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Abstract— Time varying nature of the constraints, objectives
and parameters that characterize several practical optimization
problems have led to the field of dynamic optimization with
Evolutionary Algorithms. In recent past, very few researchers
have concentrated their efforts on the study of Dynamic multi-
objective Optimization Problems (DMOPs) where the dynam-
icity is attributed to multiple objectives of conflicting nature.
Considering the lack of a somewhat diverse and challenging set
of benchmark functions, in this article, we discuss some ways
of designing DMOPs and propose some general techniques for
introducing dynamicity in the Pareto Set and in the Pareto
Front through shifting, shape variation, slope variation, phase
variation, and several other types. We introduce 9 benchmark
functions derived from the benchmark suite used for the
2009 IEEE Congress on Evolutionary Computation competition
on bound-constrained and static MO optimization algorithms.
Additionally a variant of multiobjective EA based on decompo-
sition (MOEA/D) have been put forward and tested along with
peer algorithms to evaluate the newly proposed benchmarks.

I. INTRODUCTION

THE past few decades have witnessed an overwhelming
growth in the field of Evolutionary Multiobjective Op-

timization (EMO) [1], [2]. Several efficient EAs have been
proposed to overcome the difficulties in attaining the best
compromise among two or more (conflicting) objectives that
characterize a Multiobjective Optimization Problem (MOP).
Most of such algorithms are, however, suitable for static
MOPs, whose features do not change over time. In the recent
past, benchmark suites of diverse levels of complexity were
also developed for testing and ranking the real parameter
multiobjective EAs that work under static conditions (e.g.
[3], [4], [5]). However, despite the demands from several
application domains, very few research works have so far
been devoted to solving DMOPs by using evolutionary com-
puting techniques or studying various difficulties associated
with the DMOPs. In 2004, Farina et al. [5] took a bold step in
this direction by suggesting a test-suite of five real-parameter
dynamic MOPs. Although the authors in [5] urged EA-
researchers to pursue the investigation of DMOPs to a large
extent, such problems are yet to receive significant attention
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so as to match the attention paid to the fields of dynamic
single-objective optimization problems [6] and static MOPs.

Dynamicity in a MOP can occur due to time variation
of the search-variables, objective function landscapes, and/or
the constraints involved [7]. As the main intricacies of MOPs
lie in the Pareto-Front (PF) and Pareto-Set (PS) relationships,
dynamicity can be imparted to the problem by applying time
variation to them. The rest of this paper has been organized
in the following way: in Section II we mention related
works which have motivated us to perform this research.
Section III presents the general idea and basic concepts of
the dynamic multiobjective benchmark generator. Section
IV proposes 9 new benchmark functions evolving from
the bound-constrained multiobjective test bed developed by
Zhang et al. [4] for the CEC 2009 competition on MOEAs.
In Section V, we present the statistical analysis of the pro-
posed as well as contemporary MOEAs on these benchmark
functions. Finally, Section VI concludes the paper.

II. RELATED WORKS AND MOTIVATIONS

The earliest work in this direction started with the de-
velopment of some benchmark problems proposed by Jin
and Sendhoff [8], who aggregated different objectives of
the existing stationary benchmark functions and varied the
weights dynamically. Farina et al. [5] contributed to the
dynamic multiobjective benchmarks by considering time
variation of the objective functions through dynamicity in
PF and PS. Their benchmarks were based on existing ZDT
[9] and DTLZ [3] type of static MOPs. Mehnen et al. also
presented a set of test functions in [10]. But the problems in
this set are not sufficiently diverse, scalable, and challenging.

This article presents a more generalized benchmark gener-
ator considering different kinds of changes in the PF and the
PS that have not been presented earlier in context of DMOPs.
The benchmark generator is extended to include the bound-
constrained multiobjective test-bed developed by Zhang et
al. [4] for the competition of Multiobjective Evolutionary
Algorithms (MOEAs) held at the 2009 IEEE Congress on
Evolutionary Computation (CEC).

Note that the UFs (Unconstrained Functions as termed in
[4]) that we use here are more exhaustive and diverse in terms
of the nature of the PF and the PS than the ZDT and DTLZ
series, which were used by Farina et al. [5]. Some UFs have
a discrete PF, and so do some of our dynamic problems like
UDF3 and UDF6 (UDF: Unconstrained Dynamic Functions
and these are discussed in Section IV). For the ZDT and
DTLZ test problems, the global optimum has the same
parameter values for different variables/dimensions. But in



the UF problems, different dimensions are treated differently.
We observed that the PS in various UFs is of two types
in general– sinusoidal and polynomial. We include both in
our test suite. In addition, Farina et al. [5] introduced only
two types of changes: shift and shape (curvature) change
of the PF, and shift of the PS along with the change in
radius for a spherical PF. Besides retaining such changes,
we incorporate dynamicity through a few other interesting
changes like angular shift or slope change of the PF, shape
change of both a polynomial PS (by changing the order) and
a trigonometric PS, change of curvature of a spherical PF
resulting in different ellipsoids, etc.

We apply various combinations of such changes to static
MO problems that are themselves different, to keep the test-
bed more diverse, exhaustive, and challenging.

III. DYNAMIC MOPS DEFINITION & FORMULATIONS

A dynamic MOP with m objective functions can be
formulated as{

minF (~x, t) = {f1(~x, t), f2(~x, t), ..., fm(~x, t)},
subject to : g(~x, t) ≤ 0, h(~x, t) = 0, , (1)

where Ω is the decision space, F : Ω → Rm consists of
m real-valued objective functions and Rm is the objective
space. If ~x ∈ Rn, all the objectives are continuous and Ω is
described by: Ω = {~x ∈ Rn|lj(~x) ≤ 0, j = 1, ..., k}, ljs are
continuous functions.

Definition 1 (Dominance): Let ~xi, ~v ∈ Rm, ~u is said to
dominate ~v if and only if ui ≤ vi for every i ∈ 1, ...,m and
uj < vj for at least one index j ∈ {1, 2, ...m}.

Definition 2 (Pareto optimality): A solution ~x∗ ∈ Ω is
Pareto optimal if there is no ~x ∈ Ω such that F (~x) dominates
F (~x∗). F (~x∗) is then called a Pareto optimal front. In other
words, any improvement in a Pareto optimal solution in
one objective leads to a deterioration of at least one other
objective. The set of all the Pareto optimal solutions is called
Pareto Optimal Set or Pareto Set (PS) and the set of all the
Pareto optimal vectors is the Pareto Optimal Front or Pareto
Front (PF).

Unlike the dynamic single-objective problems, where dy-
namicity with time is brought about by controlling the width,
height and position of the peaks of the problem, for MOPs,
variations in the PF and the PS are the keys to maintain
dynamicity of the problem. As argued by Farina et al. [5],
dynamicity with time in any MOP can occur through the
following criteria:

i) The PS changes with time but the PF does not change.
ii) The PF changes with time but the PS does not change.
iii) Both the PF and the PS change with time.
iv) Both the PF and the PS remain unchanged with time but

other changes in the problem definition induce dynamicity.
In this paper, we mainly deal with the first three types of

changes indicated above. Following the basic philosophy of
the dynamic test problem construction, we introduce several
kinds of changes possible on the PF and the PS. From the
benchmark functions proposed for the CEC 2009 competition
on MOEAs [4], we chose certain representative problems

and extended them to dynamic multiobjective optimization.
To discuss the constructions of dynamic test problems by
varying different aspects of the PF and the PS, we will
consider two sample functions and elaborate our discussions
around them.

Sample 1:
f1 = x1 + 2

|J1|
∑
j∈J1

[xj − sin(6πx1 + j πn )]2,

f2 = 1−√x1 + 2
|J2|

∑
j∈J2

[xj − sin(6πx1 + j πn )]2,
(2)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is
even and 2 ≤ j ≤ n}. Search space: [0, 1]× [−1, 1]n−1. Its
optimal PF is f2 = 1 −

√
f1, and the corresponding PS is

xj = sin(6πx1 + j πn ), j = 2, ..., n; 0 ≤ x1 ≤ 1, where n is
the dimensionality of the search space.

Sample 2:

f1 = x1 + 2
|J1|

∑
j∈J1

[xj − x
0.5(1+3

j−2
n−2

)

1 ]2,

f2 = 1− x2
1 + 2

|J2|
∑
j∈J2

[xj − x
0.5(1+3

j−2
n−2

)

1 ]2,

(3)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}. The search space is [0, 1]×[−1, 1]n−1.
Its optimal PF is f2 = 1 − f21 , and the corresponding PS

is xj = x
0.5(1+3 j−2

n−2 )

1 ; j = 2, ..., n; 0 ≤ x1 ≤ 1, and as
before n is the dimension of the search space. Sample 2 is
constructed by the combination of different shapes of PF and
PS as described in [4].

We can see that the basic difference between the two
sample functions taken are that their PS variations are
trigonometric and polynomial, respectively. The PF shape is
taken concave and convex in two samples. Now we describe
the possible changes that can be applied to them to bring in
the dynamicity. These concepts will be later utilized for the
benchmark generator proposed.

In general, for testing purposes, the basic time varying
function that will be incorporated within the MOP is kept
sinusoidal in nature to restrict the variation within a limit
and to maintain periodicity in the function. The function is
G(t) = sin(0.5πt), t = bτ/T c/ns, where τ is the generation
counter, ns is the number of distinct steps and represents
the severity of change, T is the window where the dynamic
problem remains constant. Other types of variations, which
are periodic in nature, can always be integrated along with
the benchmarks that we develop.

A. Pareto Set Variation
Sample 1. Trigonometric PS
The decision variables xj ,∀j = 2, ..., n are independent

among them and are only dependent on x1 with sinusoidal
variation. There are two possible ways of bringing dynam-
icity to the PS:

(a) Horizontal shift or Phase change of the xj for different
j with time variation occurs as per xj = sin(6πx1 + (j +
K(t))π/n), j = 2, ..., n; 0 ≤ x1 ≤ 1, K(t) = dnG(t)e.
Search space: [0, 1]× [−1, 1]n−1. The PS shape for this case
is shown in Figure 1 (a).

(b) Vertical shift of the xj for different j with time
variation occurs as per xj = sin(6πx1 + π

nj) + G(t),



j = 2, ..., n; 0 ≤ x1 ≤ 1. Search space: [0, 1] × [−2, 2]n−1.
The PS shape for this case is shown in Figure 1(b).

(c) Combining both horizontal and vertical shifts we can
have a more challenging variation as shown in Figure 1(c).
xj = sin(6πx1 + π

n (j + K(t))) + G(t), j = 2, ..., n;
0 ≤ x1 ≤ 1 and K(t) = dnG(t)e. Search space: [0, 1] ×
[−2, 2]n−1.
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(a) Horizontal Shift of the PS in 2D
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(c) Combined Shift of the PS
Fig. 1: Pareto Set shape obtained through trigonometric variation

Sample 2: Polynomial PS
The decision variables xj ,∀j = 2, ..., n are independent

among them and are only dependent on x1 with polynomial
variation of different orders. There are two possible ways of
bringing dynamicity to the Pareto set:

(a) Polynomial order change of the xj for different j with

time variation occuring as per xj = x
0.5(2+G(t)+3 j−2

n−2 )

1 , j =
2, ..., n; 0 ≤ x1 ≤ 1. Search space: [0, 1]n.

(b) Vertical shift of the xj for different j with time

variation occurs by xj = x
0.5(1+3 j−2

n−2 )

1 + G(t), j = 2, ..., n;
0 ≤ x1 ≤ 1. Search space: [0, 1]× [−1, 2]n−1.

(c) Combining both shifts we can have a more challenging

version as xj = x
0.5(2+G(t)+3 j−2

n−2 )

1 +G(t), j = 2, ..., n; 0 ≤
x1 ≤ 1. Search space: [0, 1]× [−2, 2]n−1. The corresponding
variations of the PS have been depicted in Figure 2.

In the above examples we present different ways of
changing the PS. These are the general approaches and
can be integrated with any type of PS. The time varying
functional adjustment for vertical shift, horizontal shift and
order change can be made in various other ways, too.

B. Pareto Front Variation
The above two samples have both convex and concave

Pareto sets, respectively. Let us consider a general PF equa-
tion of order N : f2 = 1 − fN1 , which may be convex,
concave, or straight and 0 ≤ f1, f2 ≤ 1. Changes can be
made in the PF in the following ways.

i) Change in curvature or shape of the PF: The order N
plays an important role in deciding the nature of the curvature
of the front in the following way: Convex for N > 1;
Concave for N < 1; Straight for N = 1.

Here we vary the order of N with time to change the
curvature. The change can be done in any desired way. Let

us consider a case where we need to vary N between N1 and
N2. The value of N1 can be taken to be in the range of 1/5 to
1/2 and N2 in the range of 1 to 5. The functional relationship
can be designed asH(t) = N1 + (N2 − N1)|G(t)| and the
final front equation as f2 = 1− fH(t)

1 . In Figure 3 we show
a sample variation for N1 = 0.5 and N2 = 1.5.
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Fig. 2: Combined change of (a) and (b) in PS.
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Fig. 3: Variation in curvature of the PF for N1 = 0.5 and N2 = 1.5.

ii) Shift in the PF: Another way of dealing with the change
is that the PF shifts in different possible directions with time.
The possibilities of such change are given below:

(a) Vertical shift: f2 = 1− fN1 + |G(t)| gives the vertical
shift as shown in Figure 4(a).

(b) Horizontal shift:f2 = 1 − (f1 − |G(t)|)N gives the
horizontal shift as shown in Figure 4(b).

(c) Diagonal shift: f2 = 1− (f1 − |G(t)|)N + |G(t)| gives
the diagonal shift as shown in Figure 4(c).

(d) Angular shift or rotation of the curvature of the PF:
f2 = 1−M(t)fN1 , where M(t) controls the angular shift of
the curvature as shown in Figure 4(d) and given as: M(t) =
M1 + (M2 −M1)|G(t)|, M1 and M2 being the extremities
of the slope. The value M1 can be taken in the range of 1/5
to 1/2 and M2 in the range of 1 to 5.

In Figure 4(e), we present the combined shift effects due
to diagonal and angular shift whose general equation is given
as: f2 = 1 − M(t)(f1 − |G(t)|)N + |G(t)|. Combining
both the shifting change and shape change we form an
ultimate dynamic PF presented in Figure 4(f) and given by
f2 = 1−M(t)(f1 − |G(t)|)H(t)+ |G(t)|. Higher complexity
can be added if both vertical shifts and horizontal shifts
are different with respect to time and can be given as:
f2 = 1−M(t)(f1 − |G1(t)|)H(t) + |G2(t)|.

iii) The next type of possible changes can be made on the
general DTLZ [3] type of functions where the PF equation
remains as f21 + f22 + ...+ f2M = 1, where M is the number
of objectives and the test problem is scalable. The possible
changes that can be applied to these general types of problem
are described below:

(a) Change in the radius: The PF is practically spherical
in shape and the radius is unity for the constant case which
can be varied with time as shown in Figure 5(a):

f21 + f22 + ...+ f2M = R(t)2, R(t) = |1 + |G(t)| |.



(b) Change in curvature: Consider the PF equation below

f2
1

R(t)2
+

f2
2

R(t)2
+ ...+

f2
M−1

R(t)2
+ f2M = 1, R(t) = |1 + |G(t)| |.

or,
f2
1

R(t)2
+ f22 + ...+ f2M = 1, R(t) = |1 + |G(t)| |.

Any other combinations, where any number of objective
functions among {f1, f2, ..., fM}, but not all, are time vary-
ing, leads to a dynamic curvature of the PF, the PFs being
ellipsoidal in general. The changes have been depicted in
Figure 5 (b). UF12 [4] is one such test instance formulated
using DTLZ type functions with 3 objectives.
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Fig. 4: Dynamicity in the PF
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(b) Curvature variation

Fig. 5: Spherical PFs (3D) with radius and curvature variation

Any combination of the above changes can be applied to
bring dynamicity in the problem. Certain types of changes
may occur simultaneously at every time instant to produce
a deterministic function or each may occur randomly at
any instant generating a somewhat nondeterministic function
of random nature. Test functions have been discussed in
Section IV to elaborate those concepts. Besides the 9 test
functions presented here, many more can be generated from

the dynamic function generator concept discussed so far by
considering several combinations of changes.

IV. BENCHMARK FUNCTIONS

From the above general notion of the types of changes
that can be applied to a multiobjective function to produce
its dynamic nature we are now attempting to formulate a set
of diversified benchmark functions. Below we describe each
benchmark function mathematically and discuss the unique
properties associated with it. As before, we assume G(t) =
sin(0.5πt), t = bτ/T c /ns,M(t) = 0.5 + |G(t)| , H(t) =
0.5 + |G(t)| , R(t) = 1 + |G(t)| andK(t) = dnG(t)e.

N.B.: In all the benchmark functions we have used some
common variables. They denote some typical kind of changes
in PS or PF as discussed below:
G(t) : Vertical or Horizontal shift in PF or PS.
M(t) : Angular shift in PF.
H(t) : Curvature variation in PF.
R(t) : Radius variation in three dimensional PF.
K(t) : Phase shifting in trigonometric type of PS.
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Fig. 6: PS and PF for UDF1.

A. UDF 1: The nature of the PS is trigonometric and we
have incorporated a vertical shifting with time in the PS.
The PF is linear and continuous in nature and associated
with diagonal shifting with time.

f1 = x1 + 2
|J1|

∑
j∈J1

[xj − sin(6πx1 + j πn )−G(t)]2 + |G(t)|

f2 = 1− x1 + |G(t)|+ 2
|J2|

∑
j∈J2

[xj − sin(6πx1 + j πn )−G(t)]2

(4)
where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1]× [−2, 2]n−1, where n is the number
of dimensions of the search space.

Optimal PF: f2 = 1− (f1−|G(t)|) + |G(t)| ; 0 + |G(t)| ≤
f1 ≤ 1 + |G(t)|.

Optimal PS: xj = sin(6πx1 + j πn ) + G(t); j = 2, ..., n;
0 ≤ x1 ≤ 1.

B. UDF2: The PS is polynomial in nature and associated
with a vertical shifting and shift in the order of the polyno-
mial function with time. The PF is linear and continuous in
nature associated with vertical shifting with time.

f1 = x1 + 2
|J1|

∑
j∈J1

[xj−x1
0.5(2+

3(j−2)
n−2

+G(t)) −G(t)]2 + |G(t)|

f2 = 1− x1 + 2
|J2|

∑
j∈J2

[x1
0.5(2+

3(j−2)
n−2

+G(t)) −G(t)]2 + |G(t)| ,

(5)



where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1]× [−1, 2]n−1, where n is the number
of dimensions of the search space.

Optimal PF: f2 = 1− (f1−|G(t)|) + |G(t)| , 0 + |G(t)| ≤
f1 ≤ 1 + |G(t)|.

Optimal PS: xj = x1
0.5(2+

3(j−2)
n−2 +G(t)) + G(t); j =

2, ..., n; 0 ≤ x1 ≤ 1.
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(b)Fig. 7: PS and PF for UDF2.

C. UDF3: The PS is trigonometric but more challenging
than UDF1 and UDF2. There is no time variation in PS. The
Pareto front is linear but discontinuous. The PF is associated
with diagonal shifting. Due to the discontinuous nature of
the Pareto front, the problem itself is little harder.
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Fig. 8: PF for UDF3.
f1 = x1 + max{0, ( 1

2N + ε)[sin(2Nπx1)− 2N |G(t)|]}
+ 2
|J1|

[4
∑
j∈J1

2y2j − 2
∏
j∈J1

cos(
20πyj√

j
) + 2]2,

f2 = 1− x1 + 2
|J2|

[4
∑
j∈J2

2y2j − 2
∏
j∈J2

cos(
20πyj√

j
) + 2]2

+max{0, ( 1
2N + ε)[sin(2Nπx1)− 2N |G(t)|]},

, (6)

where yj = xj − sin(6πx1 + j πn ); j = 2, ..., n, J1 = {j|j is
odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n},
ε = 0.1 and N = 10.

Search space: [0, 1]× [−1, 1]n−1, where n is the number
of dimensions of the search space.

Optimal PF: One disconnected point (0, 1). N discon-

nected parts:
N⋃
i=1

[ 2i−12N + |G(t)| , 2i
2N + |G(t)|].

Optimal PS: xj = sin(6πx1 + j πn ); j = 2, ..., n; 0 ≤ x1 ≤ 1.
D. UDF4: The PS is simple trigonometric and horizontal

shifting with time is applied to it. The PF is continuous and
associated with curvature change from convex to concave
and angular shift with time.

f1 = x1 + 2
|J1|

∑
j∈J1

[xj − sin(6πx1 + (j +K(t))πn )]2,

f2 = 1−M(t)(x1)
H(t)+

2
|J2|

∑
j∈J2

[xj − sin(6πx1 + (j +K(t))πn )]2,
(7)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1]× [−1, 1]n−1, where n is the number
of dimensions of the search space.

Optimal PF: f2 = 1−M(t)f1
H(t); 0 ≤ f1 ≤ 1.

Optimal PS: xj = sin(6πx1 + (j +K(t))πn ), j = 2, .., n;
0 ≤ x1 ≤ 1.
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Fig. 9: PS and PF for UDF4.

E. UDF5: The PS is simple polynomial and associated
with change in the order of the polynomial and vertical
shifting. The PF is continuous and associated with curvature
change from convex to concave and angular shift with time.

f1 = x1 + 2
|J1|

∑
j∈J1

[xj−x1
0.5(2+

3(j−2)
n−2

+G(t)) −G(t)]2,

f2 = 1−M(t)x1
H(t) + 2

|J2|
∑
j∈J2

[x1
0.5(2+

3(j−2)
n−2

+G(t)) −G(t)]2,

(8)
where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1]× [−1, 2]n−1, where n is the number
of dimensions of the search space.

Optimal PF: f2 = 1−M(t)f1
H(t); 0 ≤ f1 ≤ 1.

Optimal PS: xj = x1
0.5(2+

3(j−2)
n−2 +G(t)) + G(t), j =

2, ..., n; 0 ≤ x1 ≤ 1.
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Fig. 10: PS and PF for UDF5.

F. UDF6: The PS is trigonometric but more challenging
than UDF1 and UDF2. There is no time variation in PS.
The PF is linear but discontinuous. The PF is associated
with diagonal shifting and angular shifting. Due to the
discontinuity of the PF, the problem itself is little harder.

f1 = x1 + ( 1
2N + ε) |sin(2Nπx1)− 2N |G(t)||

+ 2
|J1|

∑
j∈J1

[2y2j − cos(4πyj) + 1]2,

f2 = 1−M(t)x1 + ( 1
2N + ε) |sin(2Nπx1)− 2N |G(t)||

+ 2
|J2|

∑
j∈J2

[2y2j − cos(4πyj) + 1]
2
,

(9)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j
is even and 2 ≤ j ≤ n}, ε = 0.1, N = 10 and yj =
xj − sin(6πx1 + j πn ); j = 2, ..., n.

Search space: [0, 1] × [−1, 1]n−1, where n is the number
of dimensions of the search space.



Optimal PF: 2N + 1 distinct points: ( i
2N + |G(t)| , 1 −

i
2NM(t) + |G(t)|), i = 0, 1, ..., 2N .
Optimal PS: xj = sin(6πx1+j πn ), j = 2, ..., n; 0 ≤ x1 ≤ 1.

G. UDF7: The PS is trigonometric and there is no dynam-
icity associated with it. The PF is concave and 3D in nature.
There is shifting of center and radius of the concave front
with time.

f1 = R(t) cos(0.5πx1) cos(0.5πx2) +G(t)
+ 2
|J1|

∑
j∈J1

[xj − 2x2 sin(2πx1 + j πn )]2

f2 = R(t) cos(0.5πx1) sin(0.5πx2) +G(t)
+ 2
|J2|

∑
j∈J2

[xj − 2x2 sin(2πx1 + j πn )]2

f3 = R(t) sin(0.5πx1) +G(t)+
2
|J3|

∑
j∈J3

[xj − 2x2 sin(2πx1 + j πn )]2

(10)

where J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiple of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiple of 3} and J3 =
{j|3 ≤ j ≤ n, and j is a multiple of 3} .

Search space: [0, 1]2× [−2, 2]n−2, where n is the number
of dimensions of the search space.

Optimal PF: (f1 −G(t))2 + (f2 −G(t))2 + (f3 −G(t))2

= [R(t)]2; 0 ≤ f1, f2, f3 ≤ 1.
Optimal PS: xj = 2x2 sin(2πx1 + j πn ), j = 3, ...n.
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Fig. 11: Optimal PF for (a) UDF6 and (b) UDF7.

The above seven test functions are all deterministic in
nature. The changes are all periodic and cyclic with time.
One may question the validity of these types of changes.
But it is important to ascertain that the changes had to
be within a bound, for both theoretical test functions and
for practical cases. Now we introduce two new benchmark
functions where changes are not at all cyclic and periodic as
before. The changes here are random from a pool of changes
and simulated using Algorithm 1. This randomness makes the
test functions hard to optimize.

Algorithm 1: Pseudocode to simulate UDF8 and UDF9
1 begin
2 Initialize t1 = t2 = t3 = t4 = t5 = 0. ;
3 Let us define ts as a random variable belonging to the set

{t1, t2, t3, t4, t5}, where probability of each of the variables being
selected is equal i.e. P (ts = t1) = P (ts = t2) = P (ts = t3) =
P (ts = t4) = P (ts = t5) = 1/5. ;

4 for each iteration τ = 1 : max gen do
5 if t(τ) 6= t(τ − 1) then
6 Select ts randomly from the set {t1, t2, t3, t4.t5} ;
7 Increase the selected variable ts by a step of 1 ;
8 Update f1 and f2 as per the current values of t1,t2,t3,t4,t5 ;
9 end

10 end
11 end

H. UDF8: The PS is trigonometric in nature with random
vertical or horizontal shift with time. The PF is continuous
with random changes between diagonal shifting, curvature
changes and angular shifting. There are five different types
of changes occurring at different instance of time.

f1 = x1 + |G(t3)|+
2
|J1|

∑
j∈J1

[xj − sin(6πx1 + (j +K(t1))
π
n )−G(t2)]

2,

f2 = 1−H(t4)x1
H(t5) + |G(t3)|+

2
|J2|

∑
j∈J2

[xj − sin(6πx1 + (j +K(t1))
π
n )−G(t2)]

2,

(11)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1] × [−1, 1]n−1, where n is the dimen-
sionality of the search space.

Optimal PF: f2 = 1 − H(t4)(f1 − |G(t3)|)H(t5) +
|G(t3)| ; 0 + |G(t3)| ≤ f1 ≤ 1 + |G(t3)|.

Optimal PS: xj = sin(6πx1 + (j + K(t1))πn ) + G(t2),
j = 2, ..., n; 0 ≤ x1 ≤ 1.

I. UDF9: The PS is polynomial in nature with random
vertical shift or variation in the order of the polynomial
with time. The PF is continuous with random changes
between diagonal shifting, curvature changes and angular
shifting. There are five different types of changes occurring
at different instance of time.

f1 = x1 + |G(t3)|

+ 2
|J1|

∑
j∈J1

[xj−x1
0.5(2+

3(j−2)
n−2

+G(t1)) −G(t2)]
2,

f2 = 1−H(t4)x1
H(t5) + |G(t3)|+

2
|J2|

∑
j∈J2

[x1
0.5(2+

3(j−2)
n−2

+G(t1)) −G(t2)]
2,

(12)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is
even and 2 ≤ j ≤ n}.

Search space: [0, 1] × [−2, 2]n−1, where n is the number
of dimensions of the search space.

Optimal PF: f2 = 1 − H(t4)(f1 − |G(t3)|)H(t5) +
|G(t3)| ; 0 + |G(t3)| ≤ f1 ≤ 1 + |G(t3)|.

Optimal PS: xj = x1
0.5(2+

3(j−2)
n−2 +G(t1)) + G(t2), j =

2, ..., n, 0 ≤ x1 ≤ 1.
Note that in UDF8 and UDF9, several types of dynamic

variation of PS and PF have been incorporated to form a
pool of changes and at a time only one kind of change is
employed. The variables t1 to t5 correspond to a single type
of variation each. At a particular point of time, only one of
the variables is selected randomly and gets increased by 1.
The objective functions are obtained according to updated
values of the variables.
TABLE I: Summary of proposed benchmark set: Unconstrained Dynamic Functions

Func. 
Number of 

objectives 

Pareto Set Pareto Front 

Nature Variation Nature Shift 
Angular shift / 

Curvature variation 

UDF1 2 Trigonometric Vertical shift Continuous Diagonal No change 

UDF2 2 Polynomial 
Curvature change 

+Vertical shift 
Continuous Diagonal No change 

UDF3 2 Trigonometric No change Discrete Diagonal No change 

UDF4 2 Trigonometric Horizontal shift Continuous No change 
Angular shift  + Curvature 

variation 

UDF5 2 Polynomial 
Curvature change 

+Vertical shift 
Continuous No change 

Angular shift  + Curvature 

variation 

UDF6 2 Trigonometric No change Discrete Diagonal Angular shift only 

UDF7 3 Trigonometric No change Continuous 
Radial + shift of 

the center 
No change 

UDF8 2 Trigonometric 
Random Vertical or 

Horizontal shift 
Continuous 

Random Diagonal 

Shift 

Random Angular Shift or 

Curvature variation 

UDF9 2 Polynomial 

Random Curvature 

change or Vertical 

shift 

Continuous 
Random Diagonal 

Shift 

Random Angular Shift or 

Curvature variation 
 

In the functions UDF3, UDF6 and UDF7 due to the
already challenging nature of PFs (which are discontinuous
and three dimensional) to avoid a higher complexity in the
problem PS variation is not considered in those cases. So the
PS diagrams of the static cases are not shown separately. Also
for UDF8 and UDF9, due to the stochastic nature of change
it is not possible to draw the actual PF or PS variation with
time. It must be mentioned that these 9 benchmark functions



proposed here are not exhaustive but rather a small subset of
all the possible functions that consider all types of possible
changes at least once and can be generated by using the
generalized benchmark function generator as discussed in
Section III. Table I summarizes their properties.

Algorithm 2: Pseudocode of the MOEA/CER algorithm
input : i) MOP(1) ii) a stopping criterion iii) N the number of the

subproblems considered in MOEA/DFD [17] iv) a uniform spread of
N weight vectors: λ1, , λN v) T : the number of the weight
vectors in the neighborhood of each λi

output : {~x1, ....., ~xN} and {F (~x1), ....., F (~xN )}
1 Compute the Euclidean distances between any two weight vectors and then find

the T closest weight vectors to each weight vector to find B(i)
2 Generate an initial population {~x1, ....., ~xN}
3 Initialize ~z by setting
4 ~z = min{fi(~x1), fi(~x

2), ......fi(~x
N )}

5 Set gen = 0 ∀i = {1, 2, ...N}
6 Set Qt, Qt−1, Qt−2, as the initial positions of the individuals
7 if mod(gen, T )=0 then
8 Call Reinitialize(); \\ Module for prediction based re-initialization;
9 Set P = Qt+1

10 end
11 while termination criteria not met do
12 for i = 1, 2, ....N do
13 Selection of mating/update range;
14 Reproduce the offspring ~ui corresponding to parent ~xi by

DE/rand/1/bin scheme. For jth component of the ith vector:
15 ui,j ={

ui,j = x
ri1,j

+ F.(x
ri2,j
− x

ri3,j
), if rand(0, 1)Cr

xi,j , otherwise

}
.

16 F being the standard scale factor for DE ;
17 If an element of ~y is out of the boundary reset its value;
18 For each j = 1, 2, ..,m, if zj > fj(~y), then set zj = fj(~y);
19 Calculate fuzzy dominance level and update the solutions as per [17];
20 Update Qt−1, Qt−2, .. and gen = gen+ 1;
21 end
22 end

Algorithm 3: Reinitialize/CE ()
input : Qt, Qt−1, Qt−2: Current population (gen = t) and last

population (gen = t− 1)
output : Qt+1 : Re-initialized population based on prediction model

1 for i = 1, 2, ....N do
2 Find the nearest solution in PF of last generation corresponding to each

solution ~xt−1 = argmin~y∈Qt−1
‖f(~y)− f(~xt)‖2;

3 Calculate di1 = (xit − x
i
t−1), d

i
2 = (xit−1 − x

i
t−2), ∀i = 1 : n ;

4 Calculate ki =
∣∣di1∣∣− ∣∣di2∣∣;

5 if randi(0, 1) < 0.5 then
6 mi = 1 + tanh(ki)
7 else
8 mi = ki

|ki|N(1,
∣∣ki∣∣)

9 end
10 Predict the next position of that solution:

xit+1 = ψ(xit, x
i
t−1) = xit +mi.(xit − x

i
t−1), ∀i = 1, 2, ..., n ;

11 Return Qt+1;
12 end

V. STATISTICAL VERIFICATION OF BENCHMARKS
We consider five Dynamic MO algorithms from the litera-

ture and run them over our test-beds to compare their perfor-
mances and to assess the nature and difficulty of these bench-
mark functions. Four well-known dynamic MOEAs – DEMO
(direction based method) [5], DMEA/PRI [11], DNSGA-II
[12] and DQMOO/AR [13] are considered in addition to a
variant of MOEA/D [14], MOEA/D-BR (MOEA/D + PS-
based nearest distance + Basic Re-initialization Strategy) de-
veloped using the re-initialization proposed in [11]. Addition-
ally we have proposed another variant called MOEA/CER
that relies on Controlled Extrapolation and PF based nearest
distance approach [11]. A re-initialization strategy has been
incorporated with the MOEA/D-DE framework to form a
complete algorithm outlined in 2 and 3. To make a proper

comparison of our benchmark functions with that of FDA
given by Farina et. al. [5], we also ran the above mentioned
algorithms on this test-bed.

For all the test functions, we take T = 5 and ns = 5.
The lower the values of these two parameters, the more
difficult the problems are as far as their dynamic behav-
ior is concerned. Since the UDF series of functions are
more challenging, a larger population size is required to
achieve satisfactory performance. For UDF1-UDF9, except
for UDF7, the population size is kept at 300; for UDF7
(which has three objective functions), the population size is
kept at 500. The time variation of the Pareto set is governed
by the function: G(t) = sin(0.5πt),, where t = 1

ns

⌊
τ
T

⌋
(τ is

the current iteration number) with a period of 4 in terms of
the time variable t i.e. 4×Ts×ns = 4×5×5 = 100 iterations.
Here 300 iterations have been taken for all functions. It
implies that 3 complete cycles of G(t) have been considered.
However, in case of PF variation, |G(t)| is the time dependent
factor with a period equal to half of the period of G(t). So
300 iterations mean 6 cycles as far as the variation of Pareto
front is concerned.
TABLE II: Mean IGD metric values, standard deviations and individual ranks (within
parentheses) for benchmarks UDF1–UDF9. The best results are marked in boldface.

Algo.
Func. DEMO DMEA/PRI DNSGA-II DQMOO/AR MOEA/D-BR MOEA/CER

FDA1
0.1134

± 0.0098 (4)
0.1228

± 0.0035 (5)
0.1253

± 0.0243 (6)
0.1037

± 0.0042 (3)
0.0932

± 0.0082 (2)
0.0583

± 0.0086 (1)

FDA2
0.0255

± 0.0032 (4)
0.0205

± 0.0018 (3)
0.0298

± 0.0061 (5)
0.0299

± 0.0015 (6)
0.0143

± 8.54e-4 (1)
0.0177

± 0.0015 (2)

FDA3
0.1643

± 0.0877 (3)
0.1786

± 0.0564 (5)
0.1853

± 0.8432 (6)
0.1769

± 0.0221 (4)
0.1578

± 0.0483 (2)
0.1405

± 0.0516 (1)

UDF1
0.2240

± 0.0022 (6)
0.1558

± 0.0136 (3)
0.2153

± 0.0558 (5)
0.1989

± 0.0018 (4)
0.1399

± 0.0268 (2)
0.1322

± 0.0029 (1)

UDF2
0.0527

± 0.0028 (4)
0.0455

± 0.0017 (3)
0.0584

± 0.0025 (6)
0.0575

± 8.36e-4 (5)
0.0351

± 9.64e-4 (1)
0.0358

± 0.0017 (2)

UDF3
0.5843

± 0.0983 (6)
0.5856

± 0.0701 (5)
0.5251

± 0.0141 (3)
0.4775

± 0.0387 (2)
0.6923

± 0.1217 (6)
0.4308

± 0.0275 (1)

UDF4
0.4533

± 0.0905 (6)
0.3092

± 0.0236 (4)
0.3456

± 0.0609 (3)
0.1985

± 0.0903 (1)
0.4056

± 0.0730 (5)
0.2269

± 0.0614 (2)

UDF5
0.0456

± 0.0079 (6)
0.0433

± 0.0024 (5)
0.0379

± 0.0098 (4)
0.0276

± 7.78e-4 (2)
0.0327

± 0.0028 (3)
0.0235

± 8.35e-4 (1)

UDF6
1.7439

± 0.0229 (6)
1.4639

± 0.0308 (4)
1.5648

± 0.0965 (5)
1.2318

± 0.0530 (2)
1.2587

± 0.0226 (3)
1.0080

± 0.0406 (1)

UDF7
0.5742

± 0.0473 (5)
0.4836

± 0.0948 (4)
0.6846

± 0.0404 (6)
0.3936

± 0.0372 (3)
0.2317

± 0.0073 (1)
0.2483

± 0.0087 (2)

UDF8
0.5328

± 0.1251 (5)
0.4910

± 0.0728 (4)
0.5625

± 0.0825 (6)
0.4414

± 0.1283 (3)
0.4032

± 0.1793 (2)
0.3843

± 0.0826 (1)

UDF9
0.1628

± 0.0281 (5)
0.1496

± 0.0826 (4)
0.1972

± 0.0638 (6)
0.1418

± 0.0273 (3)
0.1376

± 0.0317 (2)
0.1149

± 0.0376 (1)
Final Rank 5 4 6 3 2 1

For dynamic multi-objective optimization, we generally
use an average of the IGD values over all the iterations
performed [16]. In Table II, we present the average values
of the mean IGD values and their standard deviations over
25 independent runs for the benchmarks UDF1– UDF9 and
FDA1–FDA3. Alongside we also indicate the rank of each
algorithm for that problem in brackets. The last row presents
the average rank of all the algorithms over the entire test-
bed. A non-parametric statistical test called Wilcoxons rank
sum test for independent samples [16] was conducted at the
5% significance level in order to judge whether the results
obtained with the best performing algorithm differed from the
final results of the rest of the competitors in a statistically
significant way. P -values obtained through the rank sum test
over all the benchmark functions are presented in Table III.
In these tables, NA stands for Not Applicable and occurs
for the best performing algorithm itself in each case. If the
P -values are less than 0.05 (5% significance level), there is
strong evidence against the null hypothesis, indicating that
the better final objective function values achieved by the best



algorithm in each case is statistically significant and has not
occurred by chance.

TABLE III: P-values calculated for Wilcoxon‘s rank sum test.
Algo.

Func. DEMO DMEA/PRI DNSGA-II DQMOO/AR MOEA/D-BR MOEA/CER
FDA1 0.0008 0.0038 0.0003 0.0026 0.1173 NA
FDA2 0.0093 0.0482 0.0036 0.0163 NA 0.2163
FDA3 0.0018 0.0128 0.0063 0.0035 0.1234 NA
UDF1 0.0026 0.0027 0.0273 0.0017 0.2192 NA
UDF2 0.0281 0.0027 0.0002 0.0021 NA 0.1963
UDF3 0.0008 0.0284 0.0003 0.1173 0.0620 NA
UDF4 0.0129 0.0182 0.0018 NA 0.0096 0.1973
UDF5 0.0283 0.0092 0.0047 0.1218 0.1273 NA
UDF6 0.0046 0.0138 0.0003 0.0918 0.0936 NA
UDF7 0.0036 0.0928 0.0059 0.0073 NA 0.1836
UDF8 0.0381 0.0483 0.0031 0.0389 0.1730 NA
UDF9 0.0384 0.0083 0.0027 0.0217 0.1129 NA

Test problems such as UDF3, UDF4, UDF6, UDF7 and
UDF8 have higher associated values of the average IGD
measure than the other benchmark functions. This correctly
points out the difficulty associated with these functions. A
closer look reveals that, in general, a trigonometric Pareto
set variation is much more difficult than a polynomial one.
Also, the curvature variation of the Pareto front makes
the problem more challenging than the shifting. Other than
this, in general, a discrete front and a 3-dimensional front
is always a tough situation to deal with. The non-cyclic
changes or rather the non-deterministic changes associated
with UDF8 and UDF9 make the problem a little bit more
challenging. The average IGD values that we obtained while
simulating these algorithms over our benchmark test-bed is
generally much higher than that obtained in the FDA test-
bed. Also, in the FDA test-bed, the average IGD values of
each algorithm differ in a smaller proportion with the others
compared to our UDF test-bed. That is, the UDF test-bed
gives a more diversified result compared to the FDA test-
bed, which allows us to clearly distinguish the performance
of each algorithm through proper statistical testing.

VI. CONCLUSIONS

In this paper, we have proposed a new and more chal-
lenging benchmark function generation scheme for DMOPs.
Apart from the existing types of changes in PF and PS, we
incorporated several other types of changes. Non-continuous
PF, and challenging PS have also been dealt with in this
paper. It is possible to construct other complex benchmarks
by combining the changes in PF and PS proposed here, such
that the changes may occur randomly in parallel or in a
sequential manner. To support our dynamic MO benchmark
generator we have developed a nine benchmark test-bed
and have simulated four of the best known state-of-the-art
dynamic MOEAs along with two modified MOEA/D variants
incorporated with re-initialization strategies already proposed
in literature over this test-bed. From the results obtained, we
opine that our test-bed is more diverse and challenging than
those already present in the current literature.

Dynamic multiobjective optimization still remains as a
relatively new and promising research field, which has been
studied scarcely so far. Thus, there are plenty of research
opportunities within this area. We claim here that the most
important issue to be considered when designing new bench-
mark MOPs is the definition of an appropriate dynamicity

process. Besides the current notion of PF and PS variation,
one can think of variation in other domains, too.

Finally, there is also a remarkable lack of real-world
applications of dynamic MOEAs, in spite of the fact that such
problems do exist in different domains of science and engi-
neering such as optimal process control, sensor scheduling in
real time for maximizing coverage and minimizing lifetime,
etc. Thus, assessing the potential of dynamic MOEAs in the
context of practical problems is an important research topic
that will be explored by EA-researchers in the near future.
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