
Constraint-handling through a multiobjective

optimization technique

Carlos A. Coello Coello

�

Laboratorio Nacional de Inform�atica Avanzada

R�ebsamen 80, A.P. 696

Xalapa, Veracruz, M�exico 91090

e-mail: ccoello@xalapa.lania.mx

Phone: +52 (28) 18-13-02

Fax: +52 (28) 18-15-08

July 28, 1999

Abstract

This paper presents an alternative approach to handle constraints us-

ing a population-based multiobjective optimization technique. The pro-

posed approach is used to solve several engineering optimization problems,

and the results produced are compared with those obtained using other

(GA-based and mathematical programming) techniques.

1 INTRODUCTION

Despite the well-documented success of genetic algorithms (GAs) in a wide range

of applications, their use in constrained optimization problems still raises several

issues to which a considerable amount of research has been devoted in the last

few years. From these, the key issue is how to incorporate constraints of any sort

(linear, non-linear, equality or inequality) into the �tness function as to guide the

search properly. For several years, practitioners have used penalty functions to

incorporate (mainly inequality) constraints into the �tness function, and there

have been a lot of successful applications of this approach in all engineering

�elds. However, penalty functions have some well-known limitations [12], from

which the most signi�cant is the di�culty to de�ne good penalty factors, which

are normally generated by trial and error, although their value may severely

�
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Figure 1: Graphical representation of the approach introduced in this paper.

a�ect the results produced by the GA [12]. In this paper, a new constraint-

handling approach is proposed that does not require the use of a penalty function

to handle equality and inequality constraints. This technique is based on a

multiobjective optimization approach, and is very suitable for parallelization.

The remainder of this paper is organized as follows: �rst, the proposed approach

will be introduced, then 3 engineering optimization problems will be presented,

and solved using it. After that, the results produced by other (GA-based and

mathematical programming) techniques will be compared with those obtained

with the proposed method, and �nally there will be some discussion of the

results obtained and the expected paths of future research.

2 USE OFMULTIOBJECTIVE OPTIMIZATION

TECHNIQUES

The main idea of this approach is to rede�ne the single-objective optimization

of f as a multiobjective optimization problem in which we will have m + 1

objectives, where m is the number of constraints. Then, we can apply any

multiobjective optimization technique [4] to the new vector �v = (f; f

1

; : : : ; f

m

),

where f

1

; : : : ; f

m

are the original constraints of the problem. An ideal solution

X would thus have f

i

(X)=0 for 1 � i � m and f(X) � f(Y) for all feasible Y

(assuming minimization).

3 DESCRIPTION OF THE NEWAPPROACH

The main idea behind the approach proposed in this paper is to use a population-

based multiobjective optimization technique such as VEGA [13] to handle each
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of the constraints as an objective in the way indicated before. The technique

may be better illustrated by Figure 1. At each generation, the population is

split into m+1 sub-populations, wherem refers to the number of constraints of

the problem. Although the size of each sub-population may be variable, for the

sake of simplicity, it was decided to allocate the same size to each of them in

the experiments reported in this paper. Using the proposed scheme, a fraction

of the population will be selected using the (unconstrained) objective function

as its �tness; another fraction will use the �rst constraint as its �tness and so

on. For the sub-population guided by the objective function, the evaluation of

such objective function for a given vector X (decoded from the chromosome) is

used directly as the �tness function (multiplied by (-1) if it is a minimization

problem), with no penalties of any sort. For all the other sub-populations, the

algorithm used was the following (we assume that every constraint g(X) � 0 is

considered satis�ed):

if g

j

(X) < 0:0 then �tness = g

j

(X)

else if v 6= 0 then �tness = �v

else �tness = f

where g

j

(X) refers to the constraint corresponding to sub-population j+1 (this

is assuming that the �rst sub-population is assigned to the objective function

f), and v refers to the number of constraints that are violated (� m). Crossover

and mutation are applied as usual to the entire population, allowing the mixing

of all the sub-populations as in the original proposal of VEGA [13]. There are

a few interesting things that can be observed from this procedure. First, each

sub-population associated with a constraint will try to reduce the amount in

which that constraint is violated. If the solution evaluated does not violate the

constraint corresponding to that sub-population, but it is infeasible, then the

sub-population will try to minimize the total number of violations, joining then

the other sub-populations in the e�ort of driving the GA to the feasible region.

This aims at combining the distance from feasibility with information about the

number of violated constraints, which is the same heuristic normally used with

penalty functions. However, traditionally it is necessary to de�ne in advance

either an static penalty value or a dynamic penalty function that estimates

this distance from feasibility, whereas in the current approach such distance is

estimated automatically by the above algorithm using the constraint violation

information derived from the GA run. Finally, if the solution encoded is fea-

sible, then this individual will be `merged' with the �rst sub-population, since

it will be evaluated with the same �tness function (i.e., the objective function).

It is important to clarify that the current approach does not use dominance to

impose an order on the constraints based on their violation (like in the case

of COMOGA [14]) which is a more expensive process (in terms of CPU time)

that also requires additional parameters. In fact, the current approach does

not rank individuals, but it uses instead di�erent �tness functions for each of

the sub-population allocated (whose number depends on the number of con-
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straints) depending on the feasibility of the individuals contained within each of

them. This is easier to implement, does not require special operators to preserve

feasiblity (like in the case of Parmee and Purchase's approach [11]), makes un-

necessary the use of a sharing function to preserve diversity (like with traditional

multiobjective optimization techniques), and does not require extra parameters

to control the mixture of feasible and infeasible individuals (like in the case of

COMOGA [14]). It is interesting to notice that the use of the unconstrained

objective function in one of the sub-populations may assign good �tness values

to infeasible individuals. However, because the number of constraints will nor-

mally be greater than one, the other sub-populations will drive the GA to the

feasible region. In fact, the sub-population evaluated with the objective function

will be useful to keep diversity in the population, making then unnecessary the

use of sharing techniques. The behavior expected under this scheme is to have

few feasible individuals at the beginning, and then gradually produce solutions

that may be feasible with respect to some constraints but not with respect to

others. Over time, the building blocks of these sub-populations will combine

to produce individuals that are feasible, but not necessarily optimum. At that

point the direct use of the objective function will help the GA to approach the

optimum, but since some infeasible solutions will still be present in the popula-

tion, those individuals will be responsible to keep the diversity required to avoid

stagnation. Although VEGA is known to have di�culties in multiobjective op-

timization problems due to the fact that it tries to �nd individuals that excel

only in one dimension regardless of the others (the so-called \middling" problem

[13]), that drawback turns out to be an advantage in this context, because what

we want to �nd are precisely solutions that are completely feasible, instead of

good compromises that may not satisfy one of the constraints.

4 EXAMPLES

Two examples taken from the optimization literature will be used to show the

way in which the proposed approach works. Notice that the ranges shown for

the design variables are the same reported in the original references from where

these problems were obtained.

4.1 Example 1 : Himmelblau's Nonlinear Optimization

Problem

This problem was originally proposed by Himmelblau [8], and it was chosen

to try the new approach because it has been used before as a benchmark for

GA-based techniques that use penalties. In this problem, there are 5 design

variables (x

1

; x

2

; x

3

; x

4

; x

5

), 6 nonlinear inequality constraints and 10 boundary

conditions. The problem can be stated as follows:

Minimize f(X) = 5:3578547x

2

3

+
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+0:8356891x

1

x

5

+ 37:293239x

1

� 40792:141 (1)

Subject to:

g

1

(X) = 85:334407+ 0:0056858x

2

x

5

+

+0:00026x

1

x

4

� 0:0022053x

3

x

5

(2)

g

2

(X) = 80:51249+ 0:0071317x

2

x

5

+

+0:0029955x

1

x

2

+ 0:0021813x

2

3

(3)

g

3

(X) = 9:300961+ 0:0047026x

3

x

5

+

+0:0012547x

1

x

3

+ 0:0019085x

3

x

4

(4)

0 � g

1

(X) � 92 (5)

90 � g

2

(X) � 110 (6)

20 � g

3

(X) � 25 (7)

78 � x

1

� 102 (8)

33 � x

2

� 45 (9)

27 � x

3

� 45 (10)

27 � x

4

� 45 (11)

27 � x

5

� 45 (12)

4.2 Example 2 : Design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Figure 2 [1]. The problem is to �nd

the cross-sectional area of each member of this truss, such that we minimize its

weight, subject to stress and displacement constraints. The weight of the truss

is given by:

f(x) =

10

X

j=1

�A

j

L

j

(13)

where x is the candidate solution, A

j

is the cross-sectional area of the jth

member, L

j

is the length of the jth member, and � is the weight density of

the material. The assumed data are: modulus of elasticity, E = 1:0 � 10

4

ksi 68965.5 MPa), � = 0:10 lb/in

3

(2768.096 kg/m

3

), and a load of 100 kips

(45351.47 Kg) in the negative y-direction is applied at nodes 2 and 4. The

maximum allowable stress of each member is called �

a

, and it is assumed to

be �25 ksi (172.41 MPa). The maximum allowable displacement of each node

(horizontal and vertical) is represented by u

a

, and is assumed to be 2 inches
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Figure 2: 10-bar plane truss used for the third example

(5.08 cm). There are 10 stress constraints, and 12 displacement constraints (we

can really assume only 8 displacement constraints because there are two nodes

with zero displacement, but they will nevertheless be considered as additional

constraints by the new approach). The cross-section of each element can be

di�erent, thus the problem has 10 design variables.

5 COMPARISON OF RESULTS

In the experiments reported in this paper, a GA with �xed-point representation

[3] was used, together with two-point crossover, binary tournament selection

and non-uniform mutation [10]. In all cases, the GA was run 81 times, varying

the mutation rate from 0.1 to 0.9 in increments of 0.1 (mutation rates were

considered with respect to the whole string, and not on a bit-per-bit basis).

The results reported correspond to the best solution found in these 81 runs. For

further details of the experimental setup the interested reader may consult [2].

5.1 EXAMPLE 1

This problem was originally proposed by Himmelblau [8] and solved using the

Generalized Reduced Gradient method (GRG). Gen and Cheng [5] solved this

problem using a genetic algorithm based on both local and global reference. The

result shown in Table 1 is the best of the two reported by Gen and Cheng [5].

Homaifar, Qi, and Lai [9] solved this problem using a genetic algorithm with

a population size of 400, and their results were the best previously reported

in the literature for this problem (see Table 1). The solution shown for the

technique proposed here is the best produced after 81 runs in which the crossover

and mutation rates were iterated from 0:1 to 0:9 in a nested loop, and the
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Design Best solution found

Variables This paper Gen Homaifar GRG

x

1

78.5958 81.4900 78.0000 78.6200

x

2

33.0100 34.0900 33.0000 33.4400

x

3

27.6460 31.2400 29.9950 31.0700

x

4

45.0000 42.2000 45.0000 44.1800

x

5

45.0000 34.3700 36.7760 35.2200

g

1

(X) 91.956402 90.522543 90.714681 90.520761

g

2

(X) 100.545111 99.318806 98.840511 98.892933

g

3

(X) 20.251919 20.060410 19.999935 20.131578

f(X) �30810:359 �30183:576 �30665:609 �30373:949

Table 1: Comparison of results for the �rst example (Himmelblau's function).

following ranges were used for the design variables: 78:0000 � x

1

� 102:0000,

33:0000 � x

2

� 45:0000, 27:0000 � x

3

� 45:0000, 27:0000 � x

4

� 45:0000, and

27:0000 � x

5

� 45:0000. The values for all the variables were considered with

a 4-decimal precision. The total population size used was 160 (40 individuals

for each of the 4 sub-populations) and the maximum number of generations was

100.

5.2 Example 2

This problem was used by Belegundu [1] to evaluate the following numerical op-

timization techniques: Feasible directions (CONMIN and OPTDYN), Pshenich-

ny's Recursive Quadratic Programming (LINRM), Gradient Projection (GRP-

UI), Exterior Penalty Function (SUMT), Multiplier Methods (M-3, M-4 and

M-5). The results reported by Belegundu [1] are compared to the current ap-

proach in Tables 2 and 3 (all the solutions presented are feasible). To solve this

problem, it was necessary to add a module responsible for the analysis of the

plane truss. This module uses the matrix factorization method included in Gere

and Weaver [6] together with the sti�ness method [6] to analyze the structure,

and returns the values of the stress and displacement constraints, as well as the

total weight of the structure. The solution shown for the technique proposed

here is the best produced after 81 runs in which the crossover and mutation rates

were iterated from 0:1 to 0:9 in a nested loop, and the range 0:1 � x � 299:00

was used for the 10 design variables. The values for all the variables were con-

sidered with a 2-decimal precision. The total population size used was 230 (10

individuals for each of the 23 sub-populations) and the maximum number of

generations was 100.
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Design Best solution found

Variables This paper CONMIN OPTDYN LINRM

x

1

30.00 25.28 25.77 21.57

x

2

0.10 1.90 0.10 10.98

x

3

22.40 24.87 25.11 22.08

x

4

16.19 15.83 19.39 14.95

x

5

0.10 0.10 0.10 0.10

x

6

0.57 1.75 0.10 10.98

x

7

7.74 16.76 15.36 18.91

x

8

22.15 19.73 20.32 18.42

x

9

20.80 20.98 20.74 18.40

x

10

0.10 2.51 1.14 13.51

f(X) 5082:76 5563:32 5471:48 6428:89

Table 2: Comparison of results for the second example (10-bar plane truss).

Part I.

Design Best solution found

Variables GRP-UI SUMT M-3 M-4 M-5

x

1

24.78 30.69 25.84 31.62 25.84

x

2

4.17 2.37 3.07 11.81 2.88

x

3

24.79 31.62 26.42 31.62 26.45

x

4

14.45 11.66 12.77 17.50 12.75

x

5

0.10 0.10 0.10 31.62 0.10

x

6

4.17 3.71 3.44 10.25 3.77

x

7

17.46 21.71 19.34 31.62 19.38

x

8

19.26 20.90 19.17 31.62 19.18

x

9

19.27 13.97 18.76 31.62 18.77

x

10

5.26 3.26 4.42 31.62 4.38

f(X) 5727:05 5932:21 5719:19 11279:22 5726:08

Table 3: Comparison of results for the second example (10-bar plane truss).

Part II.
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6 DISCUSSION

In the examples presented before, the new approach found better solutions

than those previously reported in the literature by using relatively small sub-

population sizes. However, the selection of an appropriate sub-population size

(assuming that they are all the same) remains an issue as when using a GA with

a single population. Determining the maximum number of generations presents

a similar problem, although in this case it is possible to monitor the population

so that the GA is stopped when there is not enough diversity anymore. The

problems selected to illustrate the technique had di�erent kinds of constraints

so that the new algorithm could be tested under di�erent conditions. Example

1 for instance, is an engineering design problem, with their constraints given in

algebraic form. Example 2 is a numerical optimization problem that has been

used several times before to test constraint handling approaches. Finally, exam-

ple 3 does not have its constraints de�ned in algebraic form either, since they

are derived from the module that performs the analysis of the structure. The

main drawback of the new technique may be the number of sub-populations

that may be needed in larger problems, since they will increase linearly with

the number of constraints. However, it is possible to deal with that problem in

two di�erent ways: �rst, some constraints could be tied; that means that two

or more constraints could be assigned to the same sub-population. That would

signi�cantly reduce the number of sub-populations in highly constrained prob-

lems. Second, we could parallelize the approach, in which case a high number

of sub-populations will not be a serious drawback, since they could be pro-

cessed concurrently. The current algorithm would however need modi�cations

as to decide the sort of interactions between a master process (responsible for

actually optimizing the whole problem) and the slave sub-processes (all the sub-

populations responsible for the constraints of the problem). That is in fact the

area of research currently being pursued by the author.

7 CONCLUSIONS AND FUTURE WORK

This paper has introduced a GA-based approach that uses a multiobjective op-

timization technique to handle constraints, instead of using the more traditional

penalty approach. The new approach worked well in several test problems that

had been previously solved using GA-based and mathematical programming

techniques, producing in all cases results better than those previously reported

in the literature. The technique was able to achieve such good results with rela-

tively small sub-populations, and without the need to use any extra parameters

for the GA, although the issue of selecting the most appropriate sub-population

size as well as the maximum number of generations remains open as in the case

of the simple GA [7]. The �rst extension of this work is to develop a parallel

implementation of the algorithm, so that instead of using a single population
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and split it according to the number of constraints, several (fairly small) sub-

populations are generated, each being responsible for a single constraint or set

of constraints. Some interesting issues that a parallel version of this algorithm

arise are for example the migration policies required to exchange information,

the consequences of restricting crossover, the e�ect of the topology used by the

parallel architecture on the overall performance of the GA, the signi�cance of

the evolution of the small sub-populations responsible for the constraints con-

currently with the evolution of a main population containing a mixed of feasible

and infeasible solutions.
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