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Abstract. The problem of finding more than one optimum of a fitness
function has been addressed in evolutionary computation using a wide
variety of algorithms, including particle swarm optimization (PSO). Sev-
eral variants of the PSO algorithm have been developed to deal with this
sort of problem with different degrees of success, but a common drawback
of such approaches is that they normally add new parameters that need
to be properly tuned, and whose values usually rely on previous knowl-
edge of the fitness function being analyzed. In this paper, we present a
PSO algorithm based on electrostatic interaction, which does not need
any additional parameters besides those of the original PSO. We show
that our proposed approach is able to converge to all the optima of
several test functions commonly adopted in the specialized literature,
consuming less evaluations of the fitness function than other previously
reported PSO methods.


1 Introduction


There exist certain applications in which the objective function to be optimized
has more than one optimum. Such problems are called multimodal and may have
several local optima and only one global optimum that we want to find, or may
have several optima, all of which we aim to locate. This latter problem is proba-
bly the most challenging for traditional mathematical programming techniques,
which normally are unable to work properly in such problems. When using meta-
heuristics, multimodal functions are also challenging, because stochastic noise
tends to make population-based metaheuristics (e.g., genetic algorithms) to con-
verge to a single solution if run for a sufficiently large number of generations [1].
The currently available metaheuristics designed to deal with multimodal prob-
lems, normally require several additional parameters that must be set by the
user. More recently, some authors have proposed adaptive procedures for setting


⋆ The second author is also affiliated to the UMI-LAFMIA 3175 CNRS.







up the parameters of some metaheuristics designed for multimodal optimization.
However, these adaptive procedures also tend to require additional parameters,
and normally do not perform better than other (less elaborate) available meth-
ods.


In this paper, we present a method for locating more that one optimum of a
fitness function in a given search region. The proposed method does not introduce
new parameters into our baseline metaheuristic (particle swarm optimization)
other than those originally required by such technique. The method is based on
the electrostatic interaction between charged point particles. In our model, we
consider the fitness value of a particle to be its charge and then, we compute the
magnitude of the force that appears between two charged particles (considering
that both have a positive charge). For updating a particle, the particle with the
maximum force value in the swarm, replaces the particle with the best global
fitness value recorded so far; that is, the particle will follow the particle with
which has the maximum electrostatic attraction.


The remainder of the paper is organized as follows. Section 2 reviews some
basic notions of the PSO algorithm. In Section 3, we describe some of the avail-
able methods for finding more than one optimum using PSO. Section 4 presents
our proposed method based on electrostatic interaction. Section 5 shows the test
functions used, the parameters setup for the experiments and the results ob-
tained. Finally, in Section 6, we provide our conclusions and some possible paths
for future work.


2 Particle Swarm Optimization


The PSO algorithm was originally proposed by Kennedy and Eberhart in the
mid-1990s [2] and has been successfully applied to a wide variety of problems.
Originally, it was only used for dealing with unimodal problems, but more re-
cently was extended to solve both multimodal and multiobjective optimization
problems [3]. One of the reasons for the success of the PSO algorithm is its
simplicity and its ease of use. It starts with a population of particles randomly
positioned in the search space (such population is called swarm). Each particle
has a position, a velocity and a fitness function value (evaluated at its current
position). The best position obtained by each particle so far (i.e., the position
corresponding to the best fitness value obtained so far for that particle), is also
stored. At each iteration, the position and velocity of a particle are updated
following two simple rules shown in equations (1) and (2).


vt+1 = vt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt) (1)


xt+1 = xt + vt+1 (2)


where R1 and R2 are randomly generated numbers in the range [0, 1] using a
uniform distribution, C1 and C2 are the “learning” constants, p is the position
where the particle reached its best fitness value through the iterations, g is the







position with the best fitness value of all p positions in the swarm, xt and vt are
the position and velocity of the particle at iteration t, respectively.


A number of modifications have been proposed to improve the convergence
of the PSO algorithm. The most commonly used are the modifications to the
velocity update equation (1) proposed by Clerc [4] (called the Constriction Factor
model), and by Shi [5] (called the Inertia Weight model). Under the Constriction
Factor model, the velocity is updated using equation (3).


vt+1 = χ [vt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt)] (3)


with


χ =
2κ


|2 − φ −
√


φ2 − 4φ|
(4)


where φ = C1 + C2, φ > 4, and κ is an arbitrary value in the range (0, 1].
Analogously, the Inertia Weight model uses equation (5) for updating the veloc-
ity.


vt+1 = ωvt + R1 · C1 · (g − xt) + R2 · C2 · (p − xt) (5)


where ω is an arbitrary value. In contrast with the Constriction factor model,
in this case the value of ω does not depend on the value of C1 nor C2. The
modification of the update equation is complemented confining the particles to
the search space using a Xmax and a Xmin values for each coordinate. It is
also common to limit the velocity of the particles using a value Vmax for each
coordinate, usually Vmax = Xmax. The Constriction Factor and Inertia Weight
model are the two PSO variants most commonly adopted in the literature.


3 Finding more than One Optimum


Like any other metaheuristic, the PSO algorithm requires certain modifications
in order to make it capable of dealing with multimodal problems. In this sec-
tion, we will review the most relevant previous work in that direction that has
appeared in the specialized literature.


Some of the existing proposals borrow ideas from the genetic algorithms
literature, such as the species-based PSO introduced by Li [6], and later modified
by Iwamatsu [7, 8]. This method is a PSO adaptation of the Species Conserving
Genetic Algorithm (SCGA), originally proposed by Jiang-Ping Li [9]. It requires
the setup of a parameter value called “radius” in order to determine when a
particle belongs or not to a certain species. The proper choice of this value is
essential for obtaining good results and, in most cases, the optimal value for this
parameter depends on the objective function being optimized.







The use of niching (which has been a popular diversity maintenance mech-
anism in the genetic algorithms literature [10–12]) has also been proposed for
PSO. Brits et al. [13] proposed a niching PSO algorithm in which the radius of
a niche is computed using the mean of the distance among the particles in a
sub-swarm. This approach requires the initialization of several parameters. To
create a sub-swarm, the variance of the fitness of a particle through the iterations
of the algorithm must be measured. To compute the variance, the fitness of the
particles is observed during e iterations, and if such fitness variation is less than
a δ threshold, a sub-swarm is created. The approach also requires a user-defined
threshold µ for preventing the collision of two sub-swarms.


To avoid setting multiple parameters, an adaptive method was introduced
by Bird et al. [14]. In this case, the radius is also computed as the mean of
the distances among the particles of a swarm, but they use a graph that stores
the information of the particles that are at a distance which is smaller than the
radius. If two particles are close (according to the computed radius) for a number
e of iterations, then a sub-swarm is formed. In this case, there is also a limit m
of particles that are allowed per sub-swarm.


Passaro and Sarita [15] present a follow-up of one of Kennedy’s papers [16]
and use clustering to divide the main swarm into sub-swarms. In order to avoid
setting up the number k of clusters, they adopt the x-means algorithm from
Pelleg et al. [17] and choose an optimal value for k. A maximum and minimum
value for k must be set because the x-means algorithm computes a statistical
value for each k in a given range in order to determine the optimum value.


An attempt to develop a PSO method capable of locating more that one op-
timum, and which does not require any additional parameters was presented by
Li [18]. The basis of this work is the proposal of Peram et al. [19] in which a new
component is added to the equation for updating the velocity. This component
consists of the difference between the position xt of the particle at iteration t
and a computed position pn for each particle. Each coordinate of the pn vector
is computed separately, and might result in unstable convergence. Li proposed
that, instead of computing each coordinate separately at the position pn, they
are selected from the p vectors of the particles in the swarm. Such selection
is based on the computation of the ratio of the difference between the fitness
value of two particles being compared and their distance. Thus, the pn position
for a particle i is the p vector of the particle j that maximizes the computed
ratio. Also, the pn position, replaces the g position in the update equation of
the velocity rather than being added in an additional component. With these
modifications, the method performs better, but still shows unstable convergence
in some cases.


As we have shown in this section, there are several PSO methods that have
been designed to find more than one optimum. Their nature is also varied, but
one important problem that is common in almost all of them is that they require
additional parameters that have an impact on performance, and whose definition
is normally not trivial. In the next section, we describe a PSO method that does
not need any additional parameters, besides those of the original PSO algorithm.







As we will see later on, the proposed method is also able to find better results
than those reported by other PSO methods previously proposed for multimodal
optimization.


4 The Electrostatic Interaction Method


As indicated in the previous section, one possible method for finding more than
one optimum of a function consists of the selection of a particle’s g position from
the p positions of the other particles in the swarm. In the case of the FER-PSO
of Li [18], the selection method consists of computing and maximizing a ratio
for all the particles in the swarm with respect to the particle being updated.


In our proposed method, we follow a similar approach. When the velocity of
a particle is being updated, we select the particle’s g position by computing and
maximizing a value for each particle in the swarm. However, in this case, we take
inspiration on electrostatics: according to Coulomb’s law, the force between two
charged particles can be computed using equation (6).


F =
1


4πε0


Q1Q2


R2
(6)


where F is the force between the two particles, Q1 and Q2 are the charges
of the particles, ε0 is the electric constant (vacuum permitivity), and R is the
distance between the two particles. For our proposed method we compute a
“force” Fij between a particle being updated i and the rest of the particles
in the swarm by replacing the charge Q of a particle by the best fitness value
recorded by the particle f(p) so far. Also, we replace the constant 1/(4πε0) with
a scaling constant α computed in the same way as in [18]. Thus, to compute the
Fij between two particles i and j, we use equation (7).


Fij = α
f(pi)f(pj)


||pi − pj ||2
(7)


In order to prevent numerical errors, if the distance between the particles i
and j is zero, the Fij value is not computed and the particle j is not considered for
selection. The best position recorded for the particle j with the maximum value of
Fij is used to replace the best position of the particle with the current best global
fitness (i.e., the g position). The equations for updating the velocity and position
of a particle remain unchanged. For each particle i in a swarm, the values of Fij


are computed for the rest of the swarm, that is, this operation has a complexity
O(N2) for each generation, with N being the number of particles in the swarm.
In this work, we use a different PSO algorithm that does not modify the update
equations like in the Constriction Factor or the Inertia Weight models. Instead,
the maximum value of the velocity is decreased in a nonlinear way. For iteration
t, the value of the maximum velocity Vmax is computed according to equation
(8).







Vmax = |Xmax − Xmin| · ω
t (8)


with ω an arbitrary number in the range (0, 1). The outline of the selection
method for the g position is presented in Algorithm 1. In Algorithm 2 we show
the procedure to compute the velocity of the particles, and in Algorithm 3, we
outline our proposed PSO algorithm for finding more than one optimum: the
Electrostatic Particle Swarm Optimization (EPSO).


Algorithm 1: computeIndexMaximum(index) Algorithm for selecting the
position pn with the maximum electrostatic force F for a particle


input : Index of a particle
output: Index j of the recorded position p with the maximum value of F for


the particle at the input index
indexMaximum = 0;1


FMaximum = 0;2


for j ← 0 to N-1 do3


if distance(i,j) > 0 then4


F = alpha ∗ f(pi) ∗ f(pj)/distance(i, j) ∗ ∗2;5


if i=0 then6


FMaximum = F;7


end8


if F > FMaximum then9


FMaximum = F;10


indexMaximum = j;11


end12


end13


end14


return indexMaximum;15


Algorithm 2: computeVelocities(void) Algorithm to compute the velocity
of the particles in the swarm


indexMaximum = 0;1


for i ← 0 to N-1 do2


indexMaximum = computeIndexMaximum(i);3


velocity = R1 * C1 * (position(i) - bestPosition(i)) + R2 * C2 * (position(i)4


- bestPosition(indexMaximum);
setVelocity(i, velocity);5


end6







Algorithm 3: EPSO() Algorithm to find more than one optimum


generateSwarm();1


evaluateSwarm();2


for i ← 0 to iterations do3


computeVelocities();4


computeVelocityLimits(i);5


applyVelocityLimits();6


updatePositions();7


applyPositionLimits();8


evaluateSwarm();9


updateBestPositions();10


countOptimaFound();11


end12


5 Experiments and Results


For testing and comparison purposes, we use the same set of functions that
appeared in the works of Passaro et al. [15] and Bird et al. [14]. We also compare
our results with those reported by these authors.


5.1 Test Functions


The set of test functions that we adopted to validate our proposed approach is
sumarized in Table 1. For each of them, we show their corresponding equations
and the allowable ranges for their decision variables. Next, we describe in more
detail each of these test functions.


Table 1. Test functions adopted for our experiments.


Function Equation Search range


F1 f(x, y) =
(


y − 5.1x2


4π
+ 5x


π
− 6


)2


+ 10
(


1− 1


8π


)


cos(x) + 10 −5 ≤ x ≤ 10


0 ≤ y ≤ 15


F2 f(x, y) = −4
[(


4− 2.1x2 + x4


3


)


x2 + xy + (−4 + 4y2)y2


]


−1.9 ≤ x ≤ 1.9


−1.1 ≤ y ≤ 1.1


F3 f(x) = sin6(5πx) 0 ≤ x ≤ 1


F4 f(x, y) = 200− (x2 + y − 11)2 − (x + y2
− 7)2 −6 ≤ x, y ≤ 6


F5 f(x, y) =
∑


5


i=1
i cos[(i + 1)x + i]


∑


5


i=1
[(i + 1)y + i] −10 ≤ x, y ≤ 10


F1 is Branin’s RCOS function and has 3 global minima. Its plot is shown in
Figure 1(a). F2 is the Six-hump camel back function, which has 2 global and 4
local maxima. Its plot is shown in Figure 1(b). The F3 function is also known
as Deb’s 1st function. This is the only one-dimensional test function that we







adopted. It has 5 global maxima uniformly distributed (see Figure 1(c)). The F4
function is Himmelblau’s function with 4 global optima shown in Figure 1(d).
The last test function is the two-dimensional Shubert’s function. This function
is well known for its complexity in the given search range. It has 760 optima,
including 18 global minima. The plot of Shubert’s function is shown in Figure 2.
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Fig. 1. Test functions used for assessing performance of our proposed electrostatic
inspired PSO.


In order to allow a fair comparison, we perform experiments similar to those
reported by Passaro [15] and Bird [14]. We repeat each experiment 50 times in
order to gather statistics and we adopt a maximum of 500 iterations per run.
Also, for each test function, we adopt two different sizes for the swarm, 30 and 60
particles. For Shubert’s function, we adopt 300 and 500 particles per swarm. In
all our experiments, we use a threshold value ǫ = 0.00001 in order to determine
if a particle has reached an optimum.
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Fig. 2. The two-dimensional Shubert’s function.


5.2 Results


Table 2 summarizes the results of our experiments. In the first column, we show
the name of the test function. The second column indicates the size of the swarm,
and the rest of the columns indicate the mean and standard deviation, of the
number of evaluations required to find all the optima of each test function. The
last column corresponds to the proposed EPSO method. It is worth mentioning
that with the EPSO method, all the global optima are found in all experiments.


Table 2. Comparison with the results reported for other PSO methods


Function Particles SPSO ANPSO kPSO EPSO


F1 30 3169±692 5220±3323 2084±440 1581±79


60 6226±1707 6927±2034 3688±717 2961±133


F2 30 2872±827 2798±857 1124±216 888±78


60 5820±1469 4569±1316 2127±341 1735±128


F3 30 2007±703 6124±2465 1207±688 889±93


60 4848±2092 8665±2974 1654±705 1529±174


F4 30 4096±731 16308±13157 2259±539 1669±56


60 7590±2018 17168±12006 3713±570 2523±111


F5 300 166050±42214 82248±10605 81194±45646 33093±607


500 219420±80179 114580±18392 117503±77451 54010±1111







From the results shown in Table 2, we can observe that the proposed method
needs less function evaluations than any of the other methods with respect to
which it was compared. Also, the proposed approach has a smaller standard devi-
ation, which means that it has better stability. We found particularly remarkable
the results produced by our proposed approach in the case of the two-dimensional
Shubert’s function. In that case, our proposed approach requires less than half
of the evaluations required by the best approach previously reported for this
problem. Additionally, the standard deviation of our proposed approach is, in
this case, smaller than that of the best approach previously reported for this
problem, by two orders of magnitude in the case of 300 particles, and in one
order of magnitude for the case of 500 particles per swarm.


6 Conclusions and Future Work


We have presented a new multimodal PSO method that does not require any
additional parameters besides those that are inherent to the original PSO al-
gorithm. We argue that our proposed approach is very easy to implement, and
we have shown that keeps an O(N2) complexity (N is the number of particles
in the swarm) when computing a numerical value for each pair of particles at
each generation. However, in spite of its simplicity, our proposed approach was
capable of obtaining better results than other previously reported PSO propos-
als, in terms of the number of iterations required to locate all the global optima
of a function. Our results also show that the standard deviations achieved are
small, which is a clear indication of better stability than previously reported
PSO methods used for multimodal optimization. Additionally, it is worth men-
tioning that in the most complex test function adopted (Schubert’s function),
our proposed approach found all the global optima with less than half of the
number of evaluations needed by the best PSO method previously reported for
this problem.


As part of our future work, we are interested in applying our proposed ap-
proach to problems of higher dimensionality. However, since the current test
problems available are normally of very low dimensionality (one or two deci-
sion variables), we are currently developing a framework that provides a simple
and flexible way to increment the number of variables and optima of the test
functions.


The proposed method does not fully model the interaction of a set of charged
particles. We only consider the interaction between pairs of particles and select
the particle’s “best” as the particle with the maximum electrostatic force in the
swarm. Thus, a more detailed model of electrostatic interactions would be quite
interesting, and is part of our ongoing research. For example, we believe that
the use of the electrostatic force to compute the acceleration of the particles
might provide an improved accuracy and stability of our proposed approach,
when searching for several optima.
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