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Abstract— This article introduces the Non-Parametric Real-
valued Estimation Distribution Algorithm (NOPREDA), and its
application to constrained optimization problems. NOPREDA
approximates the target probability density function by building
the cumulative empirical distribution of the decision variables.
Relationships and structure among the data is modeled through
a rank correlation matrix (Spearmans statistics). The procedure
to induce a target rank correlation matrix into the new
population is described. NOPREDA is used to solve constrained
optimization problems. Three constraint handling techniques
are investigated: truncation selection, feasibility tournament,
and Stochastic Ranking. NOPREDA’s performance is com-
petitive in problems with inequality constraints. However, a
mechanism for properly handling equality constraints remains
as part of our future research work.

I. INTRODUCTION

The main feature of Estimation Distribution Algorithms
(EDAs) is the approximation of the probability density func-
tion of the decision variables (hereafter the target probability
density function, TPDF, which can generate the optimum
values of the variables). A model for the TPDF pertains
to one of the two possible categories: either the variables
of the TPDF are independent, or dependencies between
them are included in the model. Most approaches belong
to the latter category, however, the models that treat the
variables as independent are simple and easy to compute.
The variables could be discrete or real (or a mixture of
them); for the purposes of this paper, we assume real
variables. Data dependencies and structure of the TPDF can
be approximated by a joint probability distribution model
(JPD model). Models for the JPD differ in complexity, but
the search for a suitable JPD model that correctly or better
represents the TPDF has been an important focus of research.
In essence, one needs to build the simplest probability
distribution model that provides the best approximation to the
TPDF (Okham’s razor). The goal of this paper is twofold: to
introduce the Non-parametric Real-valued Estimation Dis-
tribution Algorithm (NOPREDA), and to extend it with a
constraint-handling mechanism. We also provide an empiri-
cal assessment of NOPREDA for the solution of constrained
optimization problems. NOPREDA builds the cumulative
empirical distribution of each variable (thus no distribution
is assumed for the data). Then, a JPD model, which is based
on the rank correlation matrix, is built to approximate the
TPDF. The procedure to induce a target rank correlation

into new variables is explained. Three constraint-handling
techniques are investigated: truncation selection, feasibility
tournament, and Stochastic Ranking. The organization of this
paper is the following. Section II provides a brief review of
Gaussian-based models to approximate the TPDF. Section
III thoroughly introduces NOPREDA. Then three constraint-
handling techniques are investigated and incorporated into
NOPREDA. The remainder of this paper is organized as
follows. Section IV provides the formal definition of the kind
of problems of interest. Section V describes the experiments,
and conclusions and final remarks are given in Section VI.

II. MODELS TO APPROXIMATE THE TARGET

PROBABILITY DENSITY FUNCTION

Many models are possible for discrete and continuous data,
for variables with no dependencies, bivariate dependencies,
and multivariate dependencies. Models in the continuous
domain with variable dependencies which are related to
NOPREDA are reviewed next. NOPREDA is, in many ways,
analog to the Estimation of Multivariate Normal Algorithm
[11], in its global version (EMNAglobal). But NOPREDA is
non-parametric whereas EMNAglobal builds a multivariate
normal density N(x;μ; Σ) to approximate the TPDF. For
NOPREDA, the rank correlation matrix plays the role of
the covariance matrix. Two more versions of EMNA were
designed to speed up the model generation; they differ in
the way the model is built but it is always Gaussian. In
other approaches, the covariance matrix is factorized by the
Cholesky algorithm and then the factor used to induce the
current correlation (of the sample) into the new population
[14], [19], [18]. In NOPREDA, the rank correlation matrix
carrying dependencies information found in the data sample
is also induced into the new population. Also based on
a Gaussian model but using clusters to bias the search
towards very small areas of the search space is the Clustering
and Estimation of Gaussian Distribution Algorithm [13].
Simpler models based on Normal distribution are the Uni-
variate Marginal Distribution Algorithm for Gaussian models
(UMDAG

c ) [12], which assumes no dependencies, and Mu-
tual Information Maximizing Input Clustering (MIMICG

c ),
which is a modified version for continuous domains [3]. [12]
that assumes bivariate dependencies of Gaussian variables.
The UMDA with penalty function and repair operators
is a important step in this direction, however, NOPREDA



clearly surpassed the results [16]. On the other end, more
complex models also based on Normal density functions is
the Estimation of Gaussian Networks Algorithm (EGNA),
which learns and simulates a network structure. The network
structure can be learnt by a score and search metric, or
edge exclusion test [11], [6]. Lastly, a model that has proved
robust is Iterated Density Evolutionary Algorithm (IDEA),
also based on multivariate Normal density models [1], [2].

NOPREDA builds an approximation of the TPDF by com-
puting the cumulative empirical distribution of independent
variables. Thus, instead of Normal density functions and
a covariance matrix, NOPREDA builds a joint probabil-
ity density model on the cumulative empirical distribution
(CED) and the rank correlation matrix. Experimental results
have shown NOPREDA is robust, besides it is simple to
implement. A major drawback reported for EDAs based on
Normal density functions is the strong tendency to premature
convergence [7]. Thus, keeping population diversity is an
issue, for which some ideas have been proposed. Grahl et
al. proposed the adaptive variance scaling (avs) IDEA [7].
In their approach the covariance matrix Σ is scaled by a
factor cAV S . The factor may increase and decrease as the
search succeeds or fails to improve the current best value.
Increments and decrements are proportional to ηINC =
1/ηDEC . Upper and lower bounds prevents cAV S from
ever increasing or decreasing its value. Yuan and Gallagher
proposed an approach that keeps the variance at a value of at
least 1.0 [19]. Their approach guarantees the factorization of
the covariance matrix, and provides diversity to the new pop-
ulation. The Eigenspace EDA approach [17], EEDA, rotates
the covariance matrix such that the largest eigenvector ends
up in the direction of the smallest one. After the rotation, the
smallest eigenvalue is artificially grown so that the increase
in the variance provides more diversity to the new population.
NOPREDA also includes a mechanism to preserve diversity.
90% of the new population is simulated from the current
JPD model, and 10% is obtained by performing mutations
to the best individual. By including these new individuals
population diversity is increased. Elitism of 3 individuals is
implemented (see more details in Section V).

III. THE NOPREDA ALGORITHM

NOPREDA keeps the typical data flow of any EDA,
as shown in Figure 1. The general NOPREDA algorithm
is explained first, and then we explain constraint-handling
techniques adopted.

A sample S is taken from the population, usually by
truncation selection. That is, we sort the population by fitness
and then take the best 50% (or another suitable percentage).
An approximation to the TPDF is built from the data in S.
This process involves a few steps: 1) the computation of
the sorting index IDX for each variable; 2) the cumulative
probability distribution of each variable is calculated; 3)
once the new population is simulated from the cumulative
distribution, it is reordered by using IDX . In principle,
this is similar to approximating a probability distribution
function by means of a Gaussian model. However, the real

NOPREDA
t=0;
Pt ← InitialPopulation;
Repeat

Pt ← evaluatefitness(Pt);
S ← select best(Pt);
IDX ← find indexes toinducecorrelation(S);

For each variable Xi in S
CDi ← compute cumulative distribution(Xi);
NewXi ← generate newpopulation(EDi);

EndFor
t=t+1;
Pt ← {NewXi}; % nextpopulationisamatrix
Pt ← reorder(Pt, IDX);

Until Termination;
function find indexes toinduce rank correlation(S)

RCM ← compute rankcorrelation matrix(S);
CHO ← Choleskyfactorization(RCM);
T1 ← uncorrelated matrix ;
T2 ← T1 × CHOT ;
IDX ← find sorting index(T2);

return IDX;

Fig. 1. Main pseudocode of NOPREDA

potential of the cumulative distribution lies in its ability to
model any probability distribution. Besides, its computation
is simple. Now, the analog to the covariance matrix of
some multivariate Gaussian model, is the rank correlation
matrix. Rank correlation is also easy to compute, it carries
data dependencies, and more important, it is independent of
the probability distribution (clearly suits to our approach).
Spearman’s rank correlation between a pair of variables X,Y
is shown in Equation 1.

ρX,Y =
∑

i(R(Xi) − R̄X)(R(Yi) − R̄Y )√∑
i(R(Xi) − R̄X)2

∑
i(R(Yi) − R̄Y )2

(1)

The index i identifies the instances Xi and Yi. R(Xi) is the
rank of that instance, and their rank’s average is R̄X (see [5]).

The cumulative distribution is computed by counting fre-
quencies of the available samples and then summing up the
frequencies. New data can be generated by interpolating the
current values. A small example is given next for the sake
of completeness. For the following data in the interval [0, 5],

X = {1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4}
the plot of the cumulative empirical distribution is shown in
Figure 2. An example random number from this distribution
is 2.28, which is found by entering a random uniform number
in the “Y-axis” (0.52), and reading 2.28 in the “X-axis”
through the curve. The function “compute empirical distri-
bution”, builds the cumulative distribution for every variable
in the search space. Function “generate new population” gets
new random numbers as explained before.

Iman and Conover introduced the procedure to generate
new data in agreement with a rank correlation matrix [10].
NOPREDA implements the very same procedure with few
modifications. The main task is performed by the function



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accumulated frecuencies of variable X in interval [0 , 5]

P
ro

ba
bi

lit
y 

P
(x

)

Plot of accumulated empirical distribution

New
Random Number 

Fig. 2. The cumulative empirical distribution

“find indexes to induce correlation” which returns an index
vector for each variable. The index vector tells how to
permute the elements of a data vector hence it can agree
with the target rank correlation. Once the index vector is
computed for each variable, the function “reorder” applies
the vector to the data just sampled from the empirical
distribution. Therefore, the new population agrees with the
rank correlation matrix of the former population. The details
of “find indexes to induce correlation” are also provided
in Figure 1. A rank correlation matrix, RCM, is computed
from the population sample, S. Then RCM is factorized in
a triangular matrix CHO, by a Cholesky procedure. T1 is a
matrix whose covariance matrix is the identity matrix (Iman
and Conover suggested the generation of T1 from a normal
distribution), thus, T1 is a Normal uncorrelated data matrix.
Now a correlation will be induced into T1 by multiplying it
by CHOT , resulting in matrix T2. Every column vector of
T2 is used to generate an index vector for each variable. If
data in T2 is [8, 10, 4, 1, 6]T , the corresponding index vector
is [4, 3, 5, 1, 2]. That is, the smallest element is in position 4,
the next in 3, the next in 5, and so on. When a new (sorted)
vector, say [2, 4, 6, 8, 10], is permuted by the aforementioned
index, the resulting vector is [8, 10, 4, 2, 6] (because number
2 is the smallest, next is number 4 which according to its
index must take position 3, and so on). Such is the task
performed by the function “reorder”. Therefore, the rank
correlation matrix of the new population is similar to that
of the previous population.

EDAs are global optimizers, hence a constraint-handling
technique needs to be adopted to bias the search towards
the feasible region in constrained search spaces. The three
constraint-handling methods explored next have been suc-
cessfully used by evolutionary algorithms. Since EDAs and
evolutionary algorithms iterate over a population of samples,
embedding a constraint-handling technique into an EDA
seems similar to embedding a constraint-handling technique
into a evolutionary algorithm. However, a more profound
question remains. This is how to bias the new population
towards the feasible region. A few ideas for achieving this

are explored next.

A. Incorporating a constraint-handling technique

In many EDAs for global optimization, truncation
selection is commonly used to create the population
sample. The chosen elements are then used to generate
an approximate model of the TPDF. In constrained search
spaces, however, the selection criteria must provide a
population sample with information from the feasible
and unfeasible subspaces. The new population must be
biased towards the feasible region. One possible approach
is the construction of two probability models, one for
feasible and another for unfeasible individuals. The new
population would be sampled from both distributions,
taking good care of the amount requested from each
distribution. Another approach, followed by PolyEDA [7],
is to use a Gibbs sampler to generate random vectors
from multivariate normal distributions that are subject to
linear constraints. In PolyEDA only feasible solutions are
sampled and new populations lie into the feasible region.
However, the initial population must be generated inside the
polyhedron defined by the linear constraints. NOPREDA,
however, explores a different approach by building only one
probability distribution model from a mixture of feasible
and unfeasible individuals. Their proportion in the mixture
is not controlled, therefore, only the selection pressure of
the selection technique may alter it. Some approaches to
handle constraints have been investigated for evolutionary
algorithms [9], [8]. In NOPREDA, the constraint-handling
technique is tightly coupled to the selection method because
a convenient blend of individuals should be found to
conform the sample. In the following, three constraint-
handling techniques are investigated. Although they use
the same arguments, sum of constraint violation SCV, and
fitness value, they are based in very different principles. The
details of each approach are explained next. Any of these
approaches would substitute the function “select best”, with
no change in the argument or the return value (see main
pseudocode of NOPREDA in Figure 1).

Constraint-handling by SCV + Fitness and truncation
selection.

This method is an extension of the truncation selection.
Since truncation is simple and has been found to be sufficient
for many EDAs in unconstrained spaces, it is included in
the experiments in order to find whether its performance
excels over other approaches in constrained search spaces.
In NOPREDA the population is first sorted by a combined
key: “sum of constraint violation” followed by fitness value
(the reader should not confuse this approach with a penalized
function. Here both parameters are used to sort the popula-
tion). Then the sample is obtained by truncation, as shown
in Figure 3.

After sorting the population, the “least unfeasible”
individuals (if any) are at the top of the list. Thus,
unfeasible individuals may be included in the sample used



function constrainthandling by truncation(Pt);
T ← sort by SCV and fitness(Pt);
T ← truncation(T);

return T;

Fig. 3. Pseudo-code of truncation selection

to build the probability model. It is through this model that
the new population is biased towards the feasible region. An
analog behavior is observed when the whole population is
feasible but this time it is biased towards better fitness values.

Constraint-handling by feasibility tournament

A feasibility tournament is a binary tournament that deter-
mines the best individual out of two randomly chosen from
the population. According to Deb [4], the method consists
of the application of the following “feasibility rules”: 1)
from one feasible and one unfeasible individual, pick the
feasible. 2) from two unfeasible individuals, pick the one
with smallest amount of constraint violation. 3) from two
feasible individuals, pick the one with best fitness value. The
user defines the number N of individuals in the returning set.

function feasibilitytournament(Pt);
T ← [ ];
for f=1 to N

Pa, Pb ← randomly pick two individuals(Pt);
winner ← apply feasibility rules(Pa, Pb);
T ← T ∪ winner;

end
return T;

Fig. 4. Pseudo-code of feasibility tournament

The feasibility tournament puts higher selection pressure
on feasible individuals closer to the optimum, or closer to the
feasible region when they are unfeasible. This mechanism
provides a strongly biased population. The details of the
algorithm are shown in Figure 4.

Constraint-handling by Stochastic Ranking

Runarsson and Yao introduced a powerful constraint-
handling technique called Stochastic Ranking (SR) [15]. The
procedure is basically a bubble sort algorithm which uses two
reference fields (not only one as usual) to sort the population.
Bubble sort swaps two rows when the reference field is not
in order. But the bubble sort in SR works with two reference
fields: fitness value, and the sum of constraint violation
(SCV). Which reference field is used is decided in a random
way by setting a boundary to distinguish the fields, say Pref .
If Pref = 0.5, the population becomes an homogeneous
mixture of feasible and unfeasible individuals. The effect of
higher probability values is to bias the population to seek
better fitness values, but simultaneously tends to overlook
the feasible region (under penalization). Lower probability
values are useful to bias the population to seek the feasible
region (over penalization). Figure 5 shows the details of
Stochastic Ranking. Note that the whole population is sorted

but the required sample of size N is obtained by truncation.
The number of sweeps is commonly set to the population
size, since in that way the SR tuning can be done through
only one variable, Pref . For the experiments, Pref = 0.4

function stochastic ranking(P);
for f=1 to sweeps

for j=1 to size(P)-1
sample u ∈ U(0,1);
if (SCV(Pj)=SCV(Pj+1)=0) or (u ≤ Pref ) then

if(fitness(Pj) > fitness(Pj+1) then
swap(Pj , Pj+1);

fi
else if (SCV(Pj) > SCV(Pj+1)) then

swap(Pj , Pj+1);
fi

end
if no swap done break; end

end
T ← truncation(P);

return T;

Fig. 5. Pseudo-code of Stochastic Ranking

IV. PROBLEM STATEMENT

We are interested in the general nonlinear programming
problem in which we want to:

Find �x which optimizes f(�x) (2)

This is called a global optimization problem. The definition
of a constrained problem includes the following:

subject to:

gi(�x) ≤ 0, i = 1, . . . , n (3)

hj(�x) = 0, j = 1, . . . , p (4)

where �x is the vector of solutions �x = [x1, x2, . . . , xr]T ,
n is the number of inequality constraints and p is the number
of equality constraints (in both cases, constraints could
be linear or nonlinear). For an inequality constraint that
satisfies gi(�x) = 0, then we will say that is active at �x. All
equality constraints hj (regardless of the value of �x used)
are considered active at all points of F (F = feasible region).

V. EXPERIMENTS

A. Constraint handling with no diversity control

NOPREDA was used to solve Runarsson and Yao’s
benchmark of 13 functions (listed in the Appendix) [15].
The equality constraints were treated as inequalities by
including a tolerance, as follows: |hj | ≤ ε. The tolerance’s
initial value is 0.5, which exponentially decreases to reach
its final value of ε = 1E − 4 during the first 80% of
the fitness function evaluations. The population size is
160, the sample size is 90% of the population (144). The
number of fitness function evaluations is set to 350,000
(same as in [15]). NOPREDA uses elitism of 3 individuals.
To produce the new generation, NOPREDA obtains 90%



of the population by simulation from the current joint
probability distribution. An additional 5% comes from
mutations of the elite individual. Mutations are made by
adding random numbers from a Normal distribution with
zero mean, and variance = 1E − 12. The last 5% also
comes from mutations, but this time are applied to the
average of the 5 best individuals in the population (also
from a Normal distribution with zero mean, and variance
= 1E − 12). In fact the new population amounts to N
+ 3 individuals (163=144 by sampling + 8 by mutating
the elite + 8 by mutating the average of 5 best + 3 elites
from the previous generation). From them a sample of 144
elements is obtained at every generation. The number of
individuals obtained by mutations is small, but they help
to prevent premature convergence. In the tables presented
next, the reader may consult the results of NOPREDA
with the three proposed constraint-handling techniques:
truncation selection with SCV and fitness value is shown in
Table I, feasibility tournament in Table II, and Stochastic
Ranking in Table III. A total of 50 runs were made with
each technique. SD stands for Standard Deviation, and FS
for number of feasible runs (the feasible region was reached
inside tolerance).
Note that neither approach was able to solve problem g05.
Problem g13 (with 3 equality constraints) seems difficult
to solve but the best and most consistent values (i.e., with
a small standard deviation) were returned by Stochastic
Ranking. The three approaches find the feasible region in a
rather random way. But once it is found, Stochastic Ranking
converges very well to the optimum. Problem g10 has 6
inequality constraints, but 3 of them are active. This fact
made this problem the most difficult to solve. The large
standard deviation indicates the algorithm converged at
many different points, very far from the optimum. The best
value of the median corresponds to the Stochastic Ranking
approach.

B. Constraint handling with diversity control

The three approaches introduced to handle constraints
were modified to improve population diversity. The working
hypothesis is that higher diversity should prevent premature
convergence, and improve exploration. The modification,
made in exactly the same way to the three approaches,
changes the composition of the population sample in the
following way: 75% of the sample is randomly obtained from
the population (with replacement), and 25% comes from
the top of the array returned by each constraint handling
technique (see Figures 3, 4 and 5). The percentages are
empirical values for which the three variants reported average
performance. Experiments were performed with the same
parameters and conditions as explained for the first set.
Results are shown in Tables IV, V and VI.

As noted, better diversity should improve exploration. The
diversity control version reached the feasible region in most
runs of problem g13. Failed to reach the feasible region of
problem g05 in all but 3 runs. A further analysis of the kind

of problems NOPREDA was capable to solve, show that
active inequality constraints are hard for the technique. The
constraint handling tested include control for equalities and
inactive inequalities. However, NOPREDA failed at active
inequality constraints because it lacks a mechanism to bias
and maintain the population inside very small regions.

VI. CONCLUSIONS

In this paper, we have proposed NOPREDA, which is a
non-parametric approach to the approximation of the true
data distribution through the cumulative empirical distri-
bution. The cumulative distribution is combined with the
rank correlation matrix to capture data dependencies. The
procedure to induce a target rank correlation matrix in the
new data has been explained in detail. Adopting a constraint-
handling technique is a simple task. However, exploration
of the search space needs to be improved. NOPREDA
deals very well with inactive inequality constraints. Equality
constraints are properly handled by the dynamic tolerance
approach. However, active equality constraints need further
study. Out of the three constraint-handling techniques stud-
ied, the Stochastic Ranking delivered the best results and was
the most consistent as well.
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TABLE I

NOPREDA WITH TRUNCATION SELECTION(SCV+FITNESS VALUE)

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.858805 -14.999999 -12.000000 0.571513 50
g02 0.803619 -0.801462 -0.773553 -0.776781 -0.714867 0.020024 50
g03 1.000000 -1.000278 -1.000395 -1.000407 -1.0004581 4.45E-05 50
g04 -30665.539 -30665.53867 -30665.53867 -30665.53867 -30665.53867 1.30E-11 50
g05 999999 999999 999999 999999 999999 999999 0
g06 -6961.813880 -6961.813876 -6961.813876 -6961.813876 -6961.813876 1.84E-12 50
g07 24.306209 24.337091 24.556890 24.538721 24.898732 0.142215 50
g08 0.095825 -0.095825 -0.093157 -0.095825 -0.029143 0.013199 50
g09 680.630057 680.631855 680.656898 680.641991 680.795425 0.035428 50
g10 7049.248 7117.550768 9278.988639 8488.300881 14185.067220 2001.044119 50
g11 0.750000 0.749976 0.749918 0.749911 0.749899 2.50E-05 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.053947 0.169690 0.054157 0.439746 0.186171 10

TABLE II

NOPREDA WITH FEASIBILITY TOURNAMENT

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.559828 -15.000000 -12.992881 0.837159 50
g02 0.803619 -0.802312 -0.773586 -0.774270 -0.714500 0.018901 50
g03 1.000000 -0.999993 -0.999938 -0.999965 -0.999007 0.000274 50
g04 -30665.539 -30665.538610 -30625.779810 -30644.739280 -30381.327080 52.737799 50
g05 999999 999999 999999 999999 999999 999999 0
g06 -6961.813880 -6961.533865 -6948.348015 -6955.706494 -6819.039202 26.250349 46
g07 24.306209 24.406870 25.385232 25.018283 28.126508 0.818482 50
g08 0.095825 -0.095825 -0.095824 -0.095825 -0.095815 1.32E-06 50
g09 680.630057 680.649514 680.882946 680.821663 681.754994 0.205086 50
g10 7049.248 7260.391702 9836.226521 9280.012385 20460.232690 2531.273570 50
g11 0.750000 0.750202 0.751240 0.751121 0.753588 0.000644 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.066349 0.075279 0.075611 0.087526 0.006112 11

TABLE III

NOPREDA WITH STOCHASTIC RANKING

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.839951 -15.000000 -13.000000 0.548080 50
g02 0.803619 0.803611 0.780648 0.784535 0.741995 0.016152 50
g03 1.000000 0.999918 0.997863 0.997846 0.995047 0.001322 50
g04 -30665.539 -30665.53867 -30664.39569 -30665.53867 -30615.91857 7.076141 50
g05 5126.4981 999999 999999 999999 999999 999999 0
g06 -6961.813880 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0 50
g07 24.306209 24.311817 24.524324 24.502436 24.985033 .159408 50
g08 0.095825 0.095825 0.094491 0.095825 0.0291438 0.009430 50
g09 680.630057 680.630471 680.641506 680.636710 680.703124 0.014107 50
g10 7049.248 7142.835717 9891.674518 8602.407634 18504.07923 2637.113466 50
g11 0.750000 0.749900 0.752687 0.752088 0.759719 0.002219 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.053953 0.053985 0.053983 0.054022 3.0E-05 7

TABLE IV

NOPREDA WITH DIVERSITY AND TRUNCATION SELECTION(SCV+FITNESS VALUE)

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.639989 -15.000000 -12.000000 0.851404 50
g02 0.803619 -0.803616 -0.770462 -0.771152 -0.727152 0.019127 50
g03 1.000000 -1.000285 -1.000409 -1.000424 -1.000479 4.85E-05 50
g04 -30665.539 -30665.538670 -30665.538670 -30665.538670 -30665.538670 1.06E-11 50
g05 5126.498 5145.009369 5483.608603 5336.586507 5969.229933 431.331087 3
g06 -6961.813880 -6961.813876 -6961.813876 -6961.813876 -6961.813876 1.84E-12 50
g07 24.306209 24.350052 24.704561 24.666396 25.352160 0.258875 50
g08 0.095825 -0.095825 -0.093157 -0.095825 -0.029143 0.013199 50
g09 680.630057 680.631008 680.646531 680.639881 680.689229 0.016197 50
g10 7049.248 7102.452353 8963.575733 8487.329294 14502.811130 1710.869833 50
g11 0.750000 0.750000 0.750073 0.750048 0.750468 0.000107 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.054269 0.382993 0.439799 1.000000 0.174052 50



TABLE V

NOPREDA WITH DIVERSITY AND FEASIBILITY TOURNAMENT

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.580906 -14.999999 -12.000000 0.918906 50
g02 0.803619 -0.801825 -0.763672 -0.768365 -0.692979 0.022742 50
g03 1.000000 -0.999971 -0.997956 -0.998107 -0.993787 0.001378 50
g04 -30665.539 -30665.538670 -30636.4976 -30654.960740 -30439.36834 49.909486 50
g05 999999 999999 999999 999999 999999 999999 0
g06 -6961.813880 -6961.813876 -6871.974331 -6961.813876 -4766.103791 422.728408 27
g07 24.306209 24.426082 25.809004 25.297863 30.480924 1.346879 50
g08 0.095825 -0.095825 -0.095825 -0.095825 -0.095825 1.06E-15 50
g09 680.630057 680.636597 680.816863 680.717276 682.631030 0.333382 50
g10 7049.248 7163.584953 9516.321941 9002.357539 16033.251930 2178.234519 50
g11 0.750000 0.750001 0.750092 0.750007 0.751237 0.000263 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.054495 0.336361 0.439370 1.000000 0.237398 48

TABLE VI

NOPREDA WITH DIVERSITY AND STOCHASTIC RANKING

F Optimal Best Mean Median Worst S.D. F.R.

g01 -15.000000 -15.000000 -14.839992 -15.000000 -13.000000 0.548092 50
g02 0.803619 -0.803614 -0.773106 -0.778311 -0.698877 0.022000 50
g03 1.000000 -0.999594 -0.997389 -0.998092 -0.992129 0.001815 50
g04 -30665.539 -30665.53867 -30665.53867 -30665.53867 -30665.53867 3.12E-09 50
g05 999999 999999 999999 999999 999999 999999 0
g06 -6961.813880 -6961.813876 -6961.813876 -6961.813876 -6961.813876 1.84E-12 50
g07 24.306209 24.351277 24.892736 24.881436 26.097028 0.338262 50
g08 0.095825 -0.095825 -0.095825 -0.095825 -0.095825 8.01E-11 50
g09 680.630057 680.632770 680.660116 680.653111 680.723232 0.023855 50
g10 7049.248 7208.90093 9604.005395 8947.360999 16003.65155 2309.755312 49
g11 0.750000 0.750076 0.753670 0.753319 0.760732 0.002435 50
g12 1.000000 1.000000 1.000000 1.000000 1.000000 0 50
g13 0.053949 0.053968 0.315084 0.446527 1.000000 0.219504 43
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APPENDIX A

Next, we enumerate the test problems used for our ex-
periments. This is Michalewicz’ benchmark extended by
Runarsson and Yao [15].

1) g01 Minimize: f(�x) = 5
∑4

i=1
xi − 5

∑4

i=1
x2

i −
∑13

i=5
xi

subject to:

g1(�x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(�x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(�x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(�x) = −8x1 + x10 ≤ 0

g5(�x) = −8x2 + x11 ≤ 0

g6(�x) = −8x3 + x12 ≤ 0

g7(�x) = −2x4 − x5 + x10 ≤ 0

g8(�x) = −2x6 − x7 + x11 ≤ 0

g9(�x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100
(i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global optimum is at
x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints
g1, g2, g3, g4, g5 and g6 are active.

2) g02 Maximize: f(�x) =

∣∣∣∣
∑n

i=1
cos4(xi)−2

∏n

i=1
cos2(xi)√∑n

i=1
ix2

i

∣∣∣∣
subject to:

g1(�x) = 0.75 −
n∏

i=1

xi ≤ 0

g2(�x) =

n∑
i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is
unknown; the best reported solution is f(x∗) = 0.803619. Constraint g1 is
close to being active (g1 = −10−8).



3) g03 Maximize: f(�x) =
(√

n
)n ∏n

i=1
xi

subject to:

h(�x) =

n∑
i=1

x
2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is
at x∗

i = 1/
√

n (i = 1, . . . , n) where f(x∗) = 1.

4) g04 Minimize: f(�x) = 5.3578547x2
3 + 0.8356891x1x5

+ 37.293239x1 − 40792.141
subject to:

g1(�x) = 85.334407 + 0.0056858x2x5

+ 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(�x) = −85.334407 − 0.0056858x2x5

− 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(�x) = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x
2
3 − 110 ≤ 0

g4(�x) = −80.51249 − 0.0071317x2x5

− 0.0029955x1x2 − 0.0021813x
2
3 + 90 ≤ 0

g5(�x) = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(�x) = −9.300961 − 0.0047026x3x5

− 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45
(i = 3, 4, 5). The optimum solution is x∗ = (78, 33,
29.995256025682, 45, 36.775812905788) where f(x∗) =
−30665.539. Constraints g1 y g6 are active.

5) g05 Minimize: f(�x) = 3x1 + 0.000001x3
1 + 2x2

+ (0.000002/3)x3
2

subject to:

g1(�x) = −x4 + x3 − 0.55 ≤ 0

g2(�x) = −x3 + x4 − 0.55 ≤ 0

h3(�x) = 1000 sin(−x3 − 0.25)

+ 1000 sin(−x4 − 0.25) + 894.8 − x1 = 0

h4(�x) = 1000 sin(−x3 − 0.25)

+ 1000 sin(x3 − x4 − 0.25) + 894.8 − x2 = 0

h5(�x) = 1000 sin(−x4 − 0.25)

+ 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55,
and −0.55 ≤ x4 ≤ 0.55. The best known solution is
x∗ = (679.9453, 1026.067, 0.1188764, −0.3962336) where
f(x∗) = 5126.4981.

6) g06 Minimize: f(�x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(�x) = −(x1 − 5)
2 − (x2 − 5)

2
+ 100 ≤ 0

g2(�x) = (x1 − 6)
2

+ (x2 − 5)
2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is
x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388. Both constraints
are active.

7) g07 Minimize:

f(�x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to:

g1(�x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(�x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(�x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(�x) = 3(x1 − 2)
2

+ 4(x2 − 3)
2

+ 2x
2
3 − 7x4 ≤ 120

g5(�x) = 5x
2
1 + 8x2 + (x3 − 6)

2 − 2x4 − 40 ≤ 0

g6(�x) = x
2
1 + 2(x2 − 2)

2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(�x) = 0.5(x1 − 8)
2

+ 2(x2 − 4)
2

+ 3x
2
5 − x6 ≤ 30

g8(�x) = −3x1 + 6x2 + 12(x9 − 8)
2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global
optimum is x∗ = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where f(x∗) = 24.3062091. Constraints g1, g2, g3,
g4, g5 and g6 are active.

8) g08 Maximize: f(�x) =
sin3(2πx1) sin(2πx2)

x3
1
(x1+x2)

subject to:

g1(�x) = x
2
1 − x2 + 1 ≤ 0

g2(�x) = 1 − x1 + (x2 − 4)
2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at
x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825. The solutions
is located within the feasible region.

9) g09 Minimize:

f(�x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(�x) = −127 + 2x
2
1 + 3x

4
2 + x3 + 4x

2
4 + 5x5 ≤ 0

g2(�x) = −282 + 7x1 + 3x2 + 10x
2
3 + x4 − x5 ≤ 0

g3(�x) = −196 + 23x1 + x
2
2 + 6x

2
6 − 8x7 ≤ 0

g4(�x) = 4x
2
1 + x

2
2 − 3x1x2 + 2x

2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum
is x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,
−0.6244870, 1.038131, 1.594227) where f(x∗) =
680.6300573. Two constraints are active (g1 and g4).

10) g10 Minimize: f(�x) = x1 + x2 + x3
subject to:

g1(�x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(�x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(�x) = −1 + 0.01(x8 − x5) ≤ 0

g4(�x) = −x1x6 + 833.33252x4 + 100x1

− 83333.333 ≤ 0

g5(�x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(�x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3),
10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global optimum is:
x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307. g1, g2 and
g3 are active.

11) g11 Minimize: f(�x) = x2
1 + (x2 − 1)2

subject to:

h(�x) = x2 − x
2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is
x∗ = (±1/

√
2, 1/2) where f(x∗) = 0.75.

12) g12 Maximize: f(�x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:

g1(�x) = (x1 − p)
2

+ (x2 − q)
2

+ (x3 − r)
2 − 0.0625 ≤ 0 (5)

where: 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r=1,2,. . . ,9. The feasible region
of the search space consists of 93 disjointed spheres. A point (x1, x2, x3)
is feasible if and only if there exist p, q, r such the above inequality holds.
The global optimum is located at x∗ = (5, 5, 5) where f(x∗) = 1.

13) g13 Minimize: f(�x) = ex1x2x3x4x5

subject to:

h1(�x) = x
2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 − 10 = 0

h2(�x) = x2x3 − 5x4x5 = 0

h3(�x) = x
3
1 + x

3
2 + 1 = 0

where: −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2
(i = 3, 4, 5). The optimum solution is x∗ = (−1.717143,
1.595709, 1.827247,−0.7636413,−0.763645) where f(x∗) =
0.0539498.


