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Abstract

This paperprovidesa brief introductionto evolutionary
algorithmsandto someof their representativeapplications
in biometrics.Our discussionncludesshortdescriptionsof
geneticalgorithms,evolution strategies, evolutionary pro-
grammingand geneticprogrammingaswell as someof the
terminolaggy commonlyadoptedin this area. Then,a few
case studiesinvolving applications of evolutionary algo-
rithmsin biometricsare analyzed. In the final part of the
paper somepossiblereseach directionsare provided.

1 Intr oduction

The ideaof usingtechniquedasedon the emulationof
themechanisnof naturalselectiorto solve problemscanbe
tracedaslong backasthe 19305[12]. However, it wasuntil
the 1960swhenthethreemaintechniquedbasecdbon this no-
tion weredeveloped.Theseapproachesyhicharenow col-
lectively denominatedevolutionaryalgorithms” have been
very effective for single-objectve optimization[34, 62, 29].

Biometricsis a disciplinethatmeasuresndstatistically
analysedbiologicaldata.Recentlyandin the context of in-
formationtechnologythetermhasbeenadoptedo referto
thetechnologiedor measuringandanalyzinghumanbody
characteristicsuchas fingerprints,eye retinasandirises,
voice patternsfacial patternsandhandmeasurement®s-
pecially for authenticatiorpurposeg74]. Biometric appli-
cationsinvolve several complex problems. For example,
mary currentbiometric applicationsare closely relatedto
patternrecognitionandimageanalysig63]. The comple-
ity of theseproblems(which tendto be approachedising
statisticaltechniguesnakesattractie the useof heuristics
suchasevolutionaryalgorithms,which have beenfoundto
bevery powerful in awide variety of optimizationandclas-

sificationtasks[29, 34, 4].

Theremaindeof this papeiis organizedasfollows. Sec-
tion 2 providessomebasicconceptgelatedto evolutionary
algorithms. In Section3 attemptsto summarizethe mate-
rial from the previous section,by providing a more gen-
eral framavork for studying evolutionary algorithmsand
discussingsomeof their main advantages.Section4 dis-
cussesa few representatie casestudiesof applicationsof
evolutionaryalgorithmsin biometrics. After that, we pro-
vide somepossiblefuture researchdirectionsin Section5
andour conclusionsn Section6.

2 BasicNotions of Evolutionary Algorithms

The famousnaturalistCharlesDarwin definedNatural
Selectionor Survival of the Fittest as the preservationof
favorableindividual differencesandvariations,andthe de-
structionof thosethatare injurious [18]. In nature individ-
ualshave to adaptto their ervironmentin orderto survive
in a processcalled evolution, in which thosefeaturesthat
malke an individual more suitedto competeare presered
whenit reproducesandthosefeatureghatmake it wealer
areeliminated.Suchfeaturesarecontrolledby unitscalled
geneswhich form setscalled chromosomes Over subse-
guentgenerationsot only the fittest individuals survive,
but alsotheirfittestgeneswvhich aretransmittedo their de-
scendantsluringthesexual recombinatiorprocessvhichis
calledcrosswer.

Early analogiebetweerthemechanisnof naturalselec-
tion anda learning(or optimization)procesded to the de-
velopmenbf theso-called‘evolutionaryalgorithms”(EAS)
[3], in which the main goal is to simulatethe evolution-
ary processn acomputer Therearethreemain paradigms
within evolutionaryalgorithms whosemotivationsandori-
gins were independenfrom eachother: evolution strate-
gies[62], evolutionary programming[32], and genetical-



gorithms[40]. Additionally, someauthorsconsidergenetic
programming[47] asanotherparadigm,althoughthis can

alsobe seenasa specialtype of geneticalgorithm. Eachof

thesefour typesof evolutionaryalgorithmwill bediscussed
next in moredetail.

2.1 Evolution Strategies

Whenworking towardshis PhDdegreein engineeringat
the TechnicalUniversity of Berlin, Ingo Rechenbeg came
acrosssomeoptimizationproblemsin hydrodynamicghat
could not be solved using traditional mathematicalpro-
grammingtechnique$58]. Thisled himtothedevelopment
of avery simpleoptimizationalgorithmwhich consistedf
applyinga setof randomchangego a referencesolution.
The approachwas later called “evolution stratgy” and it
wasformally introducedin 1964[30]. The original evolu-
tion stratgy wascalled(1 + 1)-ES,becausét consistedf
a single parentthat was mutated(i.e., subjectto a random
change}o produceanoffspring. Then,theparentwascom-
paredto its offspring andthe bestfrom themwasselected
to becomeparentfor thefollowing iteration(or generation).

In theoriginal (1+1)-EE,anew individualwasproduced
using:

! =zt + N(0,0)

wheret refersto the currentgenesation (or iteration)and
N(0,a) is avectorof independenGaussiamumberswith
medianzero and standarddeviation &. It is importantto
emphasiz¢hatan“individual” in anevolution stratey con-
tainsthesetof decisionvariablesof theproblem.No encod-
ing is usedin this case.So, if thedecisionvariablesarereal
numbers,suchreal numbersare directly put togetherasa
singlevectorfor eachindividual.

Let's considetthefollowing exampleof a (1+1)-ES:

Let usassumehatwe wantto maximize:
Flx1,22) = 100(2? — 22)% + (1 — 21)2
where: —2.048 < z1, x> < 2.048

Now, let ussupposehatour populationconsistf the
following (randomlygeneratedindividual:

(xt,5) = (-1.0,1.0), (1.0,1.0)

Let usnow supposehatthe mutationsgeneratecre
thefollowing:

it =2t + N(0,1.0) = —1.0 + 0.61 = —0.39
abtt = 24 + N(0,1.0) = 1+ 0.57 = 1.57

Now, we comparethe parentwith its offspring:

Parent: f(z:) = f(-1.0,1.0) = 4.0
Child:  f(z¢41) = £(—0.39,1.57) = 201.416

Since:201.416 > 4.0
theoffspringwill replaceits parentin thefollowing
generation.

Rechenbag [59] stateda rule for adjustingthe standard
deviation in a deterministicway such that the evolution
stratgy could corvergeto theglobaloptimum. Thisis now
known asthe“1/5 successule”, andit consistsof the fol-
lowing:

ot —n)/c ifps>1/5
ot)=¢ ot—mn)xc ifp, <1/5
o(t—n) ifp,=1/5

wheren is thenumberof decisionvariablest is thecur-
rent generationp, is the relative frequeny of successful
mutations(i.e., thosemutationsin which the offspring re-
placedits parent)measuredver a certainperiod of time
(e.g.,10n individuals)andc = 0.817 (this valuewastheo-
reticallyderivedby Schwefel[62]). o(¢) is adjustecatevery
n mutations.

Over the years,several other variationsof the original
evolution stratgly wereproposedafterthe conceptof pop-
ulation (i.e., a setof solutions)wasintroduced. The most
recentversionsof theevolution strateyy arethe (u + A)-ES
andthe (u, A)-ES. In both casesu parentsare mutatedto
produce) offspring. However, in the first case(+ selec-
tion), the i bestindividualsare selectedrom the union of
parentsandoffspring. In the secondcase(i.e., , selection),
thebestindividualsareselectednly from theoffspringpro-
duced.

In modernevolution stratayies, not only the decision
variablesof the problemare evolved, but alsothe param-
etersof the algorithmitself (i.e., the standarddeviations).
Thisis called“self-adaptation” Parentsaremutatedusing:

o' (i) = o) x exp(r'N(0,1) + 7N:(0, 1))
&'(i) = 2(i) + N(0,0'(i))

wherer andr’ areproportionalityconstantshatarede-
finedin termsof n.

Also, modernevolution stratejies allow the use of re-
combination(either sexual, when only 2 parentsare in-
volved,or panmictic whenmorethan2 parentsreinvolved
in the generatiorof the offspring).

Somerepresentatie applicationsof evolution stratgjies
arethefollowing [62]:

e Routingandnetworking.



Biochemistry

Optics.

Engineeringdesign.

Magnetism.
2.2 Evolutionary Programming

LawrenceJ. Fogelintroducedin the 1960san approach
called “evolutionary programming”,in which intelligence
is seenasanadaptve behaior [31, 32].

Evolutionary programmingemphasizeghe behaioral
links betweerparentsandoffspring,insteadof trying to em-
ulate somespecificgeneticoperatorgasin the caseof the
geneticalgorithm[34]).

The basic algorithm of evolutionary programmingis
very similar to that of the evolution strategyy. A popu-
lation of individuals is mutatedto generatea set of off-
spring. However, in this case,thereare normally several
typesof mutationoperatorsand no recombination(of ary
type),sinceevolutionis modelledatthespeciedevel in this
caseanddifferentspeciesdo not interbreed. Another dif-
ferencewith respectto evolution strat@iesis thatin this
case eachparentproducesexactly oneoffspring. Also, the
decisionof whetheror not a parentwill participatein the
selectionprocesss now determinedn a probabilisticway,
whereasn theevolution strategyy thisis a deterministigoro-
cess.Finally, no encodingis usedin this case(similarly to
the evolution strategy) andemphasiss placedon the selec-
tion of the mostappropriaterepresentationf the decision
variables.

We will nhow show anexampleof theway in which evo-
lutionaryprogrammingworks. Let usconsideithefinite au-
tomatonfrom Figurel. Thetransitiontablecorresponding
to this automatoris thefollowing:

CurrentState A A
InputSymbol 0 1
Next State B c
OutputSymbol a b

oW W
ocOow
» OO0
o>r0

Consideringthe type of problemat hand,several muta-
tion operatorsarepossible.For example:changean output
symbol,changea transition,add a state,deletea stateand
changethe initial state. The goalis to make this automa-
ton ableto recognizea certainsetof inputs(i.e., a certain
regularexpressionyithout makinga singlemistale.

Some representatie applicationsof evolutionary pro-
grammingarethefollowing [29]:

e Forecasting.

e Generalization.

Games.

Automaticcontrol.

Traveling salespersoproblem.

Routeplanning.

Patternrecognition.

Neuralnetworkstraining.
2.3 GeneticAlgorithms

Geneticalgorithms(originally denominatedgeneticre-
productive plans”) wereintroducedby JohnH. Holland in
the early19609[38, 39]. Themainmotivation of this work
wasthe solutionof machindearningproblems.

Geneticalgorithmsemphasizeéhe importanceof sexual
recombination(which is the main operator)over the muta-
tion operator(whichis usedasa secondaryperator).They
alsouseprobabilisticselection(lik e evolutionaryprogram-
ming andunlike evolution stratejies).

Someof the basicterminologyusedby the geneticalgo-
rithms (GAs) communityis thefollowing [37]:

e A chromosomes adatastructurethatholdsa “string”
of taskparametersyr genesThisstringmaybestored,
for example,asa binary bit-string (binary representa-
tion) or asan array of integers(floating point o real-
codedrepresentationjhat representa floating point
number This chromosomeés analogoudo the base-
4 chromosomepresentin our own DNA. Normally,
in the GA community the haploid model of a cell
is assumedone-chromosomandividuals). However,
diploids have alsobeenusedin the specializeditera-
ture[34].

e A geneis a subsectiorof a chromosomeahat usually
encodeshevalueof asingleparamete(i.e.,adecision
variable).

e An allele is the value of a gene. For example,for a
binaryrepresentatiorachgenemayhaveanalleleof O
or 1, andfor afloating point representatioreachgene
may have anallelefrom 0 to 9.

e A schema(plural schematg is a patternof geneval-
uesin achromosomeyhichmayinclude“do notcare”
states(representedby a # symbol). Thus,in a binary
chromosomegachschemacanbe specifiedby astring
of thesamdengthasthechromosomewith eachchar
acterbeingoneof { 0,1,#}. A particularchromosome
is saidto “contain” a particularschemaif it matches
theschemde.g. chromosomé1101matcheschema
#1#0#).
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Figure 1. Finite automaton with 3 states. Symbols to the left of “/" are input symbols. Symbols to
the right of “/” are output symbols. The initial state is A.

o If thesolutionof aproblemcanberepresentetly aset
of N real-valuedparametersthenthe job of finding
this solution can be thoughtof asa searchin an N-
dimensionakpace Thisregionis simply referredto as
the search spaceof the problem.

e Thefitnessof anindividual is a valuethatreflectsits
performancd(i.e., how well solvesa certaintask). A
fitnessfunction is a mappingof the chromosomen
a populationto their correspondinditnessvalues. A
fithesslandscapeis the hypersuréiceobtainedby ap-
plying thefithessfunctionto every pointin the search
space.

e A building block is a small, tightly clusteredgroup
of geneswhich have co-evolved in sucha way that
their introductioninto ary chromosomeill belikely
to give increasedfitnessto that chromosome. The
building block hypothesis[34] statesthat GAs gen-
eratetheir solutionsby first finding as mary building
blocksaspossible andthencombiningthemtogether
to give the highestfitness.

e Deceptionis aconditionunderwhichthecombination
of goodbuilding blocksleadsto reduceditness rather
thanincreaseditness.This conditionwasproposedy
Goldbeg [34] as a reasonfor the failure of GAs on
certaintasks.

e Elitism (or an elitist stratgy) is a mechanismwhich
ensureghatthe chromosomes®f the highly fit mem-
ber(s)of the populationarepassedn to the next gen-
erationwithout beingalteredby any geneticoperator
Theuseof elitismguaranteethatthemaximumfitness
of the populationnever decreasefom onegeneration
to the next, andit normally producesa fastercorver-
genceof thepopulation.More importantyetis thefact

thatit hasbeen(mathematicallyproventhatelitismis
necessann orderto beableto guaranteeorvergence
of a simplegeneticalgorithmtowardsthe global opti-
mum[61].

Epistasisis the interactionbetweendifferentgenesn
a chromosome. It is the extent to which the contri-
bution to fithessof one genedependson the values
of other genes. Geneticistsusethis term to refer to
a “masking” or “switching” effect amonggenes,and
a geneis consideredo be “epistatic” if its presence
suppressethe effect of a geneat anotherocus. This
conceptis closelyrelatedto deceptionsincea prob-
lemwith high degreeof epistasiss deceptve, because
building blockscannotbeformed.Onthe otherhand,
problemswith little or no epistasisaretrivial to solve
(hill climbing s sufficient).

Exploitation is the procesf usinginformationgath-

eredfrom previously visited pointsin the searchspace
to determinewhich placesmight be profitableto visit

next. Hill climbing is an example of exploitation,

becausst investigatesadjacentpointsin the search
space,and movesin the direction giving the greatest
increasen fitness. Exploitationtechniquesare good

at finding local minima (or maxima). The GA uses
cross@erasanexploitationmechanism.

Exploration is the procesf visiting entirely new re-
gionsof a searchspaceto seeif anything promising
may be found there. Unlike exploitation, exploration
involvesleapsinto unknown regions. Randomsearch
is an example of exploration. Problemswhich have
mary local minima (or maxima)cansometimesonly
besolvedusingexplorationtechniquesuchasrandom
search.The GA useanutationasanexplorationmech-
anism.



A genotyperepresents potentialsolutionto a prob-
lem, andis basicallythe stringof valueschoserby the
user alsocalledchromosome.

e A phenotypeis the meaningof a particularchromo-
some definedexternallyby theuser

e Geneticdrift is the name given to the changesin
gene/alleldrequenciesn a populationovermary gen-
erationsyesultingfrom chanceratherthanfrom selec-
tion. It occursmostrapidly in small populationsand
canleadto someallelesto becomeextinct, thusreduc-
ing the geneticvariability in the population.

e A niche is a group of individuals which have sim-
ilar fitness. Normally in multiobjectve and multi-
modaloptimization,atechniquecalledsharing is used
to reducethe fithessof thoseindividuals who are in
the sameniche, in order to prevent the population
to corverge to a single solution, so that stablesub-
populationscan be formed, eachone corresponding
to a differentobjective or peak(in a multimodal op-
timization problem)of thefunction[21].

Thebasicoperationof a GeneticAlgorithm is illustrated
in thefollowing segmentof pseudo-cod@l1]:

generatenitial population,G(0);
evaluateG(0);
t:=0;
repeat
t=t+1;
generatés(t) usingG(t-1);
evaluateG(t);
until a solutionis found

First, aninitial populationis randomlygenerated.The
individualsof this populationwill beasetof chromosomes
or stringsof characterglettersand/ornumbers)hatrepre-
sentall the possiblesolutionsto the problem.

Oneaspectthat hasgreatimportancein the caseof the
geneticalgorithmis the encodingof solutions. Tradition-
ally, a binary encodinghasbeenadoptedyegardlessof the
type of decisionvariablesof the problemto be solved[34].
Holland[40] providessometheoreticalindbiologicalargu-
mentsfor usingabinaryencoding However, overtheyears,
othertypesof encodinghave beenproposedincludingthe
useof vectorsof realnumbersandpermutationswhichlend
themselesasmore“natural” encodingdor certaintypesof
optimizationproblemg49, 60Q].

Onceanappropriateencodinchasbeenchosenwe apply
afithessunctionto eachoneof thesechromosomem order
to measurehe quality of the solutionencodedy the chro-
mosome.Knowing eachchromosomes fithess,a selection
procesdakesplaceto choosethe individuals (presumably

thefittest) thatwill bethe parentsof the following genera-
tion. The mostcommonlyusedselectionschemesarethe
following [35]:

e ProportionateRepoduction: Thistermis usedgeneri-
cally to describeseveralselectionschemeshatchoose
individualsfor birth accordingto their objective func-
tion valuesf. In theseschemesthe probability of se-
lectionp of anindividual from the ith classin the ¢th
generatiornis calculatedas

Pit = L

23:1 m; ¢ f;

where k classesexist and the total numberof indi-
viduals sumsto n. Sereral methodshave beensug-
gestedfor samplingthis probability distribution, in-
cluding Monte Carlo or roulettewheelselection[42],
stodhasticremainderselection[9, 10], and stodastic
universal selection6, 36).

1)

e RankingSelection:In this schemeproposedy Baker
[5] the populationis sortedfrom bestto worst, and
eachindividual is copiedasmary timesasit can,ac-
cordingto a non-increasing@ssignmenfunction, and
thenproportionateselectionis performedaccordingto
thatassignment.

e TournamentSelection:The populationis shufled and
thenis divided into groupsof & elementfrom which
thebestindividual (i.e., thefittest)will bechosenThis
processhasto be repeatedk times becauseon each
iterationonly m parentsareselectedwhere

_ population size

k

For example, if we use binary tournamentselection
(k = 2), thenwe have to shufle the populationtwice,
sincein eachstagehalf of the parentsrequiredwill
be selected.Theinterestingpropertyof this selection
schemas thatwe canguaranteenultiple copiesof the
fittestindividualamongthe parentf thenext genera-
tion.

e Steady State Selection: This is the techniqueused
in Genitor [72], which works individual by individ-
ual, choosinganoffspringfor birth accordingo linear
ranking, and choosingthe currently worst individual
for replacement.In steady-statselectiononly a few
individualsarereplacedn eachgeneration:usuallya
small numberof the leastfit individuals arereplaced
by offspringresultingfrom cross@er and mutationof
the fittest individuals. This selectionschemeis nor-
mally usedin evolving rule-basedsystemsin which



Figure 2. Example of the binary encoding traditionall y adopted with the genetic algorithm.

incrementallearning (and rememberingvhat hasal-
readybeenlearned)is importantandin which mem-
bersof the populationcollectively (ratherthanindivid-
ually) solve the problemat hand[51].

After beingselectedgcrosswer takesplace. During this
stage,the geneticmaterial of a pair of individualsis ex-
changedn orderto createthe populationof the next gener
ation. Therearethreemainwaysof performingcrosseer:

1. Single-pointcrosswer. A positionof thechromosome
israndomlyselectedasthecrosseerpointasindicated
in Figure3.

2. Two-point crosswer. Two positionsof the chromo-
someare randomly selectedasto exchangechromo-
somicmaterial,asindicatedin Figure4.

3. Uniform crossower. This is a relatively recent
crosswer operatorproposedby Syswerdg66] which
can be seenas a generalizationof the two previous
crosswer techniquesexplainedin this paper In this
casefor eachbit in thefirst offspringit decidegwith
someprobability p) which parentwill contribute its
value in that position. The secondoffspring would
receve the bit from the other parent. Seean exam-
ple of 0.5-uniformcross@erin Figure5. Althoughfor
someproblemsuniform crosseer presentseveralad-
vantagesver othercrosser techniqueg66], in gen-
eral,one-pointcross@er seemdo beabadchoice,but
thereis no clearwinner betweentwo-point and uni-
form crosswer[48].

Mutationis anothelimportantgeneticoperatorthatran-
domly changes geneof achromosomelf we useabinary
representationa mutationchangesa 0 to 1 andviceversa.
An example of how mutationworks is displayedin Fig-
ure 6. This operatorallows the introductionof new chro-
mosomicmaterialto the populationand,from the theoreti-
cal perspectie, it assureshat—gvenary population—the
entiresearchspacds connected11].

If we knew in advancethefinal solution,it would betriv-
ial to determinehow to stopa geneticalgorithm. However,
asthis is not normally the case we have to useoneof the
two following criteria to stopthe GA: either give a fixed

numberof generationsn adwance,or verify whenthe pop-
ulation hasbecomehomogeneousi.e., all or most of the
individualshave the saméfitness).

Traditionally, genetic algorithmsdo not have a self-
adaptatiormechanismTherefore oneof their maindraw-
backsis that their parametergdend to be fine-tunedin an
empiricalmanner

Somerepresentatie applicationsof geneticalgorithms
arethefollowing [34]:

e Optimization(numerical,combinatorial etc.).

Machinelearning.

Databasegoptimizationof queriesgetc.).

Patternrecognition.

Grammargeneration.

Robotmotionplanning.

Forecasting.
2.4 GeneticProgramming

One of the original goalsof artificial intelligence(Al)
was the automaticgenerationof computerprogramsthat
could producea desiredtask given a certaininput. Dur-
ing several years,sucha goal seemedoo ambitioussince
the size of the searchspaceincreasesxponentiallyaswe
extendthe domainof a certainprogramand,consequently
ary techniquewill tendto produceprogramghatareeither
invalid or highly inefficient.

Someearly evolutionary algorithmswere attemptedn
automaticprogrammingtasks,but they were unsuccessful
and were severly criticized by someAl researcher$29].
Over the years,researchersealizedthat the key issuefor
using evolutionary algorithmsin automaticprogramming
taskswasthe encodingadopted.In this regard,Koza[47]
suggestedhe useof a geneticalgorithmwith a tree-based
encoding.In orderto simplify the implementatiorof such
an approach,the original implementationof this sort of
approach(which was called “genetic programming”)was
doneunderLISP, takingadwantageof thefactthatsuchpro-
gramminglanguagéhasa built-in parser
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Figure 3. Use of a single-point crossover between two chromosomes. Notice that each pair of
chromosomes produces two descendants for the next generation. The cross-point may be located
at the string boundaries, in whic h case the crossover has no effect and the parents remain intact for

the next generation.
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Figure 4. Use of a two-point crossover between two chromosomes. In this case the genes at the
extremes are kept, and those in the middle part are exchanged. If one of the two cross-points
happens to be at the string boundaries, a single-point crosso ver will be performed, and if both are at
the string boundaries, the parents remain intact for the next generation.



Parent 1 Parent 2
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Parent 1 Parent 2
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Figure 5. Use of 0.5-uniform crossover (using 50% probability) between two chromosomes. Notice
how half of the genes of each parent goes to each of the two children. First, the bits to be copied from
each parent are selected randoml y using the probability desired, and after the first child is generated,
the same values are used to generate the second child, but inverting the source of procedence of

the genes.

Mutation points

110/0/1/0]1]1|1| Originalstring

1/0/1/12/01|0|1 String after mutation

Figure 6. An Example of mutation using binary representation.

Figure 7. An example of a chromosome used in genetic programming.



The tree-encodingadoptedby Kozaobviously requires
of differentalphabetsand specializedoperatorsfor evolv-
ing randomlygenerategrrogramsuntil they becomel00%
valid. Note however, thatthe basicprinciplesof this tech-
niguemay be generalizedo ary otherdomainand,in fact,
geneticprogramminghasbeenusedin a variety of applica-
tions[47].

The treesusedin geneticprogrammingconsistof both
functionsandterminals. The functionsnormally adopted
arethefollowing [47]:

1. Arithmetic operationge.g.,+, -, X, +)

2. Mathematicafunctions(e.g.,sine,cosine Jogarithms,
etc.)

. BooleanOperationge.g.,AND, OR,NQT)
. Conditional§(IF-THEN-ELSE)
. Loops(DO-UNTIL)

. Recursve Functions

N oo o~ W

. Any otherdomain-specifi¢dunction

Terminalsaretypically variablesor constantsandcanbe
seenasfunctionsthattake no aguments.An exampleof a
chromosomehat usesthe functionsF={AND, OR, NOT}
andtheterminalsT={A0, A1} is shavn in Figure7.

Crossw@er canbe appliedby numberingthe tree nodes
correspondingo thetwo parentschosen(seeFigure8) and
(randomly)selectinga point in eachof themsuchthatthe
subtreesbelonv such point are exchanged(see Figure 9,
wherewe assumehatthecrosseerpointfor thefirst parent
is 2 andfor the seconds 6). Typically, the sizesof the two
parenttreeswill be differentasin the examplepreviously
shawn. It is alsoworth noticing thatif the crosswer point
is the root of one of the parenttrees,thenthe whole chro-
mosomewill becomea subtreeof the other parent. This
allows the incorporationof subroutinesn a program. It is
alsopossiblethat the roots of both parentsare selectedas
crosswer points. Shouldthatbethe case the crosswer op-
eratorwill have no effectandtheoffspringwill beidentical
to their parents.

Normally, genetic programmingimplementationsim-
posea limit on the maximumdepththat a tree canreach,
asto avoid the generatior(asa byproductof crosseer and
mutation)of treesof very large size that could producea
memoryoverflow [7].

Mutationin geneticprogrammingakesplacethrougha
(random)selectionof a certainnodetree. The subtreebe-
low the chosennodeis replacedby anothertree which is
randomly generated.Figure 10 shovs an exampleof the
useof this operator(the mutationpoint in this exampleis
node3).

Permutatioris an asexual operatorusedin geneticpro-
grammingto emulatethe effect of the inversionoperator
adoptedwith geneticalgorithms([34]. This operatorre-
ordersthe leaves of a subtreeplacedbelon a (randomly
chosen)ode. Its goalis to strengtherthe union of allelic
combinationsvith goodperformancevithin achromosome
[40].

Figure 11 shavs an exampleof the useof the permu-
tation operator(node 4 was selectedn this example). In
Figurell, the symbol* indicatesmultiplicationand* %’
indicates‘protecteddivision”, referringto a division oper
atorthatkeepsour programfrom generatinga systemerror
whenthedivisoris zero.

In geneticprogrammingis also possibleto protector
“encapsulate’a certainsubtreewhich we know to contain
a good building block, asto avoid thatit is destred by
the geneticoperators.The selectedsubtreeis replacedby
a symbolicnamethat pointsto the reallocationof the sub-
tree. Suchsubtrees separately}compiledandlinkedto the
restof thetreein ananalogousvay to the externalclasses
of objectorientedlanguagesFigure 12 shavs an example
of encapsulatiorin which the right subtreeis replacedby
thename(EO).

Normally, it is alsonecessaryo edittheexpressiongen-
eratedduring the evolutionaryprocessasto simplify them.
However, the simplicationrulesto be adoptechormally de-
pendon the problemat hand. For example,if the outputof
our programareBooleanexpressionsye couldapplyrules
suchasthefollowing:

(AND X X) X
(OR X X) X
(NOT (NOT X)) X

Finally, geneticprogrammingalsoprovidesmechanisms
to destry a certainpercentagef the populationsuchthat
we canrenovatethe chromosomiamaterialafter a certain
numberof generationsThis mechanism¢alledexecution
is very usefulin highly complex domainsin which our pop-
ulation may not containa single feasibleindividual even
aftera considerablyarge numberof generations.

3 A More General View of Evolutionary Al-
gorithms

Despitethe obviousdifferencesandmotivationsof each
of the aforementionedparadigms,the trend in the last
few yearshasbeento decreasehe differencesamongthe
paradigmsandrefer(in genericterms)simply to evolution-
ary algorithmswhentalking aboutary of them.

In general,we needthe following basiccomponentto
implementanEA in orderto solve a problem[49]:
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Figure 10. An example of mutation in genetic programming.
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Figure 11. An example of permutation in genetic programming.
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Figure 12. An example of encapsulation in genetic programming.

1. A representationf the potentialsolutionsto the prob-
lem. Theselectionof anappropriateencodingscheme
tendsto becrucialfor the goodperformancef anEA
[60].

2. A wayto createaninitial populationof potentialsolu-
tions (this is normally donerandomly but determinis-
tic approachesanalsobeused).

3. An evaluationfunction that plays the role of the en-
vironment,rating solutionsin termsof their “fitness”.
The definition of a goodfitnessfunctionis alsovital
for having agoodperformance.

4. A selectiomprocedurghatchoosesheparentghatwill
reproduce.

5. Evolutionary operatorsthat alter the compositionof
children(normally, cross@erandmutation).

6. Valuesfor variousparametershatthe evolutionaryal-
gorithm uses(populationsize, probabilitiesof apply-
ing evolutionaryoperatorsetc.).

EAs differ from traditionalsearchtechniquesn several
ways[11]:

e EAs do not require problem specific knowledge to
carry out a search. However, if such knowledgeis
available,it canbe easilyincorporatecasto make the
searchmoreefficient.

e EAs usestochastidnsteadof deterministicoperators
andappeato berobustin noisyervironments.

e EAsareconceptuallysimpleandeasyto implement.
e EAshave awide applicability.
e EAsarerelatively simpleto parallelize.

e EAsoperateona populationof potentialsolutionsata
time. Thus,they arelesssusceptibldo falseattractors
(i.e.,local optima).

It is worth indicating that the ever-growing popularity
of evolutionary algorithmsin a variety of applicationdo-
mainstendsto be relatedto their good reputationas “op-
timizers” (eitherfor single-objectye or for multi-objective
problemg[56, 14]). Thisis remarkabldf we considerthat
someof them (namely geneticalgorithms)were not orig-
inally proposedfor that type of applicationand that their
use in optimization tasks has been questionedby some
well-establishedesearcherin the evolutionary computa-
tion community[43]. Apparently the reportedsucces®f
evolutionaryalgorithmshasresultedsufiiciently corvincing
for practitionersandthereforetheir popularity[4].

4 SomeApplicationsin Biometrics

Sincetheir very inception, several researcherbave at-
temptedto use evolutionary algorithmsfor tasksrelated
to patternrecognition,imageprocessing¢lassificatiorand
machinelearning[13, 17, 71, 28, 65, 73, 27]. However,
most of this early work was mainly focusedon the algo-
rithmic developmentaspectratherthan on an specificap-
plication. Thus, for sometime, therewas relatively little
researclon the developmenbf evolutionaryalgorithmsfor
specifichiometricapplications.This situationhaschanged
in the lastfew years[63], althoughthe useof otherheuris-
tics suchasneuralnetworksis still morecommonthanthe
useof evolutionaryalgorithms[41].

Next, we will review a few casestudiesin this area
which aim to provide a generalpicture of the type of
researctbeingconductechowadays.

Fingerprint Identification: Ammar& Tao[1] usedgenetic
algorithmsfor optimizing the alignmentof a pair of fin-
gerprintimages.The authorsemphasizehe importanceof
the preprocessingtageof thefingerprintidentificationpro-
cess.Thepurposeof thispreprocessingtages to aligntwo
regions of interestextractedfrom eachof the two original
fingerprints,so thatthey canbe submittedto the decision-



making process. For this application,the authorsconsid-
eredthe coordinatesof the smallerimageto be compared
with the largerimage(i.e., the fingerprintextractedfrom a
databasdor possiblematching)togetherwith its rotation
angle as the decisionvariablesto be encoded(using real
numbers)as chromosome®f the geneticalgorithm. The
correlationcoeficient betweenthe smallerimageand the
largerimagewasusedasthe fitnessfunction to be applied
to eachchromosomeAn aspecemphasizedh thiswork is
the high computationakostinvolvedin evaluatingthe fit-
nessfunction. For a 100 x 100 image,about10,000calcu-
lationsarerequiredto getthe correlationcoeficient, which
involvesa very time-consumingprocess.In orderto over
comethis problem,the authorsdecidedto adopta steady-
stategeneticalgorithm, which tendsto replaceonly a few
individualsateachgeneratior(asopposedo traditionalge-
netic algorithmsin which the entire populationis replaced
ateachgeneration).This wasmoreefficient (computation-
ally speakingXor this applicationandthereforethe choice.
For validatingtheir approachthe authorsusedthe NIST
FingerprintDatabasewhich contains8-bit gray scaleim-
agesor randomlyselectedingerprints. The geneticalgo-

rithm was comparedwith respecto two otherapproaches:

a 2D searchalgorithmpreviously proposedy the sameau-
thors[2] anda 3D brute-forcealgorithm.It is worthindicat-
ing thatthesetwo approachesrebasicallyrandomsearch
algorithmswhosemain differenceis that the first (2D) ig-
norestherotationtransformationn registration.As amatter
of fact, the 3D algorithmtries every possibility and, there-
fore, it alwaysfindsthebestcorrelation.

The resultsindicated several interestingthings. First,
the running time of the geneticalgorithm did not seem
to be sensitve to the size of the searchspaceas opposed
to the two other approachesompared. Regarding the
quality of the results, the genetic algorithm performed
betterthanthe 2D algorithm(the geneticalgorithmwas,on
average,13% moreaccurataisingthe samecomputational
time). Regardingthe 3D brute-forceapproachthe genetic
algorithmwas ableto matchits final registrationaccurag
but usingabout1/10thof its computationatime.

FaceRecognition: TellerandVeloso[68] usedgeneticpro-
grammingfor facerecognitiontasks. The authorsconsid-
eredtheimagesto be processe@dsimagesignalsandthus,
they proposedthe use of algorithmsthat analyzesignals.
For thatsale, a systenthatlearnsthesealgorithmsthrough
evolution was adopted. The systemdevelopedby the au-
thorsis called PADO (Parallel Algorithm Discovery and
Orchestration]69]. Thelearningcoreof the PADO archi-
tectureis geneticprogramming.The PADO architecturds
designedo learnto take sighalsasinput andoutputcorrect
clasdabels.Having N classeso choosdrom, PADO starts
by learningN different‘systems”.Eachof thesesystemss

responsibldor takinga signalasinputandreturninga con-
fidencethata certainclassC is the correctlabel. Eachsys-
temis built out of several programdearnedby PADO. It is

interestingto notethateachof theseprogramsdoesexactly
thesameasthe systemiit takesa signalasinputandreturns
a confidencevalueregardingthe correctnes®f a givenla-

bel. PADO performsobjectrecognitionby orchestratinghe
responsesf theprogramswithin eachsystemandthendoes
the samewith all the systems.Eachsystemis build from

the programsthat hadthe bestperformancevhenlearning
to recognizanstance®f a class(basedontheirtrainingre-
sults). The responsegatheredirom all the programsare
weightedandtheir weightedaverageof responsess inter-

pretedasthe confidencahatthe given systemhasthatthe
signalin questioncontainsanobjectfrom acertainclass.

PADO evolves programsin a PADO-specific graph
structuredanguagg69]. At the beginning of the process,
themainpopulationconsistof M randomlygenerategro-
grams(theseprogramsare generatedising a grammarfor
the legal syntaxof thelanguage) All programsn this lan-
guageareconstrainedy the syntaxto returna numberthat
is interpretedasa confidencevalue betweenra certainmin-
imum and maximumconfidencdevel. Some*“intelligent”
cross@er and mutationoperatorsare adoptedand are co-
evolvedwith themainpopulation[67].

Theimagesusedfor thevalidationof theapproachwere
taken from a databasdrom Carngie-Mellon University.
Theseimagesconsistof headand shouldershots of 20
different peoplein an office background. The database
has 28 imagesof eachperson. So, the authorsuseda
total of 560 images (256 x 256 8-bit grayscaleimages
were adopted). PADO achiered a 92% recognitionrate
distinguishingamong20 differentfaceclasses.

Handwritten Word Recognition: Morita etal. [53] pro-
poseda methodologyfor featureselectionin unsupervised
learningwhichwasappliedto handwrittenwordrecognition
tasks.Theapproachs basednamulti-objective evolution-
ary algorithm (MOEA) called the NondominatedSorting
GeneticAlgorithm (NSGA) [64]. Multiobjective optimiza-
tion problemshave 2 or more objective functions (which
arenormallyin conflict with eachother). Thus,the notion
of optimumis differentin this case. The notion of “op-
timum” thatis most commonly adoptedis that originally
proposedy FrancisYsidro Edgevorth [26] andlater gen-
eralizedby Vilfredo Pareto[57]. MOEAs adopta differ-
entselectionschemefrom the one usedin traditional evo-
lutionary algorithms. In this case,selectionschemesghat
rank the populationbasedon the Paretooptimality of the
individualsarecommonlyadopted14, 20]. An important
propertyof MOEAsis thatthey needto beableto maintain
several trade-of solutions(called “nondominated”)at the
sametime. Therefore they normally requirespecialmech-



anismsto maintaindiversity andto avoid corvergenceto a
singlesolution(somethingthat normally occurswith tradi-
tional evolutionaryalgorithmsbecaus®f stochastimoise).
The goalof thework by Morita et al. [53] wasto find a
setof nondominatedolutionsthat containecthe moredis-
criminantfeaturesandthe more pertinentnumberof clus-
ters. The two objectivesto be optimized simultaneously
were: minimize the numberof featuresandminimize a va-
lidity index that measureghe quality of clusters. A stan-
dard K -Meansalgorithmwasthenappliedto form thegiven
numberof clustersbasedon the selectedfeaturesand the
numberof selectedclusters. After performingtwo exper
imentson syntheticdatasets,the authorsadopteda word
classifierusedin someof their previous work [52]. In
their study a word imagewas segmentedinto graphemes,
eachof which consistedof a correctly sgmented,under
segmentedpr anover-sggmenteccharacterThen,two fea-
ture setswereextractedfrom the sequencef graphemeso

feedthe classifiers. In orderto allow a betterassessment

of their results the authorsconsiderednly onefeatureset
basedon a mixture of sgmentatiorprimitivesandconcar-

ity and contourfeatures. The methodologyof the authors
consistedf applyingthe NSGA to obtaina setof nondom-
inatedsolutions. Then,the incorporationof users prefer

enceswas necessanasto chooseonly one solutionfrom

the setproduced. The authorsdecidedto train eachnon-
dominatedsolution obtained. Then they usedeachclas-
sifier in the systemand chosethe solution that supplied
the bestword recognitionresulton the validation setpro-

posed.Theresultswerecomparedvith respecto theuseof

the traditional methodologypreviously adoptedby the au-
thorsfor this problem.Theauthorsreportthatthe useof an
evolutionarymultiobjective optimizationapproactkeptthe
recognitionratesat the samelevel asthe traditional strat-
egy while reducingthe time requiredfor training the dis-

creteHiddenMarkov Modelsadopted. This wasachieved
becauseghe approachreducedhe numberof featureqfrom

34 to 29) andthe numberof clusters(from 80 to 36) with

respecto theuseof atraditionaltechnique.

5 SomePossibleReseach Dir ections

Despite the evident popularity of approachesuch as
neuralnetworks and statisticalmethodsin biometrics,the
useof evolutionaryalgorithmshasattracteda growing in-
terestin the lastfew years. However, therearestill mary
possibleresearchdirectionsthatmay be worth exploringin
thisarea.Next, we will briefly discussa few of them:

e Multiobjecti ve Optimization: In the previous sec-
tion, we analyzedan applicationin which a multiob-
jective optimizationapproachwas adoptedfor hand-
written characterrecognition. Due to the multiobjec-

tive natureof mary problemgi.e.,theexistenceof sev-

eral conflicting objectivesthat we aim to optimize at
thesametime), it is verylikely thattheuseof multiob-
jective optimizationtechniquedecomesnorepopular
in biometrics.Amongthe possibletechniquedo solve
multiobjective optimizationproblemsgvolutionaryal-
gorithms presentseveral advantagesover traditional
mathematicaprogrammingtechniqueq50]. For ex-

ample, evolutionary algorithms have a population-
basednaturewhich allows them to generateseveral
elementsof the Paretooptimal setin onerun. Addi-

tionally, evolutionaryalgorithmsdo notrequireanini-

tial searchpointandarelesssensitve to the shapeand
continuity of the Paretofront [14, 20].

Use of Genetic Programming: As we saw before,
the useof tree-encoding$n a geneticalgorithm (the
so-called“genetic programming”)is a powerful aid

for automatedorogramming. Suchtype of encoding
is alsovery usefulfor classificationand datamining

tasks[33, 70]. Consequentlythe useof geneticpro-

grammingin biometrics,althoughnot widely spread
yet, is expectedto considerablygrow in the next few

years.lt is worth indicating,however, thatthe useof a
morecomplex encodingwhile allowing tacklingmore
comple problems,also involves a higher computa-
tional cost(this appliesto multiobjective optimization
aswell).

Use of Alter native Metaheuristics: In recentyears,
other biologically-inspired metaheuristicshave be-
comeincreasinglypopularin a wide variety of appli-
cations[16]. It is expectedthat several of theseap-
proachesareeventuallyadoptedn biometricapplica-
tions. Representate examplesof thesenew meta-
heuristicsarethefollowing:

— Particle Swarm Optimization: Proposedby
Kennedyand Eberhar{44, 46], this metaheuris-
tic simulateghe movementsof a group (or pop-
ulation) of birds which aim to find food. The
approactcanbe seenasa distributedbehaioral
algorithmthatperforms(in its moregeneralver
sion)multidimensionakearchln thesimulation,
the behavior of eachindividual is affectedby ei-
ther the bestlocal (i.e., within a certainneigh-
borhood)or the bestglobal individual. The ap-
proachusesthenthe conceptof populationand
a measureof performancesimilar to the fitness
valueusedwith evolutionaryalgorithms.Theap-
proachintroducegheuseof flying potentialsolu-
tionsthroughhyperspacéusedto accelerateon-
vergence)andallows individualsto benefitfrom
their pastexperiences.This techniquehasbeen



successfullyusedfor both continuousnonlinear
anddiscretebinary optimization[25, 45, 46]

— Artificial Immune Systems Computationally
speaking,our immune systemcan be seenasa
highly parallelintelligent systemthatis able to
learnandretrieve previousknowledge(i.e.,it has
“memory”) to solve recognitionand classifica-
tion tasks.Dueto theseinterestingfeaturessev-
eral researcherhave developedcomputational
modelsof the immunesystemand have usedit
for avarietyof tasks,includingclassificatiorand
patternrecognition[19, 54, 55].

— The Ant System This is a metaheuristicin-
spired by colonies of real ants, which de-
posita chemicalsubstancen the groundcalled
phelomone[22, 15, 24]. This substancenflu-
enceshe behavior of the ants: they tendto take
those pathswhere thereis a larger amountof
pheromone.Pheromonerails canthus be seen
asanindirectcommunicatiormechanisnamong
ants. From a computerscienceperspectie, the
ant systemis a multi-agentsystemwhere low
level interactionsbetweensingleagentg(i.e., ar-
tificial ants)resultin a complex behaior of the
entireantcolory.

The ant systemwas originally proposedor the
traveling salesmarproblem(TSP), and most of

the currentapplicationsof the algorithmrequire
the problemto be reformulatedasonein which

the goalis to find the optimal path of a graph.
A way to measurehe distancesbetweennodes
is alsorequiredin orderto apply the algorithm
[23]. Despitethis limitation, this approachhas
beenfoundto be very successfuln a variety of

combinatorialoptimizationproblemg22, 8].

6 Conclusions

We have provideda generaintroductionto evolutionary
algorithms,discussingheir threemain paradigms:evolu-
tion strateies, evolutionary programmingand genetical-
gorithms.After that,we have analyzedsomerepresentatie
applicationsof evolutionaryalgorithmsin biometrics,also

indicatingsomepotentialresearchpathsfor futureresearch.

As indicatedbefore,it is expectedthatthe useof evolution-
ary algorithmsin biometricssubstantiallyincreasesvithin

the next few yearsdueto the high potential(and previous
evidenceof successpf thesetechniquesn a wide variety
of applications,ncluding datamining, patternrecognition
andclassificatiortasks.

Acknowledgments

The author acknavledges support from CONACyYT
throughprojectNo. 42435-Y,

References

[1] H. T. A. amd Yongyi Tao. Fingerprintregistrationusing
geneticalgorithms. In Proceedingof the 3rd IEEE Sym-
posiumon Application-SpecifiSystemand Softwae Engi-
neering Technolagy (ASSET'00) pages148-154 Richard-
son,Texas,March2000.IEEE ComputerSociety

[2] H. Ammar, S. Zeng,andZ. Miao. Parallel processingand
fingerprint image comparison. International Journal on
Modellingand Simulation 18(2):85-99,1998.

[3] T.Back. EvolutionaryAlgorithmsin Theoryand Practice

Oxford University PressNew York, 1996.

[4] T. Back,D. B. Fogel,andZ. Michalewicz, editors. Hand-
bookof EvolutionaryComputationInstituteof PhysicsPub-
lishing andOxford University PressNew York, 1997.

[5] J. E. Baker. Adaptive SelectionMethodsfor GeneticAl-
gorithms. In J. J. Grefenstette,editor, Proceedingsof
the First International Confeenceon GeneticAlgorithms
pagesl101-111.LawrenceErlbaum Associates Hillsdale,
New Jersg, July 1985.

[6] J.E.Baker. ReducingBiasandInefficiengy in the Selection
Algorithm. In J. J. Grefenstetteeditor, GeneticAlgorithms
and Their Applications: Proceedingof the Secondinter-
national Confeenceon GeneticAlgorithms pagesl4-22.
LawrenceErlbaumAssociatesHillsdale, New Jersg, July
1987.

[7] W. Banzhaf,P. Nordin, R. E. Keller, and F. D. Fancone.
GeneticProgramming An Introduction MorganKaufmann
PublishersSanFranciscoCalifornia,1998.

[8] E.BonabeauM. Dorigo, andG. Theraulaz.Swarmintelli-
gence From Natural to Artificial Systems Oxford Univer-
sity PressNew York, 1999.

[9] L. B. Booker. IntelligentBehavioras an Adaptationto the
TaskEnvironment PhDthesis,Logic of ComputersGroup,

University of Michigan,Ann Arbor, Michigan,1982.
[10] A. Brindle. GeneticAlgorithmsfor FunctionOptimization

PhDthesis,Departmenbf ComputerScienceUniversity of

Alberta,Edmonton Alberta, 1981.
[11] B. P. BucklesandF. E. Petry editors. GeneticAlgorithms
TechnologySeriesIEEE ComputerSocietyPress1992.
[12] W. D. Cannon.TheWsdomoftheBody NortonandCom-

pary, New York, 1932.

[13] D. Cavicchio. AdaptiveSeach Using SimulatedEvolution
PhD thesis,University of Michigan, Ann Arbor, Michigan,
1970.

[14] C. A. CoelloCoello,D. A. Van Veldhuizen,andG. B. La-
mont. EvolutionaryAlgorithmsfor SolvingMulti-Objective
Problems Kluwer AcademicPublishersNew York, May
2002.1SBN 0-3064-6762-3.

[15] A. Colorni, M. Dorigo, andV. Maniezzo. DistributedOpti-
mizationby Ant Colonies. In F. J. VarelaandP. Boumine,
editors, Proceedingf the First EuropeanConfeenceon
Artificial Life, pagesl34-142MIT PressCambridgeMA,
1992.



(16]

(17]

(18]
(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

D. Corne,M. Dorigo, andF. Glover, editors. New Ideasin
Optimization McGraw-Hill, London,1999.

F. N. Cornett.An Applicationof EvolutionaryProgramming
to PatternRecognition. Masters thesis,New Mexico State
University, LasCrucesNew Mexico, 1972.

C. R. Darwin. The Variation of Animalsand Plantsunder
Domestication Murray, London,secondedition, 1882.

D. Dasguptagditor Artificial ImmuneSystemsnd Their
Applications SpringerVerlag,Berlin, 1999.

K. Deh Multi-Objective Optimizationusing Evolutionary
Algorithms JohnWiley & Sons, Chichester UK, 2001.
ISBN 0-471-87339-X.

K. DebandD. E. Goldbeg. An Investigationof Nicheand
SpeciesFormationin Genetic Function Optimization. In
J.D. Schafer, editor, Proceeding®f the Third International
Confeenceon GeneticAlgorithms pages42-50,SanMa-
teo, California, Junel989.Geoge MasonUniversity, Mor-
ganKaufmannPublishers.

M. Dorigo andG. D. Caro. The Ant Colory Optimization
Meta-Heuristic. In D. Corne, M. Dorigo, and F. Glover,
editors,New Ideasin Optimization pagesl1-32,London,
1999.McGraw-Hill.

M. Dorigo, V. ManiezzoandA. Colorni. Positve Feedback
asaSearclStratgy. TechnicaReport91-016 Dipartimento
di Elettronica,Politecnicodi Milano, Italy, 1991.

M. Dorigo, V. Maniezzo,and A. Colorni. The Ant Sys-
tem: Optimizationby a colory of cooperatingagents.|EEE
Transactionson SystemsMan, and Cybernetics- Part B,
26(1):29-411996.

R. Eberhartand Y. Shi. ComparisorbetweenGeneticAl-
gorithmsandParticle Swarm Optimization. In V. W. Porto,
N. Saraanan,D. Waagen,and A. Eibe, editors, Proceed-
ingsof the SeventhAnnualConfeenceon EvolutionaryPro-
gramming pages611-619SpringefVerlag,March1998.

F. Y. Edgavorth. MathematicaPhysics P. Keaganl.ondon,
England,1881.

A. C. Englander Machine Learning of Visual Recogni-
tion Using GeneticAlgorithms. In J. J. Grefenstettegd-
itor, Proceedingsof the First International Confeenceon
GeneticAlgorithmsand Their Applications pagesl97—-201,
Hillsdale,New Jersg, July 1985.LawrenceErlbraumAsso-
ciates,Publishers.

J. Fitzpatrick, J. Grefenstetteand D. Van Gutch. Image
registrationby geneticsearch. In Proceedingf the IEEE
Southeas€onfeence pages460—-464,1984.

D. B. Fogel. EvolutionaryComputationToward a New Phi-
losophyof Machine Intelligence Thelnstitute of Electrical
andElectronicEngineersNew York, 1995.

D. B. Fogel, editor EvolutionaryComputation.The Fossil
Recod. SelectedReadingson the History of Evolutionary
Algorithms The Instituteof ElectricalandElectronicEngi-
neersNew York, 1998.

L. J.Fogel. Artificial IntelligencethroughSimulatedEvolu-
tion. JohnWiley, New York, 1966.

L. J.Fogel. Artificial IntelligencethroughSimulatedevolu-
tion. Forty Years of EvolutionaryProgramming JohnWiley
& Sons,Inc.,New York, 1999.

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

A. A. Freitas.A GeneticProgramming-ramevork for Two
DataMining Tasks:ClassificatiorandGeneralizedRuleIn-
duction. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,
M. Garzon,H. lba, andR. L. Riolo, editors, Proceedings
of the SecondAnnualConfeenceon GeneticProgramming
page®96-101 SanFranciscoCalifornia,July 1997.Morgan
KaufmannPublishers.

D. E. Goldbeg. GeneticAlgorithmsin Seach, Optimization
and Machine Learning Addison-Wesley PublishingCo.,
ReadingMassachusett4,989.

D. E. Goldbeg andK. Deh A comparisonof selection
schemesisedin geneticalgorithms.In G. J.E. Rawlins, ed-
itor, Foundationsof GeneticAlgorithms pages69-93.Mor-
ganKaufmann,SanMateo,California,1991.

J.J. Grefenstett@ndJ. E. Baker. How GeneticAlgorithms
work: A critical look atimplicit parallelism.In J.D. Schaf-
fer, editor, Proceedingsf the Third International Confer
enceon GeneticAlgorithms pages20-27,SanMateo,Cali-
fornia, June1989.MorganKaufmannPublishers.

J. Heitkoetter and D. Beaslg. The hitch-hiker's guide
to evolutionary computation (faq in comp.ai.genetic).
USENET, sep1995. (Version3.3).

J. H. Holland. Concerningefficient adaptve systems. In
M. C. Yovits, G.T. JacobiandG. D. Goldstein gditors,Self-
OrganizingSystems—196page215-230 SpartarBooks,
WashingtonD.C.,1962.

J. H. Holland. Outlinefor alogical theoryof adaptve sys-
tems. Journal of the Associatiorfor ComputingMachinery,
9:297-3141962.

J.H. Holland. Adaptationin Natural andAtrtificial Systems
University of MichiganPress Ann Arbor, Michigan,1975.
K. HuangandH. Yan. Off-Line SignatureVerificationby
a Neural Network Classifier In Proceedingsof the 17th
Australian Confeenceon Neural Networkspagesl90-194,
CanberraAustralia,1996.AustralianNationalUniversity
A. K. D. Jong.An Analysisof the Behaviorof a Classof Ge-
neticAdaptiveSystemsPhDthesis Universityof Michigan,
1975.

K. A. D. Jong.GeneticAlgorithmsareNOT FunctionOpti-
mizers.In L. D. Whitley, editor, Foundationsof GeneticAl-
gorithms2, pagess—17.MorganKaufmannPublishersSan
Mateo,California,1993.

J.KennedyandR. C. Eberhart. Particle Swarm Optimiza-
tion. In Proceedingsf the 1995 IEEE International Con-
ferenceon Neural Networks pagesl 942—1948Piscatavay,
New Jersg, 1995.IEEE ServiceCenter

J.KennedyandR. C. EberhartA DiscreteBinary Versionof
the Particle Swarm Algorithm. In Proceeding®f the 1997
IEEE Confeenceon Systemsian, and Cyberneticspages
4104-4109 Piscatavay, New Jersg, 1997.|EEE Service
Center

J.KennedyandR. C. Eberhart.Swarmintelligence Morgan
KaufmannPublishersSanFranciscoCalifornia,2001.
J.R. Koza. GeneticProgramming On the Programmingof
Computes by Meansof Natural Selection The MIT Press,
CambridgeMassachusettd4,992.

Z. Michalewicz. GeneticAlgorithms+ Data Structues =
EvolutionPrograms SpringerVerlag,seconckedition,1992.



[49] Z. Michalewicz. GeneticAlgorithms+ Data Structues=
EvolutionPrograms SpringefVerlag,New York, third edi-
tion, 1996.

[50] K. M. Miettinen. Nonlinear Multiobjective Optimization
Kluwer AcademicPublishersBoston,Massachusett4998.

[51] M. Mitchell. An Introductionto GeneticAlgorithms The
MIT PressCambridgeMassachusett4,996.

[52] M. Morita, R. Sabourin,F. Bortolozzi,andC. Suen. Sey-
mentationand recognitionof handwrittendates. In Pro-
ceedingof the Eighth International\Workshopon Frontiers
of Handwriting Recanition (IWFHR’02), pages105-110,
Ontario,CanadaAugust2002.IEEE ComputerSociety

[53] M. Morita, R. Sabourin,F. Bortolozzi,andC. Suen. Unsu-
pervisedfeatureselectionusing multi-objectve genetical-
gorithm for handwrittenword recognition. In Proceedings
of the 7th International Confeenceon DocumentAnalysis
andRecanition (ICDAR’2003) page$66—-670Edinburgh,
Scotland August2003.

[54] L. Nunesde CastroandJ. Timmis. Artificial InmnueSys-
tem: A New ComputationalntelligenceApproac. Springer
Verlang,GreatBritain, Septembe2002.ISBN 1-8523-594-
7.

[55] L. NunesdeCastroandF. J.Von Zuben.LearningandOpti-
mizationUsingthe Clonal SelectionPrinciple. IEEE Trans-
actionson EvolutionaryComputation6(3):239-2512002.

[56] A. Osyczka. EvolutionaryAlgorithmsfor Singleand Mul-
ticriteria DesignOptimization PhysicaVerlag, Germary,
2002.1SBN 3-7908-1418-0.

[57] V. Pareto.Cours D’EconomiePolitique, volumel andll. F.
Rouge,Lausannel1896.

[58] S.S.Rao. EngineeringOptimization.Theoryand Practice
JohnWiley & Sons,Inc., third edition,1996.

[59] I. Rechenbay. Evolutionsstategie: Optimierungtechnis-
cher Systemenach Prinzipien der biologischen Evolution
Frommann—Holzboodstuttgart, Germaly, 1973.

[60] F. Rothlauf. Repesentationgor Geneticand Evolutionary
Algorithms Physica-\¥érlag,New York, 2002.

[61] G. Rudolph. CorvergenceAnalysisof CanonicalGenetic
Algorithms. IEEE Transactionson Neurl Networks 5:96—
101,Januaryl994.

[62] H.-P. Schwefel.NumericalOptimizationof ComputeMod-
els. Wiley, ChichesterUK, 1981.

[63] J.Soldek,V. Shmerlo, P. Phillips, G. Kukhare, W. Rogers,
andS. Yanushkvich. ImageAnalysisand PatternRecog-
nition in Biometric TechnologiesIn Proceeding®of theIn-
ternational Confeenceon the Biometrics: Fraud Preven-
tion, Enhancedservice page270-286)] asVegas,Nevada,
1997.

[64] N. SrinivasandK. Deh Multiobjective OptimizationUsing
Nondominatedsortingin GeneticAlgorithms. Evolutionary
Computation2(3):221-248Fall 1994.

[65] I. Stadiyk. SchemaRecombinatiorn a PatternRecognition
Problem. In J. J. Grefenstetteeditor, GeneticAlgorithms
and Their Applications: Proceedingsof the Secondinter-
national Confeenceon GeneticAlgorithms pages27-35,
Hillsdale,New Jersg, July 1987.LawrenceErlbraumAsso-
ciates,Publishers.

[66] G.SyswerdaUniform Crosseerin GeneticAlgorithms.In
J.D. Schafer, editor, Proceeding®fthe Third International
Confeenceon GeneticAlgorithms pages2—9, SanMateo,
California, 1989.MorganKaufmannPublishers.

[67] A. Teller. Evolving ProgrammersThe Co-evolution of In-
telligent RecombinationOperators. In P. J. Angeline and
K. E. K. Jr, editors, Advancesn Genetic Programming
\Volume2, pages45—68.The MIT Press,Cambridge Mas-
sachusetts1996.

[68] A. Teller and M. Veloso. Algorithm Evolution for Face
Recognition: What Makes a Picture Difficult. In Interna-
tional Confeenceon EvolutionaryComputatior(ICEC’95),
pages608-613 Perth,Australia,1995.1EEE.

[69] A. TellerandM. Veloso.PADO: A New LearningArchitec-
ture for ObjectRecognition. In K. lkeuchiandM. Veloso,
editors, SymbolicVisual Learning pages81-116.0Oxford
University Press1996.

[70] A. Teredasai).Park,andV. Govindaraju.Active Handwrit-
ten CharacteiRecognitionUsing GeneticProgramming.In
J. Miller, M. TomassiniP. L. Lanzi, C. Ryan,A. G. Tetta-
manzi,andW. B. Langdon,editors,GeneticProgramming
4th EuropeanConfeence EuroGP 2001, pages371-379,
Lake Como,ltaly, April 2001.Springer

[71] R. Trellue. The Recognitionof HandprintedCharacters
ThroughEvolutionary Programming.Masters thesis,New
Mexico StateUniversity Las CrucesNew Mexico, 1973.

[72] D. Whitley. The GENITOR Algorithm and SelectionPres-
sure:Why Rank-Based\llocation of Reproductre Trialsis
Best. In J. D. Schafer, editor, Proceedingf the Third In-
ternational Confeenceon GeneticAlgorithms pagesl16—
121. MorganKaufmannPublishers SanMateo, California,
July 1989.

[73] S.W. Wilson. Adaptive “Cortical” PatternRecognition.In
J. J. Grefenstetteeditor, Proceedingf the First Interna-
tional Confeenceon GeneticAlgorithmsand Their Appli-
cations pagesl188-196 Hillsdale, New Jersg, July 1985.
LawrenceErlbraumAssociatesPublishers.

[74] D.D. Zhang.AutomatedBiometrics: Technolagiesand Sys-
tems Kluwer AcademicPublishersMay 2000.

Carlos A. Coello Coello receved the B.Sc. degreein
civil engineeringrom the UniversidadAutbnomade Chia-
pas,México, andthe M.Sc. andthe PhD degreesin com-
putersciencerom TulaneUniversity, USA, in 1991,1993,
and1996,respectiely.

He is currently an associateprofessor(CINVESTAV-
3B Researcherat the electricalengineeringdepartmentf
CINVESTAV-IPN, in Mexico City, México. Dr. Coello
has authoredand co-authoredover 100 technical papers
and several book chapters. He hasalso co-authoredthe
book EvolutionaryAlgorithmsfor SolvingMulti-Objective
Problems(Kluwer AcademicPublishers2002). Addition-
ally, Dr. Coello hassenedin the programcommitteesof
over30internationatonferenceandhasbeentechnicake-
viewerfor over30internationajournalsincludingthe|EEE
Transaction®nEvolutionaryComputationn whichhealso
senesasAssociateEditor. He alsochairsthe TaskForceon



Multi-ObjectiveEvolutionaryAlgorithmsof the IEEE Neu-
ral Networks Society He is a memberof the IEEE, the
ACM andthe Mexican Academyof Sciences.

His major researchinterestsare: evolutionary multi-
objective optimization, constraint-handlingechniquedor
evolutionaryalgorithms,andevolvablehardware.



