer) is selected, its control input is changed as follows (assuming n
control signals): ag — a1, a3 = a2, an_1 = @y, an — ag- Similarly simple is
the mutation of a leaf: 0 - 1, 1 — 0.

— Fitness function Our goal is to produce a fully functional design (i.e.,
one that produces the expected behavior stated by its truth table) which
minimizes the number of multiplexers used. Therefore, we decided to use a
two-stages fitness function. At the beginning of the search, only compliance
with the truth table is taken into account, and the evolutionary approach is
basically exploring the search space. Once the first functional solution ap-
pears, we switch to a second fitness function in which fully functional circuits
that use less multiplexers are rewarded. Regardless of the current stage of
the fitness function, all members of the population have their fitness calcu-
lated in every generation. It is the fitness function the only agent responsible
for the life span of the individuals.

— Initial population The depth of the trees randomly created for the initial
population is set to a maximum value equal to the number n of variables
of the logic function. This is a fair limit because for complete binary trees
with n variables, 2" —1 is the upper bound on the number of nodes required.
However, we found in our experiments that in the initial population trees
of shorter depth were created in larger numbers than trees of greater depth.



This led us to allow the trees to grow without any particular boundaries as
to allow a rich phenotypic variation in the population.

6 Further Refinement of the Solutions

Our two-stages fitness function does not take into account the redundancy of the
terminal nodes. It simply rewards shorter trees with higher credit. Nonetheless,
terminal nodes are usually replicated in vast numbers. Indirectly, this property
provides for further minimization because duplicated terminal nodes are pruned
away from the solution. Terminal nodes are deleted accordingly to the rules
shown in Figure 3. Similar rules derived from the problem domain are given in
[2]. Rule 1 is applied for transforming one multiplexer class into the other, aiming
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Fig. 3. Further refinement. Node equivalence and subtree equivalence

to maximize redundant nodes that can be deleted and the entire set replaced by
just one of them. Subtrees as shown in rule 2 have been observed occasionally.

7 Experiments

We have shown the solution of several circuit design problems, and we have
contrasted them against the standard multiplexer implementation [1]. A con-
siderable reduction in the number of elements was achieved. In this paper we
contrast the evolved solutions against solutions delivered by OBDD. It is wildly
known that OBDD are very sensitive to the node order, thus, circuit design
in this case is mostly reduced to the computation of the variable order that
minimizes the circuit. Our design metric is the number of nodes, therefore, we
expect to find the same number of nodes as for the optimal case of the solutions
delivered by OBDD, regardless of the variable order (when the optimal case is
known).



7.1 Problem design 1

The first boolean function we want to synthesize has 6 variables: FF = X; X5 +
X3X4 + X5X6. The OBDD of any function of this sort with n variables has
n nodes. The optimal order of the variables is 1,2,3,4,5,6,...,n. [4]. We have
found optimal solutions to functions with 4, 6, 8 and 10 variables. In Figure 4,
the ROBDD tree is depicted along with evolved solution. Both circuits have
the same number of nodes although the variable ordering is different. For the
evolved solution, variable ordering is not a defining parameter, but the correct
application of this result is that the variable ordering {3,4,6,5,1,2} is also optimal
for a ROBDD implementing F' = X; X5 + X3X4 + X5 X5.

EVOLUTIONARY
DESIGN

Fig. 4. Synthesis of problem design 1, F = X1 X5 + X3X4 + X5 X6

The genetic programming system found the optimal solution at generation
300, population size=990 individuals, probability of crossover=0.35, and prob-
ability of mutation per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus non-terminals in the
tree.

7.2 Problem design 2

The next design is the synthesis of another function with 6 variables: F' = X1 X4+
X5 X5 + X3X4. The optimal solution found by ROBDD to this problem has 14
non-terminal nodes with variable ordering 1,2, 3,4, 5, 6 (see [4] for a discussion on



the encoding of this function). In Figure 5, we show the ROBDD solution (from
[4]), and the evolved optimal solution delivered by the genetic programming
system. It is implemented with only 10 nodes. The comparison might be unfair
for someone since the evolved solution does not include the ordering restriction.
The simply point we want to make is that less specialized tools are more crafty.

ROBDD EVOLUTIONARY DESIGN

Fig. 5. Synthesis of problem design 2, FF = X1 X4 + X2 X5 + X3X5g

The genetic programming system found the optimal solution at generation
219, population size=990 individuals, probability of crossover=0.35, and prob-
ability of mutation per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus non-terminals in the
tree.

7.3 Problem design 3

The “odd parity” function is a very hard problem to solve using multiplexers
and genetic programming. In fact we have only found optimal solutions for up to
4 variables. Its hardness is hard to explain, but there does exist an ideal solution
using zor gates. Therefore, any other approach will have more elements that the
number of zor. The Boolean function of 3 variables is: F' = X3 & X2 ® X3. Using
OBDD, the solution for n variables has at most 2n — 1 non-terminal nodes. In
Figure 6 we show the OBDD solution, and the evolved optimal solution delivered
by the genetic programming system with 7 nodes that can be reduced to 5.



EVOLUTIONARY DESIGN

OBDD

Fig. 6. Synthesis of problem design 3, F = X; & X» ® X3

The genetic programming system found the optimal solution at generation
26, population size=510 individuals, probability of crossover=0.35, and proba-
bility of mutation per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus non-terminals in
the tree.

7.4 Problem design 4

The following problem is inspired in what now is known as the 11-multiplexzer
and 20-multiplezer problems. Droste [8] has shown a partially specified function
approach to these problems. We wish to verify the ability of the system for
designing Boolean functions with a “large” number of arguments and specific
topology. That is, the topology is preserved as the number of variables increases.
Boolean functions with 2% variables (where k = 1,2,...), are implemented with
exactly (2 -2%) — 1 binary muxes. For example, for k = 2, a Boolean function
of 22 = 4 variables is implemented with exactly 7 muxes when the truth table
is specified as shown in Table 1. For any %k (i.e., the number of variables), we
specify the table in a similar way. Notice that there are exactly 2 - 2* + 2 entries
in the table.

Table 2 shows the high rate of convergence of the GP system to the optimum.
We ran 100 experiments for each function (each k). The column called vars shows
the number of variables for some integer k, size refers to the optimum number
of binary muxes needed to implement the partial Boolean function, and aver
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Table 1. Problem design 4, partially specified function of 4 variables

indicates the average number of iterations needed to find the optimum. In all
cases, we found optimum size circuits in more than 90% of the iterations.

vars|size|aver

k
21 4 | 7|60
3
4

8 | 15| 200
16 | 31 | 700

Table 2. Convergence to the optimum

8 Conclusions

We have shown a genetic programming approach for the synthesis and minimiza-
tion of logic functions. We have seen shown that the delivered solutions agree
with the known optimal cases of OBDD for the optimal variable ordering, and in
some other cases the evolved solution require less number of elements. The driv-
ing forces of evolutionary computation techniques are, at least, as efficient as the
minimization rules derived from particular problem domains, such as OBDD.
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