
Mutual Information-based Fitness Functions for
Evolutionary Circuit Synthesis

Arturo Herńandez Aguirre
Center for Research in Mathematics (CIMAT)

Department of Computer Science
A.P. 402, Guanajuato, Gto. C.P. 36000 MEXICO

Email: artha@cimat.mx

Carlos A. Coello Coello
CINVESTAV-IPN

Computer Science Section, Electrical Eng. Dept.
México, D.F., C.P. 07300 MEXICO

Email: ccoello@cs.cinvestav.mx

Abstract— Entropy-based measures, such as Mutual Informa-
tion and Normalized Mutual Information are investigated as tools
for similarity measures between the target and evolving circuit.
Three fitness functions are built over a primitive one. We show
that the search landscape of Normalized Mutual Information
looks more amenable for evolutionary computation algorithms
than simple Mutual Information. The evolutionary synthesized
circuits are compared to the known optimum size. A discussion
of the potential of the Information-Theoretical approach is given.

I. I NTRODUCTION

In this article we use a pure form of Genetic Programming to
synthesize logic circuits using binary multiplexer(s) (“mux” or
“muxes”). That is, no knowledge is incorporated to the search
mechanism other than a fitness function based on entropy.

Claude Shannon suggested the use of information entropy
as a measure of the amount of information contained within
a message [18]. Thus, entropy tells us there is a limit in the
amount of information that can be removed from a random
process without information loss. For example, music can
be (losslessly) compressed and reduced up to its entropy
limit. Further reduction is only possible at the expense of
information loss. In a few words, entropy is a measure of
disorder and it constitutes the basis of Information Theory.

In this paper we aim to explore the use of entropy-based
fitness functions in a pure GP framework. Since no other
knowledge than entropy will be used in the fitness function,
only limited size circuits can be tested. Through some experi-
ments, we determine what causes the lack of convergence that
some researchers have experienced with information theory-
based fitness functions [1]. We also propose and alternative
solution that we proved quite consistent. The conclusions we
draw are applicable to any evolutionary system for Boolean
function synthesis based on entropy measures.

The organization of this paper is the following: In Section II,
we describe some previous related work from both hybrid and
pure areas. Section III provides the detailed description of
the problem that we wish to solve. Some basic concepts of
information theory and genetic programming are provided in
Sections IV and V, respectively. The use of entropy for circuit
design is discussed in Section VI. In these line of thoughts,
we introduce fitness functions for evolutionary circuit design

in Section VII. A set of experiments illustrating the design of
logic circuits is described in Section VIII. In Section IX, we
discuss final remarks and give our conclusions.

II. PREVIOUS WORK

Most of the previous work in this domain has been done
using Genetic Algorithms (GAs). Genetic Programming is
also included in this review, since this technique is really an
extension of GAs in which a tree-based representation is used
instead of the traditional linear binary chromosome adopted
with GAs.

Two are the main approaches to Boolean function synthesis:
pure methods, and hybrid methods. Pure methods are extended
with procedures to cope with the poor scalability of evolution-
ary algorithms. Kalganova [11] proposed a two-way strategy
called “bidirectional incremental evolution”, in which circuits
are evolved in top-down and bottom-up fashion. Vassilev et
al. [22] proposed the use of predefined circuit blocks which
can improve both the convergence speed and the quality of
the solutions. Although these results are promising, a big
problem remaining is the definition of what is a good block
for the problem in turn. Recently, Torresen [21] proposed
a scalable alternative with limited success called “increased
complexity evolution”. Here, training vectors are partitioned,
or the training set is partitioned, solving a problem in a divide
and conquer fashion. Our own approach to this problem is
pure GP system [9], [8]

Hybrid methods have had more success, particularly binary
decision diagram based methods. Droste [5] used GP and
two heuristics: deletion and merging rules, to reduce directed
acyclic graphs. His approach solved the 20-multiplexer prob-
lem for the first time ever. Another important hybrid method
has been developed by Drechsler et al. [3], [4]. This GP
system uses directed acyclic graphs for representing decision
diagrams. Two heuristics that are representative of Dreschler’s
work are: sifting and inversion.

Information Theory (IT) was early used by Hartmann et
al. [6] to convert decision tables into decision trees. Boolean
function minimization through IT techniques has been ap-
proached by several authors [10], [12]. Some work related to
the proposal presented in this article can be found in Luba et al.
[13], [14], whom address the synthesis of logic functions using

0 1 0 1

0 10 1

0 1

0 1 1 0

c c

b b

a

f=a’b’c + a’bc’ + ab’c’

c’

b’c’ + b(0)b’c +bc’

0

c

Fig. 1. Shannon expansion implemented with binary multiplexers.

a genetic algorithm and a fitness function based on conditional
entropy. Their system (calledEvoDesign) works in two phases:
first, the search space is partitioned into subspaces via Shannon
expansions of the initial function. Then the GA is started in
the second phase. The authors claim that the partition of the
space using entropy measures is the basis for their success. In
their domain, a fitness function based on Mutual Information
apparently worked well. Note however, that in our case such
an approach did not produce good results. Conditional entropy
has also been used by Cheushev et al. [1] in top-down circuit
minimization methods. In fact, the formal result of Cheushev
et al. [1] indicates that a Boolean function can be synthesized
by using entropy measures, thus, providing a sound ground
for our approach.

III. PROBLEM STATEMENT

For the purposes of this article, let us consider a target
Boolean function T specified by its truth table. The problem
of interest to us is the design of the smallest possible logic
circuit, with the minimum number of binary multiplexers that
implements the target function. The multiplexer is the only
functional unit replicated, each one being controlled by a
variable of the target function. Note that only 1s and 0s are fed
into the multiplexers (the analog of the Shannon’s expansion
shown in Figure 1). This strategy allows the implementation of
the synthesized circuits by means of pass transistor logic [19].
The design metric driving the implementation is the number
of components. Therefore, the best among a set of circuits
with the same functionality is the one with the lowest number
of components. Our goal is to find 100% functional circuits,
specifying components and connections, instead of a symbolic
representation of it. Thus, the approach of this paper could be
classified as “gate-level synthesis”.

Since the number of circuit components is unknown for
most circuits, the use of an stochastic method such as Genetic
Programming seems appropriate. Also, the tree-like structure

of the circuits makes Genetic Programming the most appro-
priate evolutionary technique.

IV. FUNDAMENTALS OF INFORMATION THEORY

Uncertainty and its measure provide the basis for developing
ideas about Information Theory [2]. The most commonly
used measure of information is Shannon’s entropy.

Definition 2. Entropy: The average information supplied
by a set of k symbols whose probabilities are given by
{p1, p2, . . . , pk}, can be expressed as,

H(p1, p2, . . . , pk) = −
k∑

s=1

pklog2pk (1)

The information shared between a transmitter and a receiver
at either end of a communication channel is estimated by its
Mutual Information,

MI(T ; R) = H(T) + H(R)−H(T, R) = H(T)−H(T |R)
(2)

The conditional entropyH(T |R) can be calculated through
the joint probability, as follows:

H(T |R) = −
n∑

i=1

n∑

j=1

p(tirj)log2
p(tirj)
p(rj)

(3)

An alternative expression of mutual information is

MI(T ; R) =
∑

t∈T

∑

r∈R

p(t, r)log2
p(t, r)

p(t)p(r)
(4)

Mutual information, Equation 2, is the difference between
the marginal entropiesH(T) + H(R), and the joint entropy
H(T,R).

We can explain it as a measure of the amount of information
one random variable contains about another random variable,
thus it is the reduction in the uncertainty of one random
variable due to the knowledge of the other [2].

Mutual information is not an invariant measure between
random variables because it contains the marginal entropies.
Normalized Mutual Information is a better measure of the
“prediction” that one variable can do about the other [20]:

NMI(T ; R) =
H(T) + H(R)

H(T, R)
(5)

The joint entropyH(T,R) is calculated as follows:

H(T, R) = −
∑

t∈T

∑

r∈R

p(t, r)log2p(t, r) (6)

Normalized MI has been used in image registration with
great success [15].

Example: We illustrate these concepts by computing the
Mutual Information between two Boolean vectorsf and c,

a b c f=a’b’c+a’bc’+ab’c’
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

TABLE I

FUNCTION f = a′b′c + a′bc′ + ab′c′ USED TO COMPUTEMI(F;C).

shown in Table I. Variablec is an argument of the Boolean
function f(a, b, c) = a′b′c + a′bc′ + ab′c′.

We wish to estimate the description the variablec can do
about variablef , that is,MI(f ; c).

We use Equations 2 and 3 to calculateMI(f ; c). Thus, we
need the entropyH(f) and the conditional entropyH(f |c).

Entropy requires the discrete probabilitiesp(F = 0) and
p(F = 1) which we find by counting their occurrences

H(f) = −(
5
8
log2

5
8

+
3
8
log2

3
8
) = 0.9544

The conditional entropy, Equation 3, uses the joint proba-
bility p(fi, cj), which can be estimated through conditional
probability, as follows:p(f, c) = p(f)p(c|f). Since either
vector f and c is made of two symbols, the discrete joint
distribution has four entries. This is:

p(f = 0, c = 0) = p(f = 0)p(c = 0|f = 0) =
5

8
× 2

5
= 0.25

p(f = 0, c = 1) = p(f = 0)p(c = 1|f = 0) =
5

8
× 3

5
= 0.375

p(f = 1, c = 0) = p(f = 1)p(c = 0|f = 1) =
3

8
× 2

3
= 0.25

p(f = 1, c = 1) = p(f = 1)p(c = 1|f = 1) =
3

8
× 1

3
= 0.125

Now, we can compute the conditional entropy by using
Equation 3. The double summation produces four terms:

H(f |c) = −(
1
4
log2

1
2

+
3
8
log2

3
4

+
1
4
log2

1
2

+
1
8
log2

1
4
)

H(f |c) = 0.9056

Therefore, MI(f ; c) = H(f) − H(f |c) = 0.9544 −
0.9056 = 0.0488. In fact, for the three arguments of the
example function we getMI(f ; a) = MI(f ; b) = MI(f ; c).
The normalized mutual information between either argument
and the Boolean function isNMI(f ; a) = NMI(f ; b) =
NMI(f ; c) = 1.0256. Although no function argument seems
to carry more information about the functionf , we show
later that the landscape of NMI contains a region implying
information sharing. This region is hard to find on the MI
landscape.

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

a b c f(a,b,c)

0 1 0 1

0 10 1

(b, (c, (a,0,1), (a,1,0)), (c, (a,1,0), 0))

0 1

0 1 1 0

a a

c c

b

a’

a’c’ + c(0)

0

a

a’c +ac’

f=a’b’c + a’bc’ + ab’c’

Fig. 2. Logic function specification, encoding of the circuit using lists, and
the circuit.

V. A PPLYING GENETIC PROGRAMMING

A circuit is represented as a tree using binary multiplexers
as node functions, and 0s and 1s for the leaves. An illustration
of this kind of tree is shown in Figure 2 (the circuit was
derived using the technique described in this article). The
circuit is 100% functionally equivalent to the one derived by
Shannon expansions in Figure 1. Note that the circuits are also
structurally similar but the muxes are controlled by different
variables.

Several issues regarding the application of Genetic Program-
ming as a problem solving tool for Boolean function synthesis
are discussed next.

• Implementation language: Although the implementa-
tion language is not relevant for the results, we chose
Prolog because lists are natural structures of this language
and allow the representation of trees. The evaluation of
either circuit just requires one predicate that translates a
list into a tree.

• Initial population: In genetic programming, the size of
the trees plays an important role in the search. In our
work, we adopted the following setting for the size of the
trees which was experimentally derived: maximum tree
height should not exceed half the number of variables of
the Boolean function. These trees could be required to be
complete binary trees but our strategy was to randomly
create them as to have a rich phenotypic blend in the
population.

• Representation: A circuit is represented using binary
trees, and trees are encoded as Prolog lists. This represen-
tation is less flexible than directed acyclic graphs (used in
[4]) but still suitable to generate circuits for pass transistor
logic. A circuit tree is a recursive list of triplets of the
form: (mux, left−child, right−child). Mux is assigned
a control variable, and either child could be a subtree or
a leaf. The muxes are treated as “active high” elements,

therefore the left subtree is followed when the control is
0, and the right subtree otherwise. The tree captures the
essence of the circuit topology allowing only the children
to feed their parent node, as shown in Figure 2. The
representation also captures with no bias the requirement
for the leaves of being only 0 or 1.

• Crossover operator: The exchange of genetic infor-
mation between two parent trees is accomplished by
exchanging subtrees. Crossover points are randomly se-
lected, therefore, node-node, node-leaf, and leaf-leaf ex-
changes are allowed since they produce correct circuits.
The particular case when the root node is selected to
be exchanged with a leaf is disallowed, so that invalid
circuits are never generated.

• Mutation operator: Mutation is a random change with
very low probability of any gene of a chromosome. The
mutation of a tree can alter a mux or a leaf. If a mux
is chosen then a random variable is generated anew and
placed as a new gene value. The mutation of a leaf is as
simple as the changing of a 0 to 1, and 1 to 0.

• Fitness function:The design of the fitness function using
entropy principles is explained in Section VI. Neverthe-
less, every fitness function used in our experiments works
in two stages since the goal is twofold: the synthesis
of 100% functional circuits, and their minimization. At
stage one, genetic programming explores the search space
and builds improved solutions over partial solutions until
it finds the first 100% functional circuit. The fitness
function for this stage uses entropy concepts in order to
reproduce the truth table. Once the first functional circuit
appears in the population, a second fitness function is
activated for measuring the fitness of the new circuit.
Thus, if a circuit is not 100% functional its fitness value
is estimated through entropy; if the circuit is 100%
functional its fitness value denotes its size and smaller
circuits are preferred over larger ones. The fitness value of
a 100% functional circuit is always larger than the value
of a non functional one, so that circuits are protected from
fitness conflicts.

VI. ENTROPY AND CIRCUITS

Entropy has to be carefully applied to the synthesis of
Boolean functions. Let us assume any two Boolean functions,
F1 andF2, and a thirdF3 which is the one’s complement of
F2, then

F3 6= F2

For these complementary functions,

H(F2) = H(F3)

Also Mutual Information shows a similar behavior.

MI(F1, F2) == MI(F1, F3)

The implications for Evolutionary Computation are impor-
tant since careless use of entropy-based measures can prevent
the system from attaining convergence. Assume the target

Boolean function isT . Then,MI(T, F2) = MI(T, F3), but
only one of the circuits implementingF2 andF3 is close to
the solution since their Boolean functions are complementary.
A fitness function based on mutual information will reward
both circuits with the same value, but one is better than the
other. Things could get worse as evolution progresses because
the mutual information increases when the circuits are closer
to the solution, but in fact, two complementary circuits are
then given larger rewards. The scenario is one in which the
population is driven by two equally strong attractors, hence
convergence is never reached.

The fitness function of that scenario is as follows. Let us
assumeT is the target Boolean function (must be seen as a
Boolean vector), andC is the output vector of any circuit in
the population. Our fitness function is either the maximization
of mutual information or the minimization of the conditional
entropy term. This is,

badfitnessfunction#1 = MI(T,C) = H(T)−H(T |C)
(7)

The entropy termH(T) is constant since T is the target
vector. Therefore, instead of maximizing mutual information,
the fitness function can only minimize the conditional entropy,

badfitnessfunction#2 = H(T |C) (8)

We called bad to these entropy-based fitness functions
because none of the experiments had the minimum vis-
age of success. Although mutual information has been de-
scribed as the “common” information shared by two ran-
dom processes, the search space spawned by that kind of
fitness function is not amenable for evolutionary computa-
tion. In Figure 3 we show this search space over mutual
information for all possible combinations with two binary
strings of 8 bits. The area shown corresponds to about1

4
([1, 150]× [1, 150]) of the whole search space of ([1, 254]×
[1, 254]) (the values 0 and 255 were not used). Horizontal axes
are decimal values of 8 bit binary strings, and height represents
mutual information.

The mutual information search space, clearly full of spikes,
does not favor or emphasizes any area of common information
“anticipated by the theory”. For any two equal vectors, their
Mutual Information lies on the line at45o (over points
{(1, 1), (2, 2), (3, 3) . . . (n, n)}). In the next Section we
continue this discussion and design fitness functions whose
landscapeseems more promising for exploration.

VII. F ITNESSFUNCTION BASED ONNORMALIZED

MUTUAL INFORMATION

So far we have described the poor scenario where the
search is driven by a fitness function based on the sole
mutual information. We claim that fitness functions based on
Normalized Mutual Information (NMI) should improve the
performance of the genetic programming algorithm because of
the form of the NMI landscape. This is shown in Figure 4 for
two 8-bit vectors (as we did for MI in Section VI, Figure 3).
Note on the figure how the search space becomes more regular

Fig. 3. The search space of Mutual Information (Equation 7).

Fig. 4. The search space of Normalized Mutual Information (Equation 5).

and, more important yet, note the appearance of thewall at
45o where both strings are equal.

We propose three new fitness functions based on Normal-
ized Mutual Information (Equation 5) and report experiments
using the following three fitness functions (higher fitness
means better).

Let us assume a target Boolean function ofm attributes
T (A1, A2, . . . , Am), and the circuit Boolean functionC of
the same size. In the following, we propose variations of the
basic fitness function of Equation 9, and discuss the intuitive
idea of their (expected) behavior.

fitness = (Length(T)−Hamming(T,C))×NMI(T,C)
(9)

We tested Equation 9 in the synthesis of several problems
and the results were quite encouraging. Thus, based on this

Fig. 5. Fitness landscape of:f = (Length(T) − Hamming(T, C)) ×
NMI(T, C).

primary equation we designed the following fitness functions.
In Figure 5 we show thefitness landscapeof Equation 9.

fitness1 =
m∑

i=1

fitness

NMI(Ai, C)
(10)

fitness2 =
m∑

i=1

fitness×NMI(Ai, C) (11)

fitness3 = (Length(T)−Hamming(T,C))×(10−H(T |C))
(12)

The function fitness, Equation 9, is driven by NMI(T,C)
and adjusted by the factorLength(T) − Hamming(T, C).
This factor tends to zero whenT andC are far in Hamming
distance, and tends toLength(T) when T and C are close
in Hamming distance. The effect of the term is to give the
correct rewarding of NMI to a circuitC close toT . Equation 9
is designed to remove the convergence problems described in
the previous section.

Fitness1 and Fitness2, Equations 10 and 11, combine
NMI of T and C with NMI of C and the attributesAk of
the target function. Thus,fitness1 and fitness2 look for
more information available in the truth table in order to guide
the search.Fitness3 is based on conditional entropy and
it uses the mentioned factor to suppress the reproduction of
undesirable trees. Since conditional entropy has to be mini-
mized we use the factor10 −H(T |C) in order to maximize
fitness. Equations 8 and 10 use the conditional entropy term.
Nevertheless, only Equation 10 works fine. As a preliminary
discussion regarding the design of the fitness function, the
noticeable difference is the use of Hamming distance to guide
the search towards the aforementionedoptimum wallof the

TABLE II

GENERATION NUMBER WHERE THE FIRST100%FUNCTIONAL CIRCUIT IS

FOUND, AND THE GENERATION WHERE THE OPTIMUM IS FOUND, FOR THE

THREE PROPOSED FITNESS FUNCTIONS.

Event Gen. at fitness1 Gen. at fitness2 Gen. at fitness3
100% Functional 13± 5 14± 7 18± 6

Optimum Solution 30± 7 30± 10 40± 20

TABLE III

GENERATION NUMBER WHERE THE FIRST100%FUNCTIONAL CIRCUIT IS

FOUND, AND THE GENERATION WHERE THE OPTIMUM IS FOUND, FOR THE

THREE PROPOSED FITNESS FUNCTIONS.

Event Gen. at fitness1 Gen. at fitness2 Gen. at fitness3
100% Functional 39± 12 40± 11 50± 12

Optimum Solution 160± 15 167± 15 170± 20

search space. The Hamming distance favors the destruction of
individuals on one side of the wall, and favors the other side.
Thus, in principle, there is only one attractor in the search
space.

VIII. E XPERIMENTS

In the following experiments we find and contrast the
convergence of the genetic programming system for the three
fitness functions of Equations 10,11,12.

A. Experiment 1

Here we design the following (simple) Boolean function:

F (a, b, c, d) =
∑

(0, 1, 2, 3, 4, 6, 8, 9, 12) = 1

We use a population size of 300 individuals, a crossover rate
(pc) of 0.35, a mutation rate (pm) of 0.65, and a maximum
of 100 generations. The optimal solution has 6 nodes, thus
we find the generation in which the first 100% functional
solution appears, and the generation number where the optimal
is found. The problem was solved 20 times for each fitness
function. Table II shows the results of these experiments.

B. Experiment 2

Our second test function is:

F (a, b, c, d, e, f) = ab + cd + ef

In this case, we adopted a population size of 600 individuals,
pc = 0.35, pm = 0.65, and a maximum of 200 generations.
The optimal solution has 14 nodes. Each problem was solved
20 times for each fitness function. Table III shows the results
of these experiments.

A solution found to this problem is shown in Figure 6. The
evolutionary solution is equivalent to the optimum reported by
Reduced Order Binary Decision Diagram techniques.

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0

1

1

X5

X6

X4

X3

X1

F=X1X2+X3X4+X5X6

X2

Fig. 6. Solution found by Genetic Programming to Experiment 2

TABLE IV

PARTIALLY SPECIFIED FUNCTION OF EXAMPLE 3 NEEDS(2 ∗ 2k)− 1

MUXES.

ABCD F(ABCD)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

C. Experiment 3

Our third problem is related to partially specified Boolean
functions [7]. With this experiment we address the ability of
the system to design Boolean functions with “large” numbers
of arguments and specific topology. For this, we have designed
a synthetic problem where the topology is preserved when the
number of variables increases.

Boolean functions with2k variables are implemented with
(2 ∗ 2k) − 1 binary muxesif the truth table is specified as
shown in Table IV.

We ran experiments fork = 2, 3, 4, thus 4,8, and 16
variables and we contrasted these results with the best known
so far for this problem (reported in [7]). For completeness, all
previous results are reported together with the results of the
new experiments in Table V, where we use the three fitness
functions proposed before (Equations 10,11,12).

All parameters are kept with no changes for similar ex-
periments, average is computed for 20 independent runs.
In previous work we used a fitness function based on the
sole Hamming distance between the current solution of an
individual and the target solution of the truth table [7]. One
important difference is the percentage of correct solutions

TABLE V

GENERATION NUMBER WHERE THE FIRST100%FUNCTIONAL CIRCUIT IS FOUND, AND THE GENERATION WHERE THE OPTIMUM IS FOUND, FOR THE

THREE PROPOSED FITNESS FUNCTIONS.

k variables size Avg(previous) Avg(fitness1) Avg(fitness2) Avg(fitness3)
2 4 7 60 60 60 60
3 8 15 200 190 195 194
4 16 31 700 740 731 748
5 32 63 2000 2150 2138 2150

0 1

0 1 0 1

0 1 0 1

0 1 0 10 1 0 1

1 0 0 1 0 1 1 0

A0 A0 A3A3

A3 A0

A2 A2

A1

F

Fig. 7. Optimum solution to even 4-parity circuit problem

found. Previously, we reported that in 90% of the runs we
found the solution (for the case of fitness based on Hamming
distance). For the three fitness functions based on entropy we
found the solution in 99% of the runs.

D. Experiment 4

Our fourth (and last) problem, is the synthesis of even 4-
parity circuits (the output of the circuit is 1 if the number of
ones assigned to the input variables is odd). This experiment
is harder to solve because onlyXOR gates are used in the
optimum solution. Since our approach will need to implement
XOR gates by using muxes, or make some abstraction of the
overall circuit, interesting behaviors on the fitness functions
will be observed. In this case, we adopted a population size
of 810 individuals,pc = 0.35, pm = 0.65, and a maximum of
300 generations. Each problem was solved 30 times for each
fitness function. The optimal solution has 15 nodes, which
after removing similar branches gets its final form shown in
Figure 7.

For this experiment we report the number of optimum
solutions found as a percentage of trials (30). The results are
shown in Table VI

The first three columns are similar to previous experiments,
the column labeled “Hamming” indicates the use of a fit-
ness function optimizing Hamming distance, and the column
labeled “H-NMI” indicates the use of the fitness function

described in Equation 9. Except for function Fitness3, all
fitness functions found functional circuits in all cases. It is
important to remember that Fitness3 is based on conditional
entropy and Hamming distance; the detailed results are: about
50% of the runs strayed from convergence showing an ever
increasing number of nodes. In the other 50%, functional
solutions were found but showing an erratic behavior. No
circuit with optimum fitness solution was found.

Experiments show that Fitness H-NMI is quite similar to
fitness Hamming, but Fitness2 and Fitness1 improve H-NMI
and Hamming, most likely due to the normalized mutual
information measured between the variables of the target and
evolving functions.

IX. F INAL REMARKS AND CONCLUSIONS

Several experiments were tried with no success for some
fitness functions based on conditional entropy. We believe this
is a clear indication of a fitness function that does not take
into account entropy properties. Thus, we explained how an
evolutionary algorithm would not converge because there is
more than one attractor in the search space. Figure 3 reveals
an amorphous search MI landscape with a quite weak wall at
45o. The left handside of the wall seems more regular than the
right handside. Although it is hard to derive any conclusions
from this figure, it is clear that no attractor dominates the area
and it could explain the failure of the fitness function based
on the sole MI.

The landscape of Normalized Mutual Information seems
less chaotic and more regular. The great advantage of a fitness
function designed over NMI is the appearance of the wall at
45o. It is clear that that wall must appear when the random
vectors are equal; as the intersection of the vectors increases
so it does the MU. What we have shown in this paper is that,
in spite of all the credit given to MI as the “real information”
shared between two random processes, the NMI landscape
is more amenable for search than the MI landscape. In the
landscape of the fitness function of Figure 5, we can see the
wall due to equal vectors is preserved, so we believe it is part
of the landscape of three fitness functions using Equation 9.

In the first three experiments, the three fitness functions
proposed in this paper worked quite well. All of them found
the optimum in most cases, thus they are comparable to other
fitness functions based on Hamming distance [7]. Nonetheless,
Experiment 4, which is harder since the optimum solution is
implemented by only using XOR gates, tell us a different story.
Remember that Fitness1 and Fitness2 are based on NMI, and

TABLE VI

PERCENTAGE OF OPTIMUM SOLUTIONS FOUND IN30 RUNS, FOR THE THREE PROPOSED FITNESS FUNCTIONS.

Event Fitness1 Fitness2 Fitness3 Hamming H-NMI
%Opt. Solutions 54.5% 44.1% 0.0% 36.6% 36.8%

that their design hypothesis is that some relevant information
shared between the Boolean variables of the target function
and the target function itself, could be extracted and used to
guide the search. This seems to be the case of Experiment 4,
since the best results are obtained by fitness functions based
on NMI.

A final remark goes to the convergence time and quality of
results for Experiment 4 previously reported in the specialized
literature. Miller et al. [16], solved this problem using a
genetic algorithm whose evolution is contained by the matrix
representation used (called cartesian genetic programming).
They found the optimum in 15% of the runs, each run made 4
million fitness function evaluations. In our case, we only need
240,000 fitness function evaluations, and we get the perfect
fitness in 54.5% of the trials. It is not possible to derive firm
conclusions from the comparison because the representation
and the evolutionary technique of each approach is different,
but it is worth to note how our GP based approach needs less
computational resources to find perfect fitness circuits. From
Tables II and III we can give some advantage to normalized
mutual information over simple mutual information because it
is less biased. Results from Table V and Table VI could imply
that mutual information is able to capture some relationship
between the data that the sole Hamming distance cannot
convey to the population.

ACKNOWLEDGEMENTS

The first author acknowledges partial support from CON-
CyTEG project No. 03-02-K118-037 and CONACyT No.
42523. The second author acknowledges support from CONA-
CyT through project no. 42435-Y.

REFERENCES

[1] Cheushev, V.; C. Moraga, S. Yanushkevich, V. Shmerko, and J.
Kolodziejczyk. “Information theory method for flexible network syn-
thesis”. In Proceedings of the IEEE 31st. International Symposium on
Multiple-Valued Logic, pages 201–206. IEEE Press, 2001.

[2] Cover, T.M. and J.A. Thomas.Elements of Information Theory. John
Wiley & Sons, New York, 1991.

[3] Drechsler, Rolf; N. G̈ockel, and B. Becker. Learning Heuristics for OBDD
Minimization by Evolutionary Algorithms. In Hans-Michael Voigt and W.
Ebeling and I. Rechenberg and H.P. Schwefel, editors,Proceedings of the
Conference Parallel Problem Solving from Nature PPSN-IV, Berlin, 1996
pages 730 –739, Springer, 1996

[4] Drechsler, Rolf; and Bernd Becker.Binary Decision Diagrams: Theory
and Implementation. Kluwer Academic Publishers, Boston, USA, 1998.

[5] Droste, Stefan. “Efficient Genetic Programming for Finding Good Gen-
eralizing Boolean Functions”. In John R. Koza and Kalyanmoy Deb and
Marco Dorigo and David B. Fogel and Max Garzon and Hitoshi Iba and
Rick L. Riolo, editors,Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 82–87, 1997, Morgan Kaufmann, San
Francisco, CA, USA

[6] Hartmann, C.R.P.; P.K. Varshney, K.G. Mehrotra, and C.L. Gerberich.
“Application of information theory to the construction of efficient decision
trees”. IEEE Transactions on Information Theory, 28(5):565–577, 1982.

[7] Herńandez Aguirre, Arturo; Bill P. Buckles, and Carlos A. Coello Coello.
“Evolutionary synthesis of logic functions using multiplexers”. In C. Dagli,
A.L. Buczak, and et al., editors,Proceedings of the 10th Conference Smart
Engineering System Design, pages 311–315, New York, 2000. ASME
Press.

[8] Herńandez Aguirre, Arturo; Bill P. Buckles, and Carlos A. Coello Coello.
“Gate-level Synthesis of Boolean Functions using Binary Multiplexers and
Genetic Programming”. InConference on Evolutionary Computation 2000,
pages 675–682.IEEE Computer Society, 2000b.

[9] Herńandez Aguirre, Arturo; Carlos A. Coello Coello, and Bill P. Buckles.
“A genetic programming approach to logic function synthesis by means
of multiplexers”. In Adrian Stoica, Didier Keymeulen, and Jason Lohn,
editors, Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware, pages 46–53, Los Alamitos, California, 1999. IEEE Computer
Society.

[10] Kabakcioglu, A.M.; P.K. Varshney, and C.R.P. Hartmann. “Application
of information theory to switching function minimization”.IEE Proceed-
ings, Part E, 137:387–393, 1990.

[11] Kalganova, Tatiana. “Bidirectional Incremental Evolution in Extrinsic
Evolvable Hardware”. In Jason Lohn, Adrian Stoica, Didier Keymeulen,
Silvano Colombano, editors,Proceedings of the Second NASA/DoD Work-
shop on Evolvable Hardware, pages 65–74, Los Alamitos, California,
2000. IEEE Computer Society.

[12] Lloris, A.; J.F. Gomez-Lopera, and R. Roman-Roldan. “Using decision
trees for the minimization of multiple-valued functions”.International
Journal of Electronics, 75(6):1035–1041, 1993.

[13] Luba, T.; C. Moraga, S. Yanushkevich, V. Shmerko, and J. Kolodziejczyk
“Application of design style in evolutionary multi-level network synthesis”.
In Proceedings of the 26th EUROMICRO Conference Informatics:Inventing
the Future, pages 156–163. IEEE Press, 2000.

[14] Luba, T.; C. Moraga, S. Yanushkevich, M. Opoka and V. Shmerko.
“Evolutionary multi-level network synthesis in given design style”. In
Proceedings of the 30th IEEE International Symposium on Multiple valued
Logic, pages 253–258. IEEE Press, 2000.

[15] Maes, Frederik; Andŕe Collignon, Dirk Vandermeulen, Guy Marchal,
and Paul Suetens. “Multimodality image registration by maximization of
mutual information”.IEEE Transactions on Medical Imaging, 16(2):187–
198, April 1997.

[16] Miller, Julian F.; Dominic Job, and Vesselin K. Vassilev. “Principles in
the Evolutionary Design of Digital Circuits—Part II”.Genetic Program-
ming and Evolvable Machines, 1(3):259–288, July 2000.

[17] Quinlan, J.R. “Learning efficient classification procedures and their
application to chess games”. In R. S. Michalski, J. G. Carbonell, and T. M.
Mitchell, editors,Machine Learning: An Artificial Intelligence Approach,
pages 463–482. Springer, Berlin, Heidelberg, 1983.

[18] Shannon, Claude E.. “A Mathematical Theory of Information”.Bell
System Technical Journal, 27:379–423, July 1948.

[19] Scholl, C.; and Bernd Becker. “On the Generation of Multiplexer
Circuits for Pass Transistor Logic”. InProceedings of Design, Automation,
and Test in Europe2000.

[20] Studholme, C.; D.L.G. Hill, and D.J. Hawkes. “An overlap invariant
entropy measure of 3D medical image alignment”.Pattern Recognition,
32:71–86, 1999.

[21] Torresen, Jim. “ A Scalable Approach to Evolvable Hardware”.Genetic
Programming and Evolvable Machines, 3(3):259–282, 2002.

[22] Vassilev, Vesselin K., and Julian F. Miller. “Scalability Problems of Dig-
ital Circuit Evolution”. In Jason Lohn, Adrian Stoica, Didier Keymeulen,
Silvano Colombano, editors,Proceedings of the Second NASA/DoD Work-
shop on Evolvable Hardware, pages 55–64, Los Alamitos, California,
2000. IEEE Computer Society.

[23] Weaver, W. and C. E. Shannon.The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, Illinois, 1949.

