
Handling Uncertainty in Code Smells Detection using a
Possibilistic SBSE Approach

Sofien Boutaib, Slim Bechikh
SMART Lab, University of Tunis, ISG, Tunis, Tunisia

boutaibsofien@yahoo.fr
slim.bechikh@fsegn.rnu.tn

Carlos A. Coello Coello
CINVESTAV-IPN, Mexico City, Mexico

ccoello@cs.cinvestav.mx

Chih-Cheng Hung
Kennesaw State University, Marietta, GA, USA

chung1@kennesaw.edu

Lamjed Ben Said
SMART Lab, University of Tunis, ISG, Tunis, Tunisia

lamjed.bensaid@isg.rnu.tn

ABSTRACT
Code smells, also known as anti-patterns, are indicators of bad de-
sign solutions. However, two different experts may have different
opinions not only about the smelliness of a particular software class
but also about the smell type. This causes an uncertainty problem
that should be taken into account. Unfortunately, existing works
reject uncertain data that correspond to software classes with doubt-
ful labels. Uncertain data rejection could cause a significant loss of
information that could considerably degrade the performance of
the detection process. Motivated by this observation and the good
performance of the possibilistic K-NN classifier in handling uncer-
tain data, we propose in this paper a new evolutionary detection
method, named ADIPOK (Anti-pattern Detection and Identification
using Possibilistic Optimized K-NN), that is able to cope with the
uncertainty factor using the possibility theory. The comparative
experimental results reveal the merits of our proposal with respect
to four relevant state-of-the-art approaches.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;Maintaining software;

KEYWORDS
Code smells detection, uncertain class labels, possibilistic K-NN,
evolutionary algorithm

ACM Reference Format:
Sofien Boutaib, Slim Bechikh, Carlos A. Coello Coello, Chih-Cheng Hung,
and Lamjed Ben Said. 2020. Handling Uncertainty in Code Smells De-
tection using a Possibilistic SBSE Approach. In Genetic and Evolution-
ary Computation Conference Companion (GECCO ’20 Companion), July
8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3377929.3389948

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3389948

1 INTRODUCTION
Despite the high number of works on code smells (anti-patterns)
detection in the SE (Software Engineering) literature, this problem
is still so far a challenging and timely research topic [9]. Many
detection methods have been proposed in the literature [9] such
as rule-based, machine learning-based, and search-based ones. The
latter has shown its superiority over the others mainly thanks to
its global search ability. Similarly to the data classification problem,
the code smells detection could have uncertain class labels. Indeed,
software engineers could have contradicting opinions about the
smelliness of a particular software class or not. Moreover, the same
observation applies for the anti-pattern type identification. Unfor-
tunately, almost all existing works, including SBSE (Search-Based
Software Engineering) ones, do not consider the uncertainty issue.
Rejecting uncertain data may incur a loss of information [8] and
significantly downgrades the detection performance. Motivated by
the interesting performance of the PK-NN (Possibilistic K-Nearest
Neighbor) algorithm [8] in classifying uncertain data, we propose
in this paper a new search-based method, named ADIPOK, which
evolves a population of smells detectors each corresponding to a
PK-NN classifier using a GA (Genetic Algorithm).

2 POSSIBILITY THEORY
Possibility theory is a popular uncertainty theory used to repre-
sent imperfect information. Given the universe of discourse Ω={𝜔1,
𝜔2,..., 𝜔𝑛}, the possibility distribution, denoted by 𝜋 , is one of the
basic concepts in possibility theory. It attributes to every state 𝜔𝑖

belonging to the universe of discourse Ω, a value from the possi-
bilistic scale 𝐿 to obtain the so-called possibility degree. The latter
is considered as an encoding of our knowledge on the real world.
Note that the possibilistic scale 𝐿 is usually defined within the unit
interval [0, 1], where the possibility distribution values make sense.
By convention, for whatever state, 𝜔𝑖 ∈ Ω, 𝜋 (𝜔𝑖) = 0 signifies that
the realization of 𝜔𝑖 is impossible, while 𝜋 (𝜔𝑖) = 1 signifies that
achieving 𝜔𝑖 is totally possible in the real world. Furthermore, it
is assumed that 𝜋 is normalized when there is at least one state
𝜔𝑖 , where 𝜋 (𝜔𝑖) = 1 (i.e., totally possible). Over this paper, only
normalized possibility distributions are adopted. In possibility the-
ory, there are two extreme forms of knowledge that are: (a) the
complete knowledge (∃ 𝜔𝑘 , 𝜋 (𝜔𝑘) = 1 and, 𝜋 (𝜔) = 0, ∀ 𝜔 ≠ 𝜔𝑘),
and (b) the total ignorance (∀ 𝜔 ∈ Ω, 𝜋 (𝜔) = 1)).

https://doi.org/10.1145/3377929.3389948
https://doi.org/10.1145/3377929.3389948
https://doi.org/10.1145/3377929.3389948

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Boutaib et al.

Figure 1: The main scheme of the ADIPOK approach.

3 PROPOSED APPROACH: ADIPOK
The first step to develop our ADIPOK approach is the construction
of the possibilistic Bases of Examples (BEs). In this study, we con-
sidered six open-source software projects (GanttProject, ArgoUML,
XercesJ, JFreeChart, AntApache, Azureus), 23 quality metrics [5]
(which are widely used in the literature), and 8 smell types (God
Class, Data Class, Feature Envy, Long Method, Long Parameters
List, Spaghetti Code, Functional Decomposition, Duplicated Code)
[5]. The Naïve Bayes classifier is employed to predict the probabil-
ity distribution for each instance (i.e., software class) and then a
mathematical conversion is applied using an equation (proposed in
[1]) to convert the obtained Probability distribution into a Possibil-
ity one. As illustrated by Figure 1, once the BEs (i.e., datasets) are
generated, the GA evolves a set of PK-NN classifiers by optimizing a
fitness function (i.e., the Possibilistic F-measure (PF-measure)) that
is computed based on the BEs. Once the set of optimized possibilis-
tic detectors are generated, they are used to detect and/or identify
the existing smells on unseen software systems based on the AFO
(Adaptive Fusion Operator) [2] to aggregate the different possibility
distributions. In fact, as our approach is based on the GA to evolve a
population of smell detectors (PK-NN), the GA operators should be
presented such as: {the solution representation, the fitness function,
the selection mechanism, and the variation operators}. The Solution
representation, is a vector containing four parameters: the FS (Fea-
ture Subset) is a binary vector, the K (number of nearest neighbors)
is an integer in [1, 𝑇], _ and 𝛼 are real numbers in [0, 1]. As for the
Fitness Function, code smells detection usually corresponds to an
imbalanced binary classification problem. Based on this fact, we
have inspired our metric from F-measure classification metric (as it
is not suitable for the case of uncertain class labels) to propose a
possibilistic version of this metric named PF-measure and expressed
by equation (1). The 𝜋 𝑖𝑛𝑖𝑡 is the initial possibility distribution of
the test set, 𝜋 𝑟𝑒𝑠𝑢𝑙𝑡 is the possibility distribution produced by the
PK-NN also on the test set, and △ is an operator that performs the
intersection between 𝜋 𝑖𝑛𝑖𝑡 and 𝜋 𝑟𝑒𝑠𝑢𝑙𝑡 . As for the selection mecha-
nism, we adopted the binary tournament selection operator. As for
the variation operators, the crossover is performed per part on the
chromosome: using the SBX operator (for the first and last part of
the chromosome) and the uniform crossover for the remaining part.
The mutation operation is also applied per part using one point
mutation for the first part of the chromosome and the polynomial

mutation for the remaining parts.

𝑃𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝜋 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐶 𝑗) △ 𝜋 𝑖𝑛𝑖𝑡 (𝐶 𝑗) (1)

4 EXPERIMENTAL VALIDATION
We compared our ADIPOK approach to the relevant state-of-the-art
approaches such as: DECOR [4], GP [6], and BLOP [7]. Moreover,
we evaluated our approach based on a five-fold cross-validation
procedure. The parameter settings of ADIPOK approach were tuned
as follows: the population size is equal to 200, the crossover and
mutation rates are equal to 0.9, 0.1 respectively. In addition to the
PF-measure, we used the IAC (Information Affinity-based Criterion)
[3] to quantify the performance of the different considered meth-
ods as it takes into account non-plausible class labels membership
degrees, which is not the case of the PF-measure. The IAC metric
quantifies the distance between the initial possibility distribution
𝜋𝑖𝑛𝑖𝑡 and the resulting 𝜋𝑟𝑒𝑠𝑢𝑙𝑡 . For the detection and identification
processes, our approach outperforms all the remaining approaches
on all the used software projects as the compared approaches are
not able to manage the uncertain class labels or to handle the data
imbalance issues. The outperformance of ADIPOK could be ex-
plained as follows. For the uncertain case, the PF-measure is a good
choice to deal with uncertain class labels. For the certain case, the
PF-measure is the same as the F-measure, which is a suitable metric
for data imbalance.

5 CONCLUSION
In this paper, we have tackled an important topic that is usually
neglected in the SBSE community, which corresponds to the uncer-
tainty of software class labels in code smells detection To do so, we
have proposed ADIPOK as a new method and tool that is able to
effectively detect and identify anti-patterns in both uncertain and
crisp environments. As Future work, we propose to manage the
uncertainty that could be present within the feature level in addi-
tion to the class label level. It would be very important to extended
ADIPOK to deal with such a challenging situation.

REFERENCES
[1] Didier Dubois and Henri Prade. 1985. Unfair coins and necessity measures: towards

a possibilistic interpretation of histograms. Fuzzy sets and systems 10, 1-3 (1985),
15–20.

[2] Didier Dubois and Henri Prade. 1994. La fusion d’informations imprécises. TS.
Traitement du signal 11, 6 (1994), 447–458.

[3] Ilyes Jenhani, Nahla Ben Amor, Zied Elouedi, Salem Benferhat, and KhaledMellouli.
2007. Information affinity: A new similarity measure for possibilistic uncertain in-
formation. In Proceedings of the European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, Vol. 4724. Springer, 840–852.

[4] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2009. Decor: A method for the specification and detection of code and
design smells. IEEE Transactions on Software Engineering 36, 1 (2009), 20–36.

[5] Ali Ouni. 2014. A Mono-and Multi-objective Approach for Recommending Software
Refactoring. Dissertation. Department of Computing Science, Faculty of Montreal.

[6] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2013.
Maintainability defects detection and correction: a multi-objective approach. Au-
tomated Software Engineering 20, 1 (2013), 47–79.

[7] Dilan Sahin, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. 2014. Code-
smell detection as a bilevel problem. ACM Transactions on Software Engineering
and Methodology 24, 1 (2014), 1–44.

[8] Sarra Saied and Zied Elouedi. 2018. K-Nearest Neighbors Under Possibility Frame-
work with Optimizing Parameters. In Proceedings of the International Conference
on Intelligent Systems Design and Applications. Springer, 354–364.

[9] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158–173.

	Abstract
	1 Introduction
	2 Possibility Theory
	3 Proposed approach: ADIPOK
	4 Experimental validation
	5 Conclusion
	References

