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Abstract

Thispaperprovidesa brief introductionto evolutionary
algorithmsandto someof their representativeapplications
in biometrics.Our discussionincludesshortdescriptionsof
geneticalgorithms,evolution strategies,evolutionarypro-
grammingandgeneticprogrammingaswell assomeof the
terminology commonlyadoptedin this area. Then,a few
casestudiesinvolving applicationsof evolutionary algo-
rithms in biometricsare analyzed.In the final part of the
paper, somepossibleresearch directionsare provided.

1 Intr oduction

The ideaof usingtechniquesbasedon theemulationof
themechanismof naturalselectionto solveproblemscanbe
tracedaslongbackasthe1930s[12]. However, it wasuntil
the1960swhenthethreemaintechniquesbasedon thisno-
tion weredeveloped.Theseapproaches,whicharenow col-
lectivelydenominated“evolutionaryalgorithms”,havebeen
veryeffectivefor single-objectiveoptimization[34, 62, 29].

Biometricsis a disciplinethatmeasuresandstatistically
analysesbiologicaldata.Recently, andin thecontext of in-
formationtechnology, thetermhasbeenadoptedto referto
thetechnologiesfor measuringandanalyzinghumanbody
characteristicssuchas fingerprints,eye retinasand irises,
voice patterns,facial patternsandhandmeasurements,es-
pecially for authenticationpurposes[74]. Biometricappli-
cationsinvolve several complex problems. For example,
many currentbiometricapplicationsareclosely relatedto
patternrecognitionandimageanalysis[63]. Thecomplex-
ity of theseproblems(which tendto be approachedusing
statisticaltechniques)makesattractive theuseof heuristics
suchasevolutionaryalgorithms,which have beenfoundto
beverypowerful in awidevarietyof optimizationandclas-

sificationtasks[29, 34, 4].
Theremainderof thispaperis organizedasfollows.Sec-

tion 2 providessomebasicconceptsrelatedto evolutionary
algorithms. In Section3 attemptsto summarizethe mate-
rial from the previous section,by providing a more gen-
eral framework for studying evolutionary algorithmsand
discussingsomeof their main advantages.Section4 dis-
cussesa few representative casestudiesof applicationsof
evolutionaryalgorithmsin biometrics. After that, we pro-
vide somepossiblefuture researchdirectionsin Section5
andour conclusionsin Section6.

2 BasicNotions of Evolutionary Algorithms

The famousnaturalistCharlesDarwin definedNatural
Selectionor Survival of the Fittest as the preservationof
favorableindividualdifferencesandvariations,andthede-
structionof thosethatare injurious [18]. In nature,individ-
ualshave to adaptto their environmentin orderto survive
in a processcalledevolution, in which thosefeaturesthat
make an individual moresuitedto competearepreserved
whenit reproduces,andthosefeaturesthatmake it weaker
areeliminated.Suchfeaturesarecontrolledby unitscalled
geneswhich form setscalled chromosomes. Over subse-
quentgenerationsnot only the fittest individuals survive,
but alsotheirfittestgeneswhicharetransmittedto their de-
scendantsduringthesexualrecombinationprocesswhichis
calledcrossover.

Earlyanalogiesbetweenthemechanismof naturalselec-
tion anda learning(or optimization)processled to thede-
velopmentof theso-called“evolutionaryalgorithms”(EAs)
[3], in which the main goal is to simulatethe evolution-
ary processin a computer. Therearethreemainparadigms
within evolutionaryalgorithms,whosemotivationsandori-
gins were independentfrom eachother: evolution strate-
gies [62], evolutionaryprogramming[32], andgenetical-



gorithms[40]. Additionally, someauthorsconsidergenetic
programming[47] asanotherparadigm,althoughthis can
alsobeseenasa specialtypeof geneticalgorithm.Eachof
thesefour typesof evolutionaryalgorithmwill bediscussed
next in moredetail.

2.1 Evolution Strategies

Whenworking towardshisPhDdegreein engineeringat
theTechnicalUniversityof Berlin, Ingo Rechenberg came
acrosssomeoptimizationproblemsin hydrodynamicsthat
could not be solved using traditional mathematicalpro-
grammingtechniques[58]. Thisledhim to thedevelopment
of a very simpleoptimizationalgorithmwhich consistedof
applyinga setof randomchangesto a referencesolution.
The approachwas later called “evolution strategy” and it
wasformally introducedin 1964[30]. The original evolu-
tion strategy wascalled

���������
-ES,becauseit consistedof

a singleparentthatwasmutated(i.e., subjectto a random
change)to produceanoffspring.Then,theparentwascom-
paredto its offspring andthe bestfrom themwasselected
to becomeparentfor thefollowing iteration(or generation).

In theoriginal (1+1)-EE,anew individualwasproduced
using: �	�

����� �	�
 ��������� �� �

where� refersto thecurrentgeneration(or iteration)and������� �� � is a vectorof independentGaussiannumberswith
medianzero and standarddeviation

�� . It is importantto
emphasizethatan“individual” in anevolutionstrategy con-
tainsthesetof decisionvariablesof theproblem.No encod-
ing is usedin thiscase.So,if thedecisionvariablesarereal
numbers,suchreal numbersaredirectly put togetherasa
singlevectorfor eachindividual.

Let’s considerthefollowing exampleof a (1+1)-ES:

Let usassumethatwe wantto maximize:� � 	 � � 	�� � � ������� 	 � �� 	�� � � ���!�  	 � � �
where:  #"%$ �'&�(*) 	 � � 	+� ) "%$ �'&,(
Now, let ussupposethatourpopulationconsistsof the
following (randomlygenerated)individual:� �	�
 � �� � � �  � $ ����� $ ���-����� $ ���.� $ ���
Let usnow supposethatthemutationsgeneratedare
thefollowing:	 

���� ��	 
 � �����/���.� $ �,� �  � $ �0��� $ 1 � �  � $ 2�3	 

���� ��	�
� �����/���.� $ �,� � ����� $54�6 � � $ 4,6

Now, we comparetheparentwith its offspring:

Parent:
� � 	 
 � � � �  � $ ���.� $ �,� � & $ �

Child:
� � 	 

��� � � � �  � $ 2�3 �.� $ 4,6 � � " ��� $ &�� 1

Since: " ��� $ &+� 187 & $ �
theoffspringwill replaceits parentin thefollowing
generation.

Rechenberg [59] stateda rule for adjustingthestandard
deviation in a deterministicway such that the evolution
strategy couldconvergeto theglobaloptimum.This is now
known asthe“1/5 successrule”, andit consistsof the fol-
lowing:

� � � � � 9: ; � � �  =< �?>A@ if B�C 7 �D> 4� � �  E< �GFH@ if B�C#I �D> 4� � �  =< � if B�C � �D> 4
where< is thenumberof decisionvariables,� is thecur-

rent generation,B�C is the relative frequency of successful
mutations(i.e., thosemutationsin which the offspring re-
placedits parent)measuredover a certainperiod of time
(e.g.,

��� < individuals)and
@ � � $ (�� 6 (this valuewastheo-

reticallyderivedbySchwefel[62]). � � � � isadjustedatevery< mutations.
Over the years,several other variationsof the original

evolution strategy wereproposed,aftertheconceptof pop-
ulation (i.e., a setof solutions)wasintroduced.The most
recentversionsof theevolutionstrategy arethe

�
JK�ML��
-ES

andthe
�
JN�?L��

-ES. In both cases,
J

parentsaremutatedto
produce

L
offspring. However, in the first case(

�
selec-

tion), the
J

bestindividualsareselectedfrom the unionof
parentsandoffspring. In thesecondcase(i.e.,

�
selection),

thebestindividualsareselectedonly from theoffspringpro-
duced.

In modernevolution strategies, not only the decision
variablesof the problemareevolved, but also the param-
etersof the algorithmitself (i.e., the standarddeviations).
This is called“self-adaptation”.Parentsaremutatedusing:�PO �
Q�� � � ��QR��SUT 	 B �
V O ���/�������P�WV��YXZ�/�������!�
	 O �
Q�� �[	 �
Q��\�����/��� �PO ��QR�Z�
where

V
and

V O areproportionalityconstantsthatarede-
finedin termsof < .

Also, modernevolution strategies allow the useof re-
combination(either sexual, when only 2 parentsare in-
volved,orpanmictic,whenmorethan2 parentsareinvolved
in thegenerationof theoffspring).

Somerepresentative applicationsof evolution strategies
arethefollowing [62]:] Routingandnetworking.



] Biochemistry.] Optics.] Engineeringdesign.] Magnetism.

2.2 Evolutionary Programming

LawrenceJ. Fogel introducedin the1960sanapproach
called “evolutionaryprogramming”,in which intelligence
is seenasanadaptivebehavior [31, 32].

Evolutionary programmingemphasizesthe behavioral
links betweenparentsandoffspring,insteadof trying to em-
ulatesomespecificgeneticoperators(asin the caseof the
geneticalgorithm[34]).

The basic algorithm of evolutionary programmingis
very similar to that of the evolution strategy. A popu-
lation of individuals is mutatedto generatea set of off-
spring. However, in this case,thereare normally several
typesof mutationoperatorsandno recombination(of any
type),sinceevolutionis modelledat thespecieslevel in this
caseanddifferentspeciesdo not interbreed.Anotherdif-
ferencewith respectto evolution strategies is that in this
case,eachparentproducesexactly oneoffspring. Also, the
decisionof whetheror not a parentwill participatein the
selectionprocessis now determinedin a probabilisticway,
whereasin theevolutionstrategy this is adeterministicpro-
cess.Finally, no encodingis usedin this case(similarly to
theevolutionstrategy) andemphasisis placedon theselec-
tion of the mostappropriaterepresentationof the decision
variables.

We will now show anexampleof theway in which evo-
lutionaryprogrammingworks.Let usconsiderthefinite au-
tomatonfrom Figure1. Thetransitiontablecorresponding
to this automatonis thefollowing:

CurrentState A A B B C C
InputSymbol 0 1 1 0 0 1
Next State B c B C C A
OutputSymbol a b c b a b

Consideringthe typeof problemat hand,several muta-
tion operatorsarepossible.For example:changeanoutput
symbol,changea transition,adda state,deletea stateand
changethe initial state. The goal is to make this automa-
ton ableto recognizea certainsetof inputs(i.e., a certain
regularexpression)without makingasinglemistake.

Somerepresentative applicationsof evolutionary pro-
grammingarethefollowing [29]:] Forecasting.] Generalization.

] Games.] Automaticcontrol.] Travelingsalespersonproblem.] Routeplanning.] Patternrecognition.] Neuralnetworkstraining.

2.3 GeneticAlgorithms

Geneticalgorithms(originally denominated“geneticre-
productive plans”)wereintroducedby JohnH. Holland in
theearly1960s[38, 39]. Themainmotivationof this work
wasthesolutionof machinelearningproblems.

Geneticalgorithmsemphasizethe importanceof sexual
recombination(which is themainoperator)over themuta-
tion operator(which is usedasasecondaryoperator).They
alsouseprobabilisticselection(like evolutionaryprogram-
mingandunlikeevolutionstrategies).

Someof thebasicterminologyusedby thegeneticalgo-
rithms(GAs)communityis thefollowing [37]:] A chromosomeis adatastructurethatholdsa“string”

of taskparameters,orgenes.Thisstringmaybestored,
for example,asa binarybit-string (binary representa-
tion) or asan arrayof integers(floating point o real-
codedrepresentation)that representa floating point
number. This chromosomeis analogousto the base-
4 chromosomespresentin our own DNA. Normally,
in the GA community, the haploid model of a cell
is assumed(one-chromosomeindividuals). However,
diploidshave alsobeenusedin the specializedlitera-
ture[34].] A geneis a subsectionof a chromosomethat usually
encodesthevalueof asingleparameter(i.e.,adecision
variable).] An allele is the valueof a gene. For example,for a
binaryrepresentationeachgenemayhaveanalleleof 0
or 1, andfor a floatingpoint representation,eachgene
mayhaveanallelefrom 0 to 9.] A schema(plural schemata) is a patternof geneval-
uesin achromosome,whichmayinclude“do notcare”
states(representedby a # symbol). Thus,in a binary
chromosome,eachschemacanbespecifiedby astring
of thesamelengthasthechromosome,with eachchar-
acterbeingoneof ^ 0,1,# _ . A particularchromosome
is said to “contain” a particularschemaif it matches
thescheme(e.g. chromosome01101matchesschema
#1#0#).
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Figure 1. Finite automaton with 3 states. Symbols to the left of “/” are input symbols. Symbols to
the right of “/” are output symbols. The initial state is A.

] If thesolutionof aproblemcanberepresentedby aset
of
�

real-valuedparameters,then the job of finding
this solution can be thoughtof as a searchin an

�
-

dimensionalspace.This regionis simply referredto as
thesearch spaceof theproblem.] Thefitnessof an individual is a valuethat reflectsits
performance(i.e., how well solvesa certaintask). A
fitnessfunction is a mappingof the chromosomesin
a populationto their correspondingfitnessvalues. A
fitnesslandscapeis thehypersurfaceobtainedby ap-
plying thefitnessfunctionto every point in thesearch
space.] A building block is a small, tightly clusteredgroup
of geneswhich have co-evolved in sucha way that
their introductioninto any chromosomewill be likely
to give increasedfitness to that chromosome. The
building block hypothesis[34] statesthat GAs gen-
eratetheir solutionsby first finding asmany building
blocksaspossible,andthencombiningthemtogether
to give thehighestfitness.] Deceptionis aconditionunderwhich thecombination
of goodbuilding blocksleadsto reducedfitness,rather
thanincreasedfitness.Thisconditionwasproposedby
Goldberg [34] as a reasonfor the failure of GAs on
certaintasks.] Elitism (or an elitist strategy) is a mechanismwhich
ensuresthat the chromosomesof the highly fit mem-
ber(s)of thepopulationarepassedon to thenext gen-
erationwithout beingalteredby any geneticoperator.
Theuseof elitismguaranteesthatthemaximumfitness
of thepopulationneverdecreasesfrom onegeneration
to the next, andit normally producesa fasterconver-
genceof thepopulation.More importantyet is thefact

thatit hasbeen(mathematically)proventhatelitism is
necessaryin orderto beableto guaranteeconvergence
of a simplegeneticalgorithmtowardstheglobalopti-
mum[61].] Epistasisis theinteractionbetweendifferentgenesin
a chromosome.It is the extent to which the contri-
bution to fitnessof one genedependson the values
of other genes. Geneticistsusethis term to refer to
a “masking” or “switching” effect amonggenes,and
a geneis consideredto be “epistatic” if its presence
suppressesthe effect of a geneat anotherlocus. This
conceptis closely relatedto deception,sincea prob-
lemwith highdegreeof epistasisis deceptive,because
building blockscannot beformed.On theotherhand,
problemswith little or no epistasisaretrivial to solve
(hill climbing is sufficient).] Exploitation is theprocessof usinginformationgath-
eredfrom previouslyvisitedpointsin thesearchspace
to determinewhich placesmight beprofitableto visit
next. Hill climbing is an example of exploitation,
becauseit investigatesadjacentpoints in the search
space,andmovesin the directiongiving the greatest
increasein fitness. Exploitation techniquesaregood
at finding local minima (or maxima). The GA uses
crossoverasanexploitationmechanism.] Exploration is theprocessof visiting entirelynew re-
gionsof a searchspace,to seeif anything promising
may be found there. Unlike exploitation, exploration
involvesleapsinto unknown regions. Randomsearch
is an exampleof exploration. Problemswhich have
many local minima (or maxima)cansometimesonly
besolvedusingexplorationtechniquessuchasrandom
search.TheGA usesmutationasanexplorationmech-
anism.



] A genotyperepresentsa potentialsolutionto a prob-
lem,andis basicallythestringof valueschosenby the
user, alsocalledchromosome.] A phenotype is the meaningof a particularchromo-
some,definedexternallyby theuser.] Genetic drift is the name given to the changesin
gene/allelefrequenciesin apopulationovermany gen-
erations,resultingfrom chanceratherthanfrom selec-
tion. It occursmostrapidly in small populationsand
canleadto someallelesto becomeextinct, thusreduc-
ing thegeneticvariability in thepopulation.] A niche is a group of individuals which have sim-
ilar fitness. Normally in multiobjective and multi-
modaloptimization,atechniquecalledsharing is used
to reducethe fitnessof thoseindividuals who are in
the sameniche, in order to prevent the population
to converge to a single solution, so that stablesub-
populationscan be formed, eachone corresponding
to a differentobjective or peak(in a multimodal op-
timizationproblem)of thefunction[21].

Thebasicoperationof aGeneticAlgorithm is illustrated
in thefollowing segmentof pseudo-code[11]:

generateinitial population,G(0);
evaluateG(0);
t:=0;
repeat

t:=t+1;
generateG(t) usingG(t-1);
evaluateG(t);

until a solutionis found

First, an initial populationis randomlygenerated.The
individualsof this populationwill bea setof chromosomes
or stringsof characters(lettersand/ornumbers)that repre-
sentall thepossiblesolutionsto theproblem.

Oneaspectthat hasgreatimportancein the caseof the
geneticalgorithmis the encodingof solutions. Tradition-
ally, a binaryencodinghasbeenadopted,regardlessof the
typeof decisionvariablesof theproblemto besolved[34].
Holland[40] providessometheoreticalandbiologicalargu-
mentsfor usingabinaryencoding.However, overtheyears,
othertypesof encodingshavebeenproposed,includingthe
useof vectorsof realnumbersandpermutations,whichlend
themselvesasmore“natural” encodingsfor certaintypesof
optimizationproblems[49, 60].

Onceanappropriateencodinghasbeenchosen,weapply
afitnessfunctionto eachoneof thesechromosomesin order
to measurethequality of thesolutionencodedby thechro-
mosome.Knowing eachchromosome’s fitness,a selection
processtakesplaceto choosethe individuals(presumably,

thefittest) thatwill be theparentsof the following genera-
tion. The mostcommonlyusedselectionschemesarethe
following [35]:] ProportionateReproduction:This termis usedgeneri-

cally to describeseveralselectionschemesthatchoose
individualsfor birth accordingto their objective func-
tion values

�
. In theseschemes,theprobabilityof se-

lection B of an individual from the
Q
th classin the � th

generationis calculatedas

B X
` 
 � � XacbdZe �gf d ` 
 � d (1)

where h classesexist and the total numberof indi-
viduals sumsto < . Several methodshave beensug-
gestedfor samplingthis probability distribution, in-
cluding MonteCarlo or roulettewheelselection[42],
stochasticremainderselection[9, 10], andstochastic
universalselection[6, 36].] RankingSelection:In this scheme,proposedby Baker
[5] the populationis sortedfrom best to worst, and
eachindividual is copiedasmany timesasit can,ac-
cordingto a non-increasingassignmentfunction, and
thenproportionateselectionis performedaccordingto
thatassignment.] TournamentSelection:Thepopulationis shuffled and
thenis divided into groupsof h elementsfrom which
thebestindividual(i.e.,thefittest)will bechosen.This
processhasto be repeatedh times becauseon each
iterationonly f parentsareselected,where

f � B+ijB�kgl�m,� Q i <on Qqp,Th
For example, if we usebinary tournamentselection
( h � " ), thenwe have to shuffle thepopulationtwice,
since in eachstagehalf of the parentsrequiredwill
be selected.The interestingpropertyof this selection
schemeis thatwecanguaranteemultiplecopiesof the
fittestindividualamongtheparentsof thenext genera-
tion.] Steady State Selection: This is the techniqueused
in Genitor [72], which works individual by individ-
ual,choosinganoffspringfor birth accordingto linear
ranking, and choosingthe currently worst individual
for replacement.In steady-stateselectiononly a few
individualsarereplacedin eachgeneration:usuallya
small numberof the leastfit individualsarereplaced
by offspringresultingfrom crossover andmutationof
the fittest individuals. This selectionschemeis nor-
mally usedin evolving rule-basedsystemsin which
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Figure 2. Example of the binar y encoding traditionall y adopted with the genetic algorithm.

incrementallearning(and rememberingwhat hasal-
readybeenlearned)is importantand in which mem-
bersof thepopulationcollectively (ratherthanindivid-
ually) solve theproblemathand[51].

After beingselected,crossover takesplace.During this
stage,the geneticmaterialof a pair of individuals is ex-
changedin orderto createthepopulationof thenext gener-
ation.Therearethreemainwaysof performingcrossover:

1. Single-pointcrossover: A positionof thechromosome
is randomlyselectedasthecrossoverpointasindicated
in Figure3.

2. Two-point crossover: Two positionsof the chromo-
someare randomlyselectedas to exchangechromo-
somicmaterial,asindicatedin Figure4.

3. Uniform crossover: This is a relatively recent
crossover operatorproposedby Syswerda[66] which
can be seenas a generalizationof the two previous
crossover techniquesexplainedin this paper. In this
case,for eachbit in thefirst offspringit decides(with
someprobability B ) which parentwill contribute its
value in that position. The secondoffspring would
receive the bit from the other parent. Seean exam-
pleof 0.5-uniformcrossover in Figure5. Althoughfor
someproblemsuniformcrossoverpresentsseveralad-
vantagesover othercrossover techniques[66], in gen-
eral,one-pointcrossoverseemsto beabadchoice,but
thereis no clear winner betweentwo-point and uni-
form crossover [48].

Mutation is anotherimportantgeneticoperatorthat ran-
domlychangesageneof achromosome.If weuseabinary
representation,a mutationchangesa 0 to 1 andviceversa.
An exampleof how mutationworks is displayedin Fig-
ure 6. This operatorallows the introductionof new chro-
mosomicmaterialto thepopulationand,from thetheoreti-
cal perspective, it assuresthat—givenany population—the
entiresearchspaceis connected[11].

If weknew in advancethefinal solution,it wouldbetriv-
ial to determinehow to stopa geneticalgorithm.However,
asthis is not normally the case,we have to useoneof the
two following criteria to stop the GA: either give a fixed

numberof generationsin advance,or verify whenthepop-
ulation hasbecomehomogeneous(i.e., all or most of the
individualshavethesamefitness).

Traditionally, genetic algorithms do not have a self-
adaptationmechanism.Therefore,oneof their maindraw-
backsis that their parameterstend to be fine-tunedin an
empiricalmanner.

Somerepresentative applicationsof geneticalgorithms
arethefollowing [34]:] Optimization(numerical,combinatorial,etc.).] Machinelearning.] Databases(optimizationof queries,etc.).] Patternrecognition.] Grammargeneration.] Robotmotionplanning.] Forecasting.

2.4 GeneticProgramming

One of the original goalsof artificial intelligence(AI)
was the automaticgenerationof computerprogramsthat
could producea desiredtask given a certain input. Dur-
ing several years,sucha goal seemedtoo ambitioussince
the sizeof the searchspaceincreasesexponentiallyaswe
extendthedomainof a certainprogramand,consequently,
any techniquewill tendto produceprogramsthatareeither
invalid or highly inefficient.

Someearly evolutionary algorithmswere attemptedin
automaticprogrammingtasks,but they wereunsuccessful
and were severly criticized by someAI researchers[29].
Over the years,researchersrealizedthat the key issuefor
using evolutionary algorithmsin automaticprogramming
taskswasthe encodingadopted.In this regard,Koza[47]
suggestedthe useof a geneticalgorithmwith a tree-based
encoding.In orderto simplify the implementationof such
an approach,the original implementationof this sort of
approach(which was called “genetic programming”)was
doneunderLISP, takingadvantageof thefactthatsuchpro-
gramminglanguagehasabuilt-in parser.
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Figure 3. Use of a single-point crosso ver between two chromosomes. Notice that each pair of
chromosomes produces two descendants for the next generation. The cross-point may be located
at the string boundaries, in whic h case the crosso ver has no effect and the parents remain intact for
the next generation.
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Figure 4. Use of a two-point crosso ver between two chromosomes. In this case the genes at the
extremes are kept, and those in the mid dle par t are exchang ed. If one of the two cross-points
happens to be at the string boundaries, a single-point crosso ver will be perf ormed, and if both are at
the string boundaries, the parents remain intact for the next generation.
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Figure 5. Use of 0.5-unif orm crosso ver (using 50% probability) between two chromosomes. Notice
how half of the genes of each parent goes to each of the two children. First, the bits to be copied from
each parent are selected randoml y using the probability desired, and after the fir st child is generated,
the same values are used to generate the second child, but inver ting the sour ce of procedence of
the genes.
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Figure 6. An Example of mutation using binar y representation.
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Figure 7. An example of a chromosome used in genetic programming.



The tree-encodingadoptedby Kozaobviously requires
of differentalphabetsandspecializedoperatorsfor evolv-
ing randomlygeneratedprogramsuntil they become

���~�©¨
valid. Note however, that the basicprinciplesof this tech-
niquemaybegeneralizedto any otherdomainand,in fact,
geneticprogramminghasbeenusedin a varietyof applica-
tions[47].

The treesusedin geneticprogrammingconsistof both
functionsand terminals. The functionsnormally adopted
arethefollowing [47]:

1. Arithmeticoperations(e.g.,+, -,
S

, ª )

2. Mathematicalfunctions(e.g.,sine,cosine,logarithms,
etc.)

3. BooleanOperations(e.g.,AND, OR,NOT)

4. Conditionals(IF-THEN-ELSE)

5. Loops(DO-UNTIL)

6. RecursiveFunctions

7. Any otherdomain-specificfunction

Terminalsaretypically variablesor constants,andcanbe
seenasfunctionsthat take no arguments.An exampleof a
chromosomethat usesthe functionsF=̂ AND, OR, NOT _
andtheterminalsT= ^ A0, A1 _ is shown in Figure7.

Crossover canbe appliedby numberingthe treenodes
correspondingto thetwo parentschosen(seeFigure8) and
(randomly)selectinga point in eachof themsuchthat the
subtreesbelow such point are exchanged(seeFigure 9,
whereweassumethatthecrossoverpointfor thefirst parent
is 2 andfor thesecondis 6). Typically, thesizesof thetwo
parenttreeswill be differentas in the examplepreviously
shown. It is alsoworth noticing that if the crossover point
is the root of oneof the parenttrees,thenthe whole chro-
mosomewill becomea subtreeof the other parent. This
allows the incorporationof subroutinesin a program. It is
alsopossiblethat the rootsof both parentsareselectedas
crossoverpoints.Shouldthatbethecase,thecrossoverop-
eratorwill havenoeffectandtheoffspringwill beidentical
to their parents.

Normally, genetic programmingimplementationsim-
posea limit on the maximumdepththat a treecanreach,
asto avoid thegeneration(asa byproductof crossoverand
mutation)of treesof very large size that could producea
memoryoverflow [7].

Mutation in geneticprogrammingtakesplacethrougha
(random)selectionof a certainnodetree. The subtreebe-
low the chosennodeis replacedby anothertree which is
randomlygenerated.Figure 10 shows an exampleof the
useof this operator(the mutationpoint in this exampleis
node3).

Permutationis an asexual operatorusedin geneticpro-
grammingto emulatethe effect of the inversionoperator
adoptedwith geneticalgorithms[34]. This operatorre-
ordersthe leaves of a subtreeplacedbelow a (randomly
chosen)node. Its goal is to strengthenthe union of allelic
combinationswith goodperformancewithin achromosome
[40].

Figure 11 shows an exampleof the useof the permu-
tation operator(node4 wasselectedin this example). In
Figure11, the symbol‘*’ indicatesmultiplicationand‘

¨
’

indicates“protecteddivision”, referringto a division oper-
atorthatkeepsour programfrom generatinga systemerror
whenthedivisor is zero.

In geneticprogrammingis also possibleto protector
“encapsulate”a certainsubtreewhich we know to contain
a good building block, as to avoid that it is destroyed by
the geneticoperators.The selectedsubtreeis replacedby
a symbolicnamethatpointsto thereal locationof thesub-
tree. Suchsubtreeis separatelycompiledandlinkedto the
restof the treein ananalogousway to theexternalclasses
of objectorientedlanguages.Figure12 shows anexample
of encapsulationin which the right subtreeis replacedby
thename(E0).

Normally, it is alsonecessaryto edit theexpressionsgen-
eratedduringtheevolutionaryprocessasto simplify them.
However, thesimplicationrulesto beadoptednormallyde-
pendon theproblemat hand.For example,if theoutputof
ourprogramareBooleanexpressions,wecouldapplyrules
suchasthefollowing:

(AND X X) X
(OR X X) X
(NOT (NOT X)) X

Finally, geneticprogrammingalsoprovidesmechanisms
to destroy a certainpercentageof the populationsuchthat
we canrenovatethe chromosomicmaterialafter a certain
numberof generations.This mechanism,calledexecution,
is veryusefulin highly complex domainsin whichourpop-
ulation may not containa single feasibleindividual even
afteraconsiderablylargenumberof generations.

3 A Mor e General View of Evolutionary Al-
gorithms

Despitetheobviousdifferencesandmotivationsof each
of the aforementionedparadigms,the trend in the last
few yearshasbeento decreasethe differencesamongthe
paradigmsandrefer(in genericterms)simply to evolution-
ary algorithmswhentalking aboutany of them.

In general,we needthe following basiccomponentsto
implementanEA in orderto solveaproblem[49]:
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1. A representationof thepotentialsolutionsto theprob-
lem. Theselectionof anappropriateencodingscheme
tendsto becrucialfor thegoodperformanceof anEA
[60].

2. A way to createaninitial populationof potentialsolu-
tions(this is normallydonerandomly, but determinis-
tic approachescanalsobeused).

3. An evaluationfunction that plays the role of the en-
vironment,ratingsolutionsin termsof their “fitness”.
The definition of a goodfitnessfunction is alsovital
for having a goodperformance.

4. A selectionprocedurethatchoosestheparentsthatwill
reproduce.

5. Evolutionary operatorsthat alter the compositionof
children(normally, crossoverandmutation).

6. Valuesfor variousparametersthattheevolutionaryal-
gorithm uses(populationsize,probabilitiesof apply-
ing evolutionaryoperators,etc.).

EAs differ from traditionalsearchtechniquesin several
ways[11]:] EAs do not require problem specific knowledge to

carry out a search. However, if such knowledge is
available,it canbeeasilyincorporatedasto make the
searchmoreefficient.] EAs usestochasticinsteadof deterministicoperators
andappearto berobustin noisyenvironments.] EAsareconceptuallysimpleandeasyto implement.] EAshavea wideapplicability.] EAsarerelatively simpleto parallelize.] EAsoperateona populationof potentialsolutionsata
time. Thus,they arelesssusceptibleto falseattractors
(i.e., localoptima).

It is worth indicating that the ever-growing popularity
of evolutionary algorithmsin a variety of applicationdo-
mainstendsto be relatedto their goodreputationas“op-
timizers” (eitherfor single-objective or for multi-objective
problems[56, 14]). This is remarkableif we considerthat
someof them(namely, geneticalgorithms)werenot orig-
inally proposedfor that type of applicationand that their
use in optimization tasks has been questionedby some
well-establishedresearchersin the evolutionary computa-
tion community[43]. Apparently, the reportedsuccessof
evolutionaryalgorithmshasresultedsufficiently convincing
for practitionersandthereforetheir popularity[4].

4 SomeApplications in Biometrics

Sincetheir very inception,several researchershave at-
temptedto use evolutionary algorithmsfor tasksrelated
to patternrecognition,imageprocessing,classificationand
machinelearning[13, 17, 71, 28, 65, 73, 27]. However,
most of this early work was mainly focusedon the algo-
rithmic developmentaspectratherthanon an specificap-
plication. Thus, for sometime, therewas relatively little
researchon thedevelopmentof evolutionaryalgorithmsfor
specificbiometricapplications.This situationhaschanged
in the last few years[63], althoughtheuseof otherheuris-
tics suchasneuralnetworks is still morecommonthanthe
useof evolutionaryalgorithms[41].

Next, we will review a few casestudiesin this area
which aim to provide a generalpicture of the type of
researchbeingconductednowadays.

Fingerprint Identification: Ammar& Tao[1] usedgenetic
algorithmsfor optimizing the alignmentof a pair of fin-
gerprintimages.Theauthorsemphasizethe importanceof
thepreprocessingstageof thefingerprintidentificationpro-
cess.Thepurposeof thispreprocessingstageis to aligntwo
regionsof interestextractedfrom eachof the two original
fingerprints,so that they canbe submittedto the decision-



makingprocess.For this application,the authorsconsid-
eredthe coordinatesof the smallerimageto be compared
with the larger image(i.e., thefingerprintextractedfrom a
databasefor possiblematching)togetherwith its rotation
angleas the decisionvariablesto be encoded(using real
numbers)as chromosomesof the geneticalgorithm. The
correlationcoefficient betweenthe smallerimageand the
larger imagewasusedasthe fitnessfunction to beapplied
to eachchromosome.An aspectemphasizedin thiswork is
the high computationalcost involved in evaluatingthe fit-
nessfunction. For a

�����KSW�����
image,about10,000calcu-

lationsarerequiredto getthecorrelationcoefficient,which
involvesa very time-consumingprocess.In orderto over-
comethis problem,the authorsdecidedto adopta steady-
stategeneticalgorithm,which tendsto replaceonly a few
individualsateachgeneration(asopposedto traditionalge-
neticalgorithmsin which the entirepopulationis replaced
at eachgeneration).This wasmoreefficient (computation-
ally speaking)for this applicationandthereforethechoice.

For validatingtheir approach,theauthorsusedtheNIST
FingerprintDatabase,which contains8-bit gray scaleim-
agesor randomlyselectedfingerprints. The geneticalgo-
rithm wascomparedwith respectto two otherapproaches:
a2D searchalgorithmpreviouslyproposedby thesameau-
thors[2] anda3D brute-forcealgorithm.It is worth indicat-
ing that thesetwo approachesarebasicallyrandomsearch
algorithmswhosemain differenceis that the first (2D) ig-
norestherotationtransformationin registration.Asamatter
of fact, the3D algorithmtriesevery possibilityand,there-
fore, it alwaysfindsthebestcorrelation.

The resultsindicatedseveral interestingthings. First,
the running time of the geneticalgorithm did not seem
to be sensitive to the sizeof the searchspaceas opposed
to the two other approachescompared. Regarding the
quality of the results, the genetic algorithm performed
betterthanthe2D algorithm(thegeneticalgorithmwas,on
average,13%moreaccurateusingthesamecomputational
time). Regardingthe3D brute-forceapproach,the genetic
algorithmwasableto matchits final registrationaccuracy
but usingabout1/10thof its computationaltime.

FaceRecognition: TellerandVeloso[68] usedgeneticpro-
grammingfor facerecognitiontasks. The authorsconsid-
eredthe imagesto beprocessedasimagesignalsandthus,
they proposedthe useof algorithmsthat analyzesignals.
For thatsake,a systemthatlearnsthesealgorithmsthrough
evolution wasadopted. The systemdevelopedby the au-
thors is called PADO (Parallel Algorithm Discovery and
Orchestration)[69]. The learningcoreof thePADO archi-
tectureis geneticprogramming.ThePADO architectureis
designedto learnto takesignalsasinputandoutputcorrect
classlabels.Having

�
classesto choosefrom, PADO starts

by learning
�

different“systems”.Eachof thesesystemsis

responsiblefor takingasignalasinputandreturningacon-
fidencethata certainclassÃ is thecorrectlabel. Eachsys-
temis built out of severalprogramslearnedby PADO. It is
interestingto notethateachof theseprogramsdoesexactly
thesameasthesystem:it takesasignalasinputandreturns
a confidencevalueregardingthe correctnessof a given la-
bel. PADO performsobjectrecognitionby orchestratingthe
responsesof theprogramswithin eachsystemandthendoes
the samewith all the systems.Eachsystemis build from
the programsthathadthebestperformancewhenlearning
to recognizeinstancesof aclass(basedon their trainingre-
sults). The responsesgatheredfrom all the programsare
weightedandtheir weightedaverageof responsesis inter-
pretedasthe confidencethat the givensystemhasthat the
signalin questioncontainsanobjectfrom acertainclass.

PADO evolves programs in a PADO-specific graph
structuredlanguage[69]. At the beginningof the process,
themainpopulationconsistsof Ä randomlygeneratedpro-
grams(theseprogramsaregeneratedusinga grammarfor
thelegal syntaxof thelanguage).All programsin this lan-
guageareconstrainedby thesyntaxto returna numberthat
is interpretedasa confidencevaluebetweena certainmin-
imum andmaximumconfidencelevel. Some“intelligent”
crossover andmutationoperatorsareadoptedandareco-
evolvedwith themainpopulation[67].

Theimagesusedfor thevalidationof theapproachwere
taken from a databasefrom Carnegie-Mellon University.
Theseimagesconsist of headand shouldershots of 20
different people in an office background. The database
has 28 imagesof eachperson. So, the authorsuseda
total of 560 images( "~4'1 S "~4'1 8-bit grayscaleimages
were adopted). PADO achieved a 92% recognitionrate
distinguishingamong20 differentfaceclasses.

Handwritten Word Recognition: Morita et al. [53] pro-
poseda methodologyfor featureselectionin unsupervised
learningwhichwasappliedto handwrittenwordrecognition
tasks.Theapproachis basedonamulti-objectiveevolution-
ary algorithm (MOEA) called the NondominatedSorting
GeneticAlgorithm (NSGA) [64]. Multiobjectiveoptimiza-
tion problemshave 2 or more objective functions(which
arenormally in conflict with eachother). Thus,thenotion
of optimum is different in this case. The notion of “op-
timum” that is most commonlyadoptedis that originally
proposedby FrancisYsidro Edgeworth [26] andlatergen-
eralizedby Vilfredo Pareto[57]. MOEAs adopta differ-
ent selectionschemefrom the oneusedin traditionalevo-
lutionary algorithms. In this case,selectionschemesthat
rank the populationbasedon the Paretooptimality of the
individualsarecommonlyadopted[14, 20]. An important
propertyof MOEAs is thatthey needto beableto maintain
several trade-off solutions(called “nondominated”)at the
sametime. Therefore,they normallyrequirespecialmech-



anismsto maintaindiversityandto avoid convergenceto a
singlesolution(somethingthatnormallyoccurswith tradi-
tionalevolutionaryalgorithmsbecauseof stochasticnoise).

Thegoalof thework by Morita et al. [53] wasto find a
setof nondominatedsolutionsthatcontainedthemoredis-
criminantfeaturesandthe morepertinentnumberof clus-
ters. The two objectives to be optimizedsimultaneously
were:minimizethenumberof featuresandminimizea va-
lidity index that measuresthe quality of clusters. A stan-
dardÅ -Meansalgorithmwasthenappliedto form thegiven
numberof clustersbasedon the selectedfeaturesand the
numberof selectedclusters. After performingtwo exper-
imentson syntheticdatasets,the authorsadopteda word
classifierused in someof their previous work [52]. In
their study, a word imagewassegmentedinto graphemes,
eachof which consistedof a correctly segmented,under-
segmented,or anover-segmentedcharacter. Then,two fea-
turesetswereextractedfrom thesequenceof graphemesto
feed the classifiers. In order to allow a betterassessment
of their results,theauthorsconsideredonly onefeatureset
basedon a mixtureof segmentationprimitivesandconcav-
ity andcontourfeatures.The methodologyof the authors
consistedof applyingtheNSGAto obtainasetof nondom-
inatedsolutions. Then, the incorporationof user’s prefer-
enceswas necessaryas to chooseonly onesolution from
the setproduced. The authorsdecidedto train eachnon-
dominatedsolution obtained. Then they usedeachclas-
sifier in the systemand chosethe solution that supplied
the bestword recognitionresulton the validationsetpro-
posed.Theresultswerecomparedwith respectto theuseof
the traditionalmethodologypreviously adoptedby the au-
thorsfor thisproblem.Theauthorsreportthattheuseof an
evolutionarymultiobjectiveoptimizationapproachkeptthe
recognitionratesat the samelevel as the traditional strat-
egy while reducingthe time requiredfor training the dis-
creteHiddenMarkov Modelsadopted.This wasachieved
becausetheapproachreducedthenumberof features(from
34 to 29) andthe numberof clusters(from 80 to 36) with
respectto theuseof a traditionaltechnique.

5 SomePossibleResearch Dir ections

Despite the evident popularity of approachessuch as
neuralnetworks andstatisticalmethodsin biometrics,the
useof evolutionaryalgorithmshasattracteda growing in-
terestin the last few years. However, therearestill many
possibleresearchdirectionsthatmaybeworth exploring in
thisarea.Next, wewill briefly discussa few of them:] Multiobjecti ve Optimization: In the previous sec-

tion, we analyzedan applicationin which a multiob-
jective optimizationapproachwasadoptedfor hand-
written characterrecognition. Due to the multiobjec-

tivenatureof many problems(i.e.,theexistenceof sev-
eral conflicting objectivesthat we aim to optimizeat
thesametime), it is very likely thattheuseof multiob-
jectiveoptimizationtechniquesbecomesmorepopular
in biometrics.Amongthepossibletechniquesto solve
multiobjectiveoptimizationproblems,evolutionaryal-
gorithms presentseveral advantagesover traditional
mathematicalprogrammingtechniques[50]. For ex-
ample, evolutionary algorithms have a population-
basednaturewhich allows them to generateseveral
elementsof the Paretooptimal set in onerun. Addi-
tionally, evolutionaryalgorithmsdo not requireanini-
tial searchpointandarelesssensitive to theshapeand
continuityof theParetofront [14, 20].] Use of Genetic Programming: As we saw before,
the useof tree-encodingsin a geneticalgorithm (the
so-called“genetic programming”) is a powerful aid
for automatedprogramming. Suchtype of encoding
is also very useful for classificationanddatamining
tasks[33, 70]. Consequently, the useof geneticpro-
grammingin biometrics,althoughnot widely spread
yet, is expectedto considerablygrow in the next few
years.It is worth indicating,however, thattheuseof a
morecomplex encoding,while allowing tacklingmore
complex problems,also involves a higher computa-
tional cost(this appliesto multiobjectiveoptimization
aswell).] Useof Alter native Metaheuristics: In recentyears,
other biologically-inspired metaheuristicshave be-
comeincreasinglypopularin a wide variety of appli-
cations[16]. It is expectedthat several of theseap-
proachesareeventuallyadoptedin biometricapplica-
tions. Representative examplesof thesenew meta-
heuristicsarethefollowing:

– Particle Swarm Optimization : Proposedby
KennedyandEberhart[44, 46], this metaheuris-
tic simulatesthemovementsof a group(or pop-
ulation) of birds which aim to find food. The
approachcanbeseenasa distributedbehavioral
algorithmthatperforms(in its moregeneralver-
sion)multidimensionalsearch.In thesimulation,
thebehavior of eachindividual is affectedby ei-
ther the best local (i.e., within a certainneigh-
borhood)or the bestglobal individual. The ap-
proachusesthen the conceptof populationand
a measureof performancesimilar to the fitness
valueusedwith evolutionaryalgorithms.Theap-
proachintroducestheuseof flying potentialsolu-
tionsthroughhyperspace(usedto acceleratecon-
vergence)andallows individualsto benefitfrom
their pastexperiences.This techniquehasbeen



successfullyusedfor both continuousnonlinear
anddiscretebinaryoptimization[25, 45, 46]

– Artificial Immune Systems: Computationally
speaking,our immunesystemcanbe seenasa
highly parallel intelligent systemthat is able to
learnandretrievepreviousknowledge(i.e., it has
“memory”) to solve recognitionand classifica-
tion tasks.Dueto theseinterestingfeatures,sev-
eral researchershave developedcomputational
modelsof the immunesystemandhave usedit
for avarietyof tasks,includingclassificationand
patternrecognition[19, 54, 55].

– The Ant System: This is a metaheuristicin-
spired by colonies of real ants, which de-
posit a chemicalsubstanceon the groundcalled
pheromone[22, 15, 24]. This substanceinflu-
encesthe behavior of theants: they tendto take
thosepathswhere there is a larger amountof
pheromone.Pheromonetrails can thus be seen
asanindirectcommunicationmechanismamong
ants. From a computerscienceperspective, the
ant systemis a multi-agentsystemwhere low
level interactionsbetweensingleagents(i.e., ar-
tificial ants)result in a complex behavior of the
entireantcolony.

The ant systemwasoriginally proposedfor the
traveling salesmanproblem(TSP),andmostof
the currentapplicationsof the algorithmrequire
the problemto be reformulatedasonein which
the goal is to find the optimal path of a graph.
A way to measurethe distancesbetweennodes
is also requiredin order to apply the algorithm
[23]. Despitethis limitation, this approachhas
beenfound to be very successfulin a variety of
combinatorialoptimizationproblems[22, 8].

6 Conclusions

We haveprovidedageneralintroductionto evolutionary
algorithms,discussingtheir threemain paradigms:evolu-
tion strategies, evolutionary programmingand genetical-
gorithms.After that,wehaveanalyzedsomerepresentative
applicationsof evolutionaryalgorithmsin biometrics,also
indicatingsomepotentialresearchpathsfor futureresearch.
As indicatedbefore,it is expectedthattheuseof evolution-
ary algorithmsin biometricssubstantiallyincreaseswithin
the next few yearsdueto the high potential(andprevious
evidenceof success)of thesetechniquesin a wide variety
of applications,including datamining, patternrecognition
andclassificationtasks.
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