
AN APPROACH TO MULTIOBJECTIVE
OPTIMIZATION USING GENETIC ALGORITHMS1

CARLOS A. COELLO COELLO AND ALAN D. CHRISTIANSEN2

Department of Computer Science, Tulane University, New Orleans, LA
70118, USA

ABSTRACT:
In this paper, we present a technique that uses a combination of the
genetic algorithm (GA) and the global criterion method to find the
optimum, in the min-max sense, of a multiobjective optimization
design problem with multiple constraints. The objectives may be
conflicting and noncommensurable, and the technique can deal
with minimization and maximization problems (or a mixture of
both). The optimum, in the min-max sense, gives a solution that
treats all the objectives on terms of equal importance, and presents
the advantage of being very efficient and easy to implement.
Furthermore, when the min-max approach is combined with the
weighting method, we can generate the set of Pareto
(nondominant) solutions for both convex and nonconvex
problems. Taking advantage of the floating point representation
used for the GA, we could solve design problems that involve a
mix of continuous, discrete and integer design variables. This
technique was tested with multiobjective engineering design
problems found in the literature, and our results were compared
with traditional mathematical programming techniques that use
other search strategies.

In this paper, we present a technique that uses a combination of the genetic
algorithm (GA) and the global criterion method to find the optimum, in the min-
max sense, of a multiobjective optimization design problem with multiple
constraints. The objectives may be conflicting and noncommensurable, and the
technique can deal with minimization and maximization problems (or a mixture of
both). The optimum, in the min-max sense, gives a solution that treats all the
objectives on terms of equal importance, and presents the advantage of being very
efficient and easy to implement. Furthermore, when the min-max approach is
combined with the weighting method, we can generate the set of Pareto
(nondominant) solutions for both convex and nonconvex problems. Taking
advantage of the floating point representation used for the GA, we could solve

1 This work was supported in part by EPSCoR grant: NSF/LEQSF (1992-93)-ADP-04.
2 Coello, Carlos A. & Christiansen, Alan D. “An Approach to Multiobjective Optimization Using
Genetic Algorithms” , In Dagli , C. H., Akay, M., Chen, C. L. P., Fernández, B. R., and Ghosh, J.
(editors), Intelligent Engineering Systems Through Artificial Neural Networks, Volume 5, Fuzzy
Logic and Evolutionary Programming, pp. 411-416, ASME Press, St. Louis Missouri, USA,
November, 1995.

design problems that involve a mix of continuous, discrete and integer design
variables. This technique was tested with multiobjective engineering design
problems found in the literature, and our results were compared with traditional
mathematical programming techniques that use other search strategies.

INTRODUCTION

Engineering optimization is currently a very active area of research. However, it has
been until recently that more attention has been focused on multiobjective problems,
even when it is well known that real-world applications normally have several
(possibly conflicting) objectives to be optimized at the same time. To deal with
these problems, a lot of mathematical programming techniques have been developed
(Cohon and Marks, 1975), (Hwang and Masud, 1979), (Hwang et al., 1980),
(Stadler, 1984).

On the other hand, the potential of genetic algorithms (GAs) for multiobjective
optimization was recognized since its early days (Rosenberg, 1967). Since then,
several attempts have been made to combine the objective functions in different
ways (Fonseca and Fleming, 1994) from simple weighted sum approaches (Jakob et
al., 1992) to target vector optimization (Wienke et al., 1992). Our approach is very
simple and easy to implement, and allows the generation of the Pareto set of
solutions, providing a single final optimum solution in the min-max sense.

STATEMENT OF THE PROBLEM

The multiobjective optimization problem can be defined as follows:

Find the vector []x x x xn

T* * * *, , ,= 1 2
� which will satisfy the m inequality constraints:

g xi () ≥ 0 i = 1,2, , m� (1)

the p equality constraints

h xi () = 0 i =1,2, , p� (2)

and optimize the vector function

[]f x f x f x f xk

T
() (), (), , ()= 1 2

� (3)

where []x x x xn

T= 1 2, , ,� is the vector of decision variables. In other words, we

wish to determine from among the set of all numbers which satisfy equations (1)
and (2), the particular set x x xk1 2

* * *, , ,� which yields the optimum values of all the

objective functions.

OUR APPROACH

In our implementation, we used the equation

L x w
f x f

f f
p i

p i i

i i

p

i

k
p

()
()

/

=
−
−











=

∑
0

0
1

1

 max

(4)

to generate the set of non-dominated solutions, with different weights (wi) for the
given objectives, and p=1. In this equation, fi max is the worst possible value for
criterion i; f xi () is the result of implementing decision x with respect to the ith
criterion and fi

0 is the ideal solution for objective i. Additionally, we compute the
min-max optimum considering equal weights for all the objectives. It should be
mentioned that even though is necessary that the user provides the different weight
combinations that he wants to try, it is not necessary to perform any sort of scaling
of the fitness function since we are measuring relative deviations from the ideal
vector, and the noncommesurable nature of the objectives is not relevant for our
technique. Our system allows the automatic encoding and decoding of design
variables, and the use of a mix of continuous, discrete and integer variables. The
operation of our system can be described as follows:

1. The user should provide the objective functions and equality and inequality
constraints imposed by the problem.
2. Different sets of weights should be input to the system such that their
respective sum is always one.
3. The design variables should be defined, together with their desired precision,
type and range. If the variables are discrete, then the set of possible values
should be provided. If they are continuous, then the precision required will be
requested.
4. The system will automatically encode the design variables, choosing the
most appropriate representation scheme for the GA. It will normally use
floating point representation for continuous variables and binary for integer and
discrete variables.
5. The user may modify the preset parameters of the GA (population size=400,
tournament selection, two-point crossover, max. number of generations=50).
6. Generate n processes, each corresponding to a different objective function.
7. Generate m processes, each corresponding to a different weight combination
provided by the user. Since there is no relationship between any of these
processes, we may generate the Pareto set by running separate processes with
different weight combinations at the same time. Within each process, we run
the GA 81 times (we loop the crossover and mutation rates from 0.1 to 0.9 in a
nested manner). The final result will be the best of all these runs. The fitness
function consisted of the maximum relative deviation between the given
solution and the ideal vector.
8. Output the Pareto set of solutions.
9. Output the optimum solution in the min-max sense.

It should be noticed that we focused this work on the generation of the Pareto-
optimal set of solutions assuming that the set of weights is given. However, it is
possible to generate such weight combinations using the GA itself (Hajela and Lin,
1992). This is, nevertheless, an additional problem that has to take into account
other considerations (i.e., the designer can impose additional constraints based on
his/her own experience, and we have to decide how many weight combinations will
be used), and that will not be addressed in this work.

EXAMPLES

Our first example is the design of an I-beam. The details of this example can be
found in (Osyczka, 1985). This problem has two (conflicting) objective functions:
minimize the cross section of the beam while minimizing its deflection, and four
design variables. We generated the four Pareto-optimal solutions presented by
Hajela and Lin (1992), and we included the ideal solution vector and the optimum
value in the min-max sense. To evaluate our results, we used the maximum
deviation from the optimum, which is defined by

L f w
f f x

p i
i i

ii

n

()
()

=
−

=
∑

0

1 ρ
(5)

where n is the number of objective functions, and ρ i if= 0 , or f xi () , depending on

which gives the maximum value for L fp () . Our results are shown on Table 1. As

you can see, our approach gives slightly better results than the Branch-and-Bound
algorithm used by Hajela and Lin (1992). The optimum solution in the min-max
sense is obtained when w w1 2 0 5= = . , and it turns out to be slightly better using our
approach. Notice that in this problem, all design variables were considered
continuous.

Our second example is the design of a machine tool spindle taken from Schenauer
et al. (1990). This problem has two conflicting objective functions (minimize the
volume of the spindle while minimizing its static displacement) and four design
variables that define the geometry of the spindle. Unfortunately, we could not find
enough results in the literature to compare with our approach for this problem.
Nevertheless, we compared two different weight combinations with the results
produced by CAMOS (Schenauer et al., 1990). It should be pointed out that
CAMOS generates solutions that sometimes violate one of the constraints imposed
in this problem, whereas our approach generates only completely valid solutions. As
it can be seen from the results, even in the presence of such constraint violation, our
technique produced a better solution in one of the two cases of comparison. The
remaining results were generated only by our approach, and include the ideal
solution vector, and a subset of the Pareto-optimal set of solutions. Notice that two
of the decision variables are discrete.

TABLE 1: PARETO-OPTIMAL AND OPTIMUM SOLUTIONS FOR THE I-BEAM OF THE FIRST EXAMPLE
Method w1 w2 f1 f2 x1 x2 x3 x4 Lp(f)
Hajela 1 0 127.443 0.005934 61.78 40.81 0.9 0.9 0.03
GA 1 0 127.413 0.061616 60.3822 41.4937 0.9 0.9 0.0
Hajela 0 1 850.000 0.005903 80.00 50.00 5.0 5.0 0.0
GA 0 1 850.000 0.005903 80.00 50.00 5.0 5.0 0.0
Hajela 0.45 0.55 307.53 0.0127 79.99 49.99 0.9 2.39 1.269441
GA 0.45 0.55 333.0058 0.011658 80.00 50.00 0.9 2.6579 1.262331
Hajela 0.55 0.45 276.55 0.0143 80.00 50.00 0.9 2.083 1.283902
GA 0.55 0.45 281.3624 0.014051 80.00 50.00 0.9 2.132 1.285694
Hajela 0.65 0.35 247.88 0.0163 79.99 50.00 0.9 1.791 1.231026
GA 0.65 0.35 237.4179 0.017119 80.00 50.00 0.9 1.6845 1.226213
Hajela 0.80 0.20 206.14 0.0205 80.00 39.79 0.9 1.725 0.988876
GA 0.80 0.20 177.1722 0.024727 80.00 50.00 0.9 1.071 0.950208
Hajela 0.50 0.50 291.43 0.01351 79.99 49.99 0.9 2.235 1.28798
GA 0.50 0.50 305.9026 0.012794 80.00 50.00 0.9 2.3819 1.284127

CONCLUSIONS AND FUTURE WORK

Our results show that our system provides good solutions when compared to other
weigthed min-max approaches. Besides the two engineering problems indicated in
this paper, we have tested it with other more complicated optimization problems,
such as the counterweight balancing of a robot arm, and the design of plane and
space trusses. This approach is very simple and easy to implement, and it avoids the
need for scaling the fitness function. Furthermore, it is very efficient and it can
generate both the Pareto set of solutions and a single final optimum solution in the
min-max sense. We have seen how our implementation can handle a mixture of
integer, continuous and discrete design variables, and how it is able to deal with
maximization and minimization problems or any mixture of them. We also provided
with a way of measuring the quality of a certain solution to a multiobjective
optimization problem when using the weighted min-max method. Genetic search
has proven to be very efficient and reliable even in the presence of complex
constraints and objectives. A lot of work remains to be done in terms of expanding
our system and improving the user interface. More GA-based techniques and
mathematical programming techniques will be incorporated in the near future.
Finally, we are also interested on experimenting with different genetic operators and
selection strategies that have been previously used by the scientific community
interested on multiobjective optimization using GAs.

TABLE 2: PARETO-OPTIMAL AND OPTIMUM SOLUTIONS FOR
THE MACHINE TOOL SPINDLE OF THE SECOND EXAMPLE

Method w1 w2 f1 f2 x1 x2 x3 x4 Lp(f)
Schenauer 0.30 0.70 694101.0 0.0230779 66.454 183.365 95.00 85.00 0.411114
GA 0.30 0.70 682106.223 0.0215272 71.649 187.826 95.00 90.00 0.338192
Schenauer 0.70 0.30 531059.8 0.0301825 63.894 183.286 85.00 80.00 0.328228
GA 0.70 0.30 536509.715 0.030518 63.999 187.826 85.00 80.00 0.342329
GA 1 0 474658.099 0.0371834 59.999 187.813 80.00 75.00 0.0
GA 0 1 1645985.12 0.0166127 25.00 190.466 95.00 90.00 0.0
GA 0.50 0.50 671530.495 0.0216886 71.999 187.826 95.00 90.00 0.360155
GA 0.20 0.80 862859.245 0.0194481 65.378 187.826 95.00 90.00 0.300111
GA 0.80 0.20 474767.012 0.0371792 59.995 187.818 80.00 75.00 0.247783

REFERENCES

Cohon, J. L., and Marks, D. C. (1975). A review and evaluation of multiobjective programming
techniques. Water Resources Research, 11(2), Apr, 208-220.

Fonseca, C. M., and Fleming, P. J. (1994). An overview of evolutionary algorithms in
multiobjective optimization. Technical report, Department of Automatic Control and Systems
Engineering, University of Sheff ield, Sheff ield, U.K.

Hajela, P., and Lin, C. Y. (1992). Genetic search strategies in multi criterion optimal design.
Structural Optimization, 4, 99-107.

Hwang, C. L., and Masud, S. M. (1979). Multiple objective decision-making methods and
applications. In Lecture Notes in Economics and Mathematical Systems, volume 164, Springer-
Verlag, New York.

Hwang, C. L. Paidy, S. R., and Yoon, K. (1980). Mathematical programming with multiple
objectives: a tutorial. Computing and Operational Research, 7, 5-31.

Jakob, W., Gorges-Schleuter, M., and Blume, C. (1992). Application of genetic algorithms to task
planning and learning. In R. Männer and B. Manderick, editors, Parallel Problem Solving from
Nature, 2nd Workshop, Proceedings, Lecture Notes in Computer Science, North-Holland
Publishing Company, Amsterdam, 291-300.

Osyczka, A. (1985). Multi criteria optimization for engineering design. In John S. Gero, editor,
Design Optimization, Academic Press, 193-227.

Rosenberg, R. S. (1967). Simulation of genetic populations with biochemical properties. PhD
Thesis, University of Michigan, Ann Harbor, Michigan.

Schenauer, H. A., Osyczka, A., and Schäfer. (1990). Interactive multi criteria optimization in design
process. In H. Schenauer, J. Koski, and A. Osyczka, editors, Multicriteria Design Optimization.
Procedures and Applications, chapter 3, Springer-Verlag, Berlin, 71-114.

Stadler, W. (1984). A survey of multi criteria optimization or the vector maximum problem, part I :
1776-1960. Journal of Optimization Theory and Applications, 29(1), Sep, 1-52.

Wienke, P. B., Lucasius, C. and Kateman, G. (1992). Multi criteria target optimization of analytical
procedures using a genetic algorithm. Analytical Chimica Acta, 265(2), 211-225.

