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Abstract— In this paper, we propose a new selection criterion
for candidate solutions to a constrained optimization problem.
Such a selection mechanism is incorporated into a differential
evolution (DE) algorithm. This DE approach is then hybridized
with an operator based on the Nelder-Mead method, whose aim
is to speed up convergence towards good solutions. The pro-
posed approach is called “Hybrid of Differential Evolution and
the Simplex Method for Constrained Optimization Problems”
(HDESMCO), and is validated using a well-know benchmark
for constrained evolutionary optimization. The results indicate
that our proposed approach produces solutions whose quality is
competitive with respect to those generated by three evolution-
ary algorithms from the state-of-the-art (improved stochastic
ranking, diversity-DE and Generalized Differential Evolution),
but requiring a lower number of objective function evaluations.

I. I NTRODUCTION

Differential Evolution (DE) is an Evolutionary Algorithm
(EA) proposed by Rainer Storn and Kenneth Price [1], [2],
[3] for minimizing nonlinear functions. The algorithm usesa
special mutation operator based on the linear combination of
three individuals and a uniform crossover operator. The se-
lection process consists of a one-to-one competition between
the parent and its offspring.

EAs in their canonical versions lack a mechanism to
handle constraints. This has triggered an important amount
of research regarding the design of constraint-handling tech-
niques for EAs [4], [5], [6]. The main issue when designing
such constraint-handling techniques is how to achieve the
proper balance between giving priority to the minimization
of the objective function value and the minimization of the
constraint violation.

In this paper, we propose a new selection criterion for
candidate solutions in the DE algorithm, which is designed
to deal with nonlinear constrained optimization problems.
This DE approach is then hybridized with the direct search
technique known as the Nelder-Mead method (NMM) or
(nonlinear) Simplex [7], aiming to improve its convergence
rate. The resulting hybrid algorithm is called “Hybrid of Dif-
ferential Evolution and the Simplex Method for Constrained
Optimization Problems” (HDESMCO), and is based on a
previous hybrid approach called Low Dimensional Simplex
Evolution (LDSE) [8], which was proposed for unconstrained
optimization problems. Our proposed HDESMCO produces
results similar to those obtained by evolutionary algorithms
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representative of the state-of-the-art, but performing a lower
number of objective function evaluations.

The paper is organized as follows. Section II states the
problem of our interest. The Nelder-Mead method is briefly
described in Section III. The previous related work is pre-
sented in Section IV. In Section V we describe in detail
our approach. The experiments performed and the results
obtained are shown in Section VI. In Section VII, we present
a brief discussion on the effects of the parameters on the
performance of our approach. Finally, we establish some
conclusions and we define some possible paths for future
work in Section VIII.

II. PROBLEM STATEMENT

The problem of our interest is the general nonlinear
programming problem which is defined as follows:

Find ~x which optimizesf(~x) (1)

subject to:

gi(~x) ≤ 0, i = 1, . . . , p (2)

hj(~x) = 0, j = 1, . . . , q (3)

where~x is the vector of parameters~x = [x1, x2, . . . , xN ]T , p
is the number of inequality constraints andq is the number
of equality constraints (in both cases, constraints could be
linear or nonlinear).

If we denote withF to the feasible region and withS to
the whole search space, then it should be clear thatF ⊆ S.

For an inequality constaint that satisfiesgi(~x) = 0, then
we will say that is active at~x. All equality constraintshj

(regardless of the value of~x used) are considered active at
all points ofF .

III. T HE NELDER-MEAD METHOD

NMM is a direct search method (i.e., it does not require
derivatives), which uses a geometrical shape inn dimensions
(n is the number of decision variables of the problem), called
simplex. A simplex is built usingn + 1 points, and such
points define vector directions on ann-dimensional search
space. NMM moves, expands or contracts the initial simplex
by applying geometric transformations. For determining the
appropiate transformation to be applied, NMM uses only
the values of the objetive function at the points under
consideration. The NMM method is shown in Algorithm 1.
The values ofγ, β andǫ are defined by the user, and different
procedures can be used to construct the initial simplex, as



Algorithm 1 : Nelder-Mead method

Input : γ > 1 (expansion factor),β ∈ (0, 1)
(contraction factor) and a toleranceǫ

Output : Best solution found
repeat

Find xh (worst point),xl (best point), andxg (the
second worst point);

Compute the centroid:xc ←
1
n

n+1
∑

i=1,i6=h

xi;

Compute the reflected point:xr ← 2xc − xh;
xnew ← xr ;
if f(xr) < f(xl) then

Make expansion:xnew ← (1 + γ)xc − xh;
else

if f(xr) ≥ f(xh) then
Make contraction:xnew ← (1−β)xc +βxh;

else
if f(xg) < f(xr) < f(xh) then

Make contraction:
xnew ← (1 + β)xc − xh;

end
end

end
Computef(xnew);
xh ← xnew ;

ComputeQ←

[

n+1
∑

i=1

(f(xi)−f(xc))
2

n+1

]

1

2

;

until Meeting criterion for termination:Q < ǫ ;

long as its hypervolume is not zero. Further details about
NMM can be found in [9].

IV. PREVIOUS WORK

Several researchers have proposed hybrids between evo-
lutionary algorithms and NMM. Next, we will review three
proposals that we consider as the most closely related to the
work presented here.

In [10], the authors propose an algorithm called “Contin-
uous Hybrid Algorithm (CHA)” for continuous optimization
of multimodal functions. This is a hybrid of a genetic
algorithm (GA) called Continuous Genetic Algorithm (CGA)
and NMM. CHA has two main stages: diversification and
intensification. In the diversification phase, CGA starts with
a large population, and a high mutation probability, to
homogeneously cover the whole search space, and detect a
promising area. The intensification phase is then performed
inside this promising area by performing a local search with
NMM. They report that the results are satisfactory (they
obtained similar or better results than the other methods with
respect to which they compare their approach, but with a
lower computational cost), provided that the intensification
phase is not prematurely performed. However, these results
are achieved only for functions with less than 10 decision
variables.

In [11], a hybrid of a particle swarm optimization (PSO)

algorithm and NMM is presented. The authors propose to
introduce NMM as a new operator for the PSO algorithm.
After performing a certain number of iterations, they apply
NMM to each particle in the population. If a particle lands
within a certain distance from a goal solution (this is an error
measure) during the execution of NMM, the PSO process is
considered successful. Otherwise, such a particle will be sent
back to the population in order to continue the execution of
the PSO algorithm. When applying NMM, an initial simplex
consists of the isolated particlei and the otherN vertices
are randomly generated using the mean values of~xi and
the standard desviation of the scaled search scope or error
goal. The authors report that this hybrid algorithm obtains
good results for multimodal continuous functions, compared
with other algorithms. However, as in the previous case, this
hybrid cannot properly deal with high-dimensional problems.

The main problem of the previous algorithms, when work-
ing with high-dimensional problems, is related to choosing
the points that will form the initial simplex taking into
account information provided by the evolutionary algorithm
and aiming to form a hypercube of volume different from
zero.

Finally, in [8], the authors propose an algorithm called
“Low Dimensional Simplex Evolution (LDSE)” for uncon-
strained optimization. First, they propose a hybrid of DE
and NMM, in which DE is used as a global search engine
and NMM as a local search engine. However, the straight-
forward combination of these two approaches turned out to
be disappointing, since its convergence rate was too slow,
specially for high dimensional problems. Thus, the authors
introduced a dimensionality reduction techique, producing
a new algorithm called LDSE. For each individual in the
current population,m + 1 points are randomly selected to
form an m-simplex (m < n is a user-defined parameter).
Each individual is subject to reflection (as defined in the
original NMM). If this does not improve the individual, then
contraction is applied. Again, if no improvement is produced,
then the individual is replaced adopting a mechanism that
aims to improve the diversity in the population. The numer-
ical experiments performed by the authors show that LDSE
outperforms the original DE algorithm.

V. OUR PROPOSEDAPPROACH

In order to extend DE to handle constraints, only its
selection criterion needs to be modified. Currently, there exist
several selection criteria for incorporating constraintsinto
EAs [4], [12]. For example, in [13], a simple comparison cri-
terion is proposed for a binary tournament selection scheme:
Between two feasible solutions, the one with the smaller
objective function value wins. If one solution is feasible
and the other one is infeasible, the feasible solution wins.
If both solutions are infeasible, the one with the lowest sum
of constraint violation is preferred. Stochastic Ranking (SR),
which is one of the most popular approaches adopted for
solving constrained optimization problems with evolutionary
algorithms, applies a ranking process to sort the population
based on their feasibility. However, a stochastic component



is added to the process such that, with a certain probability,
a solution is selected (from a binary comparison) based only
on its objective function value, disregarding feasibility.

In the two previous approaches, the situation in which the
two solutions compared are infeasible and have the same
amount of constraint violation is not considered. In such
case, we select the solution with the best objective function
value. Thus, our selection rules are the following: Solutions
are compared in pairs. If they have the same constraint
violation value, then they are compared with respect to their
objective function value (it is worth noting that this includes
the case in which the two solutions are feasible); otherwise,
a probabilityPf is used to decide if the two solutions are
compared according to the objective function value or with
respect to their constraint violation value. This criterion is
shown in Algorithm 2 whereU(0, 1) is a uniform random
number generator andψ is a function which determines the
violation of constraints.

For the hybridization, we decided to base our scheme
in LDSE, since it has been shown that such approach
outperforms the original DE algorithm. Our core idea was
to incorporate the NMM as an additional operator to our DE
algorithm. We call it thesimplex operator, and it is shown in
Algorithm 4. However, our preliminary experiments showed
that such sort of hybrid scheme had a poor performance in
some cases. This led us to modify our scheme such that
the NMM-based operator was not applied all the time, but
only with a certain frequency. Additionally, we modified
the constraint-handling mechanism previously adopted for
our DE algorithm (only for the simplex operator). The new
mechanism is called Selection Criterion in Simplex Operator
(SCSO) and it simply removes the use ofPf in the selection
rules previously described. This is shown in Algorithm 3.
This has the effect of always preferring feasible solutions
over infeasible solutions, and infeasible solutions with lower
constraint violation values over infeasible solutions with
higher constraint violation values. This aims to increase the
selection pressure, which seeks to speed up convergence.
Summarizing, the idea of our proposed hybrid approach is
to use the DE’s mutation operator to approach quickly a
promising region of the search space, and then our sim-
plex operator can exploit it in order to approach quickly
the optimum within that region. This approach is called
“Hybrid of Differential Evolution and the Simplex Method
for Constrained Optimization Problems” (HDESMCO) and
is illustrated in Algorithm 5.

VI. EXPERIMENTAL RESULTS

To validate our proposed HDESMCO we used the 22 test
functions described in [14]. These functions contain charac-
teristics that are representative of what can be considered
difficult constrained optimization problems for an EA. A
summary of their main features is shown in Table I, whereρ
is an estimate of the ratio between the feasible region and the
whole search space and it’s defined as follows:ρ = |F |/|S|,
where|F | is the number of feasible solutions and|S| is the

Algorithm 2 : Selection Criterion in DE (SCDE)

Input : A pair of solutions,~x1 and~x2, andPf

(probability of comparing with respect to the
objective function value)

Output : Selected solution:~xs

if ψ(~x1) = ψ(~x2) then
if f(~x1) < f(~x2) then

~xs ← ~x1;
else

~xs ← ~x2;
end

else
if U(0, 1) < Pf then

if f(~x1) < f(~x2) then
~xs ← ~x1;

else
~xs ← ~x2;

end
else

if ψ(~x1) < ψ(~x2) then
~xs ← ~x1;

else
~xs ← ~x2;

end
end

end

total number of solutions randomly generated. In this case,
S = 1, 000, 000 random solutions.

We performed 100 independent runs for each test prob-
lem. Equality constraintsh(~x) = 0 were transformed into
inequalitiesg(~x) using:

|h(~x)| ≤ ǫ (4)

For our experiments, we adoptedǫ = 0.0001 as in [14].
The parameters adopted for our HDESMCO were the follow-
ing (these values were empirically derived after numerous
experiments):

• Used for DE:Np = 100, Gmax = 1600, Cr = 0.99
andF = rand(0.3, 0.9)

• Used for the constraint-handling mechanism:Pf =
rand(0.0, 0.3)

• Used for the simplex operator:γ = 1.3, β = 0.5, m =
2, pGenApSim = 1 andfopSimplex = 20

rand(min,max) returns a real number betweenmin and
max using a uniform distribution.F andPf were randomly
generated per generation. It is important to indicate that the
total number of objective function evaluations performed by
our approach is variable, but does not exceed 176,0001. Thus,

1When we apply the simplex operator to each individual in the population,
each application requires 3 objective function evaluations (OFEs). If we
apply this operator since the beginning of the search, at every 20 generations,
then, according to the parameters that we adopted, the population will evolve
1520 times using the DE operators and 80 times using the simplex operator.
Therefore, in the worst case we have that: OFE= (1520 ∗ 100) + (80 ∗

100 ∗ 3) = 176, 000.



TABLE I

MAIN FEATURES OF THE22 TEST PROBLEMS CHOSEN. n IS THE NUMBER OF DECISION VARIABLES, LI IS THE NUMBER OF LINEAR INEQUALITIES, NI

THE NUMBER OF NONLINEAR INEQUALITIES, LE IS THE NUMBER OF LINEAR EQUALITIES ANDNE IS THE NUMBER OF NONLINEAR EQUALITIES. ρ IS

AN ESTIMATE OF THE RATIO BETWEEN THE FEASIBLE REGION AND THE WHOLE SEARCH SPACE. a IS THE NUMBER OF CONSTRAINTS ACTIVE AT THE

OPTIMUM.

Prob. n Function ρ LI NI LE NE a
g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.9971% 0 2 0 0 1
g03 10 polynomial 0.0% 0 0 0 1 1
g04 5 quadratic 52.123% 0 6 0 0 2
g05 4 cubic 0.0% 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560% 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.001% 3 3 0 0 6
g11 2 quadratic 0.0% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0% 0 0 0 3 3
g14 10 nonlinear 0.0% 0 0 3 0 3
g15 3 quadratic 0.0% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0% 0 0 0 4 4
g18 9 quadratic 0.0% 0 13 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g21 7 linear 0.0% 0 1 0 5 6
g23 9 linear 0.0% 0 2 3 1 6
g24 2 linear 79.6556% 0 2 0 0 2

Algorithm 3 : Selection Criterion in Simplex Operator
(SCSO)
Input : A pair of solutions:~x1 and~x2

Output : Selected solution:~xs

if ψ(~x1) = ψ(~x2) then
if f(~x1) < f(~x2) then

~xs ← ~x1;
else

~xs ← ~x2;
end

else
if ψ(~x1) < ψ(~x2) then

~xs ← ~x1;
else

~xs ← ~x2;
end

end

for comparison purposes, we consider that our approach
always performs 176,000 objective function evaluations.

We compared our proposed HDESMCO first with respect
to two algorithms from the state-of-the-art: an improved

version of stochastic ranking (ISR)2 [15] and Diversity-
DE [16]. Results are summarized in Table II. Finally, we
compared our proposed approach with respect to the so-
called Generalized Differential Evolution [17]. Results are
shown in Table III. It should be mentioned that for the 22 test
functions HDESMCO found feasible solutions, transforming
equality constraints into inequality constraints as mentioned
at the beginning of this section.

It is important to note that ISR performed 350,000 ob-
jective function evaluations, and Diversity-DE performed
225,000 evaluations. From Table II, we can see that our
approach produced competitive results, in spite of its lower
number of objective function evaluations (176,000). This
means that our proposed approach produces savings of 50%
with respect to ISR and of 22% with respect to Diversity-DE.

Regarding GDE, if we observe the Feasible Rate and
Succes Rate in Table III we can see that our proposed
HDESMCO was better than GDE ing03, g05, g14, g15, g17,
g18, g19 and g23. And GDE was better than HDESMCO
in g02, g13 and g21. However, if we take into account the
Success Performance we can note that GDE performs fewer
evaluations of the objective function to find the optimum in
most of the test functions. It is important to mention that

2ISR uses the same constraint-handling scheme explained before, but in-
troduces some changes in the search engine, which improve the performance
of the approach.



Algorithm 4 : Simplex operator
Input : Dimension of the simplex:m, current

population:XG
i wherei = 1, 2, ..., Np, the

individual to be modified:~xi

Output : New point
Randomly choosem individuals from the current
population, in order to build them−simplex;
Find ~xh (worst point) and~xb (best point);

Compute the centroid:~xc ←
1
m

m+1
∑

i=1,i6=h

~xi;

Compute the reflection point:~xr ← ~xc + γ ·
(

~xc − ~xh

)

;

/*Apply SCSO */
if ~xr is better than~xi then

~xi ← ~xr;
else

Make a contraction:~xnew ← ~xc + β ·
(

~xh − ~xc

)

;

/*Apply SCSO */
if ~xnew is better than~xi then

~xi ← ~xnew;
else

if ~xb is better than~xi then

~xnew ← ~xi + 0.618 ·
(

~xb − ~xi

)

;

else

~xnew ← ~xi + 0.382 ·
(

~xi − ~xh

)

;

end
/*Apply SCSO */
if ~xnew is better than~xi then

~xi ← ~xnew ;
end

end
end

there are functions in which GDE performed on average
over 300,000 evaluations and our proposal always performed
176,000 evaluations, in the worst case, for any of the 22 test
functions adopted in our study.

Our proposed HDESMCO was able to find the optimum in
21 from the 22 test functions adopted. However, in problems
g01, g02 and g13 its performance is not very robust. In
g01, we can find the optimum value in the best case, but
not on average (and the standard deviation is very high). In
g02 we are unable to reach the optimum, and ing13, we
can find the optimum in the best case, but not on average
(and the standard deviation is high). We can improve the
performance of our approach in these three problems, by
setting its parameters to the values shown in Table IV.
The results obtained with the new parameters are shown in
Tables V and VI.

VII. EFFECT OF THE PARAMETERS

We performed additional experiments in order to assess
the impact of the parameters of our proposed approach
on its performance. Our conclusions were the following:

Algorithm 5 : Hybrid of Differential Evolution and the
Simplex Method for Constrained Optimization Problems
Input : Np (population size),gmax (maximum number

of generations),N (number of decision
variables),Cr (crossover probability),Pf

(probability of comparing with respect to the
objective function value),fopSimplex

(frequency of the application of the simplex
operator),pGenApSim (first generation in
which the simplex operator starts acting) and
m (dimension of simplex)

Output : Last population
contGen← 0;
Create a random initial population;
repeat

if contGen mod fopSimplex 6= 0 OR
contGen < pGenApSim then

Obtain the next generation from DE’s mutation
and crossover operators and from the modified
selection operator.

else
Obtain the next generation from the proposed
simplex operator;

end
contGen← contGen+ 1;

until contGen < gmax ;

TABLE IV

ADJUSTED PARAMETERS FORg01, g02 AND g13. NOTE THAT m,

pGenApSim AND fopSimplex ARE NOT MODIFIED.

Cr Pf m pGenApSim fopSimplex

g01 0.6 0.35 2 1 20
g02 0.4 0 2 1 20
g13 1.0 0.3 2 1 20

TABLE V

STATISTICAL RESULTS OBTAINED BY THE IMPROVED VERSION OF THE

STOCHASTICRANKING (ISR), DIVERSITY-DE AND OUR HDESMCO

WITH ADJUSTED PARAMETERS. RESULTS INboldface CORRESPOND TO

THE OPTIMUM OR BEST KNOWN VALUES.

best mean worst std

g01
ISR -15.000 -15.000 -15.000 5.8E-14
Diversity-DE -15.000 -15.000 -15.000 1.0E-9
HDESMCO -15.000 -15.000 -15.000 0

g02
ISR -0.803619 -0.782715 -0.723591 2.2E-9
Diversity-DE -0.803619 -0.798079 -0.751742 1.01E-2
HDESMCO -0.803619 -0.800249 -0.772897 0.005012

g13
ISR 0.053942 0.06677 0.438803 7.0E-2
Diversity-DE 0.053941 0.069336 0.438803 7.58E-2
HDESMCO 0.053942 0.065487 0.438803 0.022399



TABLE II

STATISTICAL RESULTS OBTAINED BY THE IMPROVED VERSION OF THESTOCHASTICRANKING (ISR), DIVERSITY-DE AND OUR HDESMCO.

RESULTS IN boldfaceCORRESPOND TO THE OPTIMUM OR BEST KNOWN VALUES.

best mean worst std

g01
ISR -15.000 -15.000 -15.000 5.8E-14
Diversity-DE -15.000 -15.000 -15.000 1.0E-9
HDESMCO -15.000 -14.515 -9.000 0.815325

g02
ISR -0.803619 -0.782715 -0.723591 2.2E-9
Diversity-DE -0.803619 -0.798079 -0.751742 1.01E-2
HDESMCO -0.744986 -0.514042 -0.362386 0.047385

g03
ISR -1.001 -1.001 -1.001 8.2E-9
Diversity-DE -1.000 -1.000 -1.000 0
HDESMCO -1.0005 -0.960465 0 0.076837

g04
ISR -30665.539 -30665.539 -30665.539 1.1E-11
Diversity-DE -30665.539 -30665.539 -30665.539 0
HDESMCO -30665.539 -30665.539 -30665.539 0

g05
ISR 5126.497 5126.497 5126.497 7.2E-13
Diversity-DE 5126.497 5126.497 5126.497 0
HDESMCO 5126.497 5126.497 5126.497 0

g06
ISR -6961.814 -6961.814 -6961.814 1.9E-12
Diversity-DE -6961.814 -6961.814 -6961.814 0
HDESMCO -6961.814 -6961.814 -6961.814 0

g07
ISR 24.306 24.306 24.306 6.3E-5
Diversity-DE 24.306 24.306 24.306 8.22E-9
HDESMCO 24.306 24.306 24.306 0

g08
ISR -0.095825 -0.095825 -0.095825 2.7E-17
Diversity-DE -0.095825 -0.095825 -0.095825 0
HDESMCO -0.095826 -0.095826 -0.095826 0

g09
ISR 680.630 680.630 680.630 3.2E-13
Diversity-DE 680.630 680.630 680.630 0
HDESMCO 680.630 680.630 680.630 0

g10
ISR 7049.248 7049.250 7049.270 3.2E-3
Diversity-DE 7049.248 7049.266 7049.617 4.45E-2
HDESMCO 7049.248 7049.248 7049.248 0

g11
ISR 0.75 0.75 0.75 1.1E-16
Diversity-DE 0.75 0.75 0.75 0
HDESMCO 0.75 0.75 0.75 0

g12
ISR -1.000 -1.000 -1.000 1.2E-9
Diversity-DE -1.000 -1.000 -1.000 0
HDESMCO -1.000 -1.000 -1.000 0

g13
ISR 0.053942 0.06677 0.438803 7.0E-2
Diversity-DE 0.053941 0.069336 0.438803 7.58E-2
HDESMCO 0.053942 0.259401 0.438841 0.190166

TABLE VI

FEASIBLE RATE, SUCCESSRATE AND SUCCESSPERFORMANCE[14]

OBTAINED BY GENERALIZED DIFFERENTIAL EVOLUTION (GDE),AND

OUR HDESMCO.

Feasible Rate Success Rate Success Perf.

g01
GDE 100 % 100 % 40519
HDESMCO 100 % 100 % 102534

g02 GDE 100 % 72 % 40519
HDESMCO 100 % 87 % 192593

g13 GDE 88 % 40 % 840766
HDESMCO 99 % 96 % 60021

the parameterCR (used by DE), as well as the parameter
Pf (used by our constraint-handling scheme) has a greater
impact in 3 of the 13 test functions adopted (g01, g02 and
g13). However, in the other 10 test functions, changing these

parameters does not improve the quality of the solutions in
a significant manner.

With regard to the parameters used by the simplex opera-
tor, we observed a good performance in all the test functions,
when using it since the beginning of the search, and at
every 20 generations. Also, the use of a2-simplex with
γ = 1.3 andβ = 0.5 provided the best results. However, we
found out that we could significantly reduce the number of
function evaluations in some test functions by adjusting the
parametersm, pGenApSim and fopSimplex. We analyzed
the functions that benefitted from these parameter settings,
but we were unable to find a pattern regarding the type of
function, the number of decision variables or the value ofρ
that seemed responsible of a good performance. Performance
does not seem to relate to the diversity of the population, be-
cause sometimes the simplex operator produces good results



TABLE III

FEASIBLE RATE, SUCCESSRATE AND SUCCESSPERFORMANCE[14] OBTAINED BY GENERALIZED DIFFERENTIAL EVOLUTION (GDE),AND OUR

HDESMCO.

Feasible Rate Success Rate Success Perf.

g01
GDE 100 % 100 % 40519
HDESMCO 100 % 81 % 84854

g02
GDE 100 % 72 % 40519
HDESMCO 99 % 0 % -

g03
GDE 96 % 4 % 3577150
HDESMCO 100 % 94 % 185737

g04
GDE 100 % 100 % 15281
HDESMCO 100 % 100 % 23329

g05
GDE 96 % 92 % 193503
HDESMCO 100 % 100 % 172879

g06
GDE 100 % 100 % 6503
HDESMCO 100 % 100 % 16570

g07
GDE 100 % 100 % 123996
HDESMCO 100 % 100 % 156934

g08
GDE 100 % 100 % 1469
HDESMCO 100 % 100 % 6734

g09
GDE 100 % 100 % 30230
HDESMCO 100 % 100 % 56436

g10
GDE 100 % 100 % 82604
HDESMCO 100 % 100 % 170740

g11
GDE 100 % 100 % 8460
HDESMCO 100 % 100 % 73380

g12
GDE 100 % 100 % 3149
HDESMCO 100 % 100 % 19680

g13
GDE 88 % 40 % 840766
HDESMCO 100 % 17 % 934882

g14
GDE 100 % 96 % 230126
HDESMCO 100 % 100 % 103674

g15
GDE 100 % 96 % 74885
HDESMCO 100 % 100 % 35916

g16
GDE 100 % 100 % 13224
HDESMCO 100 % 100 % 51126

g17
GDE 76 % 16 % 2148377
HDESMCO 99 % 57 % 298554

g18
GDE 84 % 76 % 480080
HDESMCO 100 % 99 % 173241

g19
GDE 100 % 88 % 230282
HDESMCO 99 % 99 % 171806

g21
GDE 88 % 60 % 579422
HDESMCO 83 % 25 % 271504

g23
GDE 88 % 40 % 1063354
HDESMCO 94 % 46 % 356370

g24
GDE 100 % 100 % 3059
HDESMCO 100 % 100 % 10277



when it is applied since the beginning of the search (when
diversity is high), and with a high frequency. However, in
other cases, the simplex operator produces good results only
if applied at the end of the search (when the population has
little diversity). Clearly, this requires further study.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have proposed a new selection criterion for candidate
solutions to a constrained optimization problems and we
embedded it into a differential evolution algorithm in order to
be able to handle constraints. Additionally, we have proposed
the hybridization of differential evolution with the Nelder-
Mead method, incorporating this direct search optimization
technique as an additional operator, which acts as a local
search engine. The aim was to speed up convergence towards
good quality solutions.

Our proposed approach was validated using standard test
functions adopted in the specialized literature. Our results
were compared with respect to three evolutionary algo-
rithms from the state-of-the-art in constrained optimization
(improved stochastic ranking, Diversity-DE and Generalized
Differential Evolution). We showed that our approach pro-
duced competitive results while performing a lower number
of objective function evaluations. This indicates that thepro-
posed operator based on the Nelder-Mead method certainly
speeds up convergence towards good quality solutions, since
it reduces the total number of evaluations performed between
20% and 50% with respect to the three algorithms against
which it was compared.

As part of our future work, we plan to undertake an
in-depth study of the behavior of the simplex operator,
in order to understand why is that sometimes it produces
very important reductions in the total number of evaluations
performed, whereas in others it does not work properly. We
believe that such behavior is somehow related to the shape
of the feasible region, and that this problem could be solved
by devising a different mechanism to choose the points that
are used to build them-simplex.

We are also planning to couple our simplex operator to
other metaheuristics such as particle swarm optimization
[18].
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