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Abstract— In this paper, we propose a new selection criterion representative of the state-of-the-art, but performingveelr
for candidate solutions to a constrained optimization prolem.  number of objective function evaluations.
Such a selection mechanism is incorporated into a differeil The paper is organized as follows. Section Il states the

evolution (DE) algorithm. This DE approach is then hybridized . . .
with an operator based on the Nelder-Mead method, whose aim problem of our interest. The Nelder-Mead method is briefly

is to speed up convergence towards good solutions. The pro- described in Section Ill. The preViOUS related work is pre-
posed approach is called “Hybrid of Differential Evolution and  sented in Section IV. In Section V we describe in detall
the Simplex Methoq for _Constrain_ed Optimization Problems”  qur approach. The experiments performed and the results
(HDESMCO), and is validated using a well-know benchmark  i4ined are shown in Section VI. In Section VII, we present

for constrained evolutionary optimization. The results indicate brief di . the effects of th i th
that our proposed approach produces solutions whose qualitis a briet discussion on the €elfects of the parameters on the

competitive with respect to those generated by three evolign- ~ Performance of our approach. Finally, we establish some
ary algorithms from the state-of-the-art (improved stochastic  conclusions and we define some possible paths for future
ranking, diversity-DE and Generalized Differential Evolution),  work in Section VIII.

but requiring a lower number of objective function evaluations.

Il. PROBLEM STATEMENT

I. INTRODUCTION The problem of our interest is the general nonlinear

Differential Evolution (DE) is an Evolutionary Algorithm Programming problem which is defined as follows:

(EA) proposed by Rainer Storn and Kenneth Price [1], [2],

[3] for minimizing nonlinear functions. The algorithm uses Find & which optimizesf (7) 1)
special mutation operator based on the linear combination o subject to:
three individuals and a uniform crossover operator. The se-
lection process _conS|sts _of a one-to-one competition kestwe Gi(@) <0, i=1,....p @)
the parent and its offspring.

EAs in their canonical versions lack a mechanism to hi(Z)=0, j=1,...,q 3)
handle constraints. This has triggered an important amount . .

whereZ is the vector of parametefs= [z, za,...,2n8]", D

of research regarding the design of constraint-handliob-te ' ) i _
ds the number of inequality constraints agds the number

niques for EAs [4], [5], [6]. The main issue when designin X ) X )
equality constraints (in both cases, constraints codd b

such constraint-handling techniques is how to achieve th ¥
proper balance between giving priority to the minimizatioﬂInear or nonlinear).

of the objective function value and the minimization of the If we denote with7" to the fegsible region and with to
constraint violation. the whole search space, then it should be clear that S.

In this paper, we propose a new selection criterion for For an inequality constaint that satisfiggz) = 0, then

candidate solutions in the DE algorithm, which is designe}'i’e will say that is active af. All equality gonstraints_hj

to deal with nonlinear constrained optimization problemdreégardiess of the value af used) are considered active at
This DE approach is then hybridized with the direct searcf!l POINts of 7.

technique known as the Nelder-Mead method (NMM) or 1. THE NELDER-MEAD METHOD

(nonlinear) Simplex [7], aiming to improve its convergence . . . . .
rate. The resulting hybrid algorithm is called “Hybrid offDi NMM IS a d|r_ect search method_ (ie. it do_e_s not require
ferential Evolution and the Simplex Method for Constrainedf€'ivatives), which uses a geometrical shape simensions
Optimization Problems” (HDESMCO), and is based on &" 'S the numberofdemspn va_nables of th(_a problem), called
previous hybrid approach called Low Dimensional Simple!™PI€X A simplex is built usingn + 1 points, and such
Evolution (LDSE) [8], which was proposed for unconstraine oints define vector directions on amd|men3|o_ngl_ sea_lrch
optimization problems. Our proposed HDESMCO produce%pace' NMM moves, expands or contracts the initial simplex

results similar to those obtained by evolutionary algarigh PY @PPlying geometric transformations. For determining th
appropiate transformation to be applied, NMM uses only
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Algorithm 1: Nelder-Mead method

Input : ~ > 1 (expansion factor)3 € (0,1)
(contraction factor) and a toleranee

Output: Best solution found

repeat

second worst point);
n+1
Compute the centroidz. «— % ‘ 12# 5,
1=1,2
Compute the reflected point;. < 2z, — xp;
xnew — x’f‘;
if f(x,) < f(z;) then
| Make expansionz,e,, < (1 + )z, — zp;
else

if f(x,)> f(xp) then

else
it f(zg) < f(zr) < f(xn) then
Make contraction:
‘ Tnew < (1 + ﬁ)xc — Tp,
end
end
end
Computef (znew);
Th < Tnew, .
n+1 2
Compute@ «— [i 7(’((“)711(%))2 ;
i=1
until Meeting criterion for termination < € ;

Find z;, (worst point),z; (best point), ande, (the

| Make contractionZ,e,, «— (1 — 5)x. + Bap;

long as its hypervolume is not zero. Further details aboﬂé';t]t

NMM can be found in [9].

IV. PREVIOUS WORK

algorithm and NMM is presented. The authors propose to
introduce NMM as a new operator for the PSO algorithm.
After performing a certain number of iterations, they apply
NMM to each particle in the population. If a particle lands
within a certain distance from a goal solution (this is aroerr
measure) during the execution of NMM, the PSO process is
considered successful. Otherwise, such a particle willdm s
back to the population in order to continue the execution of
the PSO algorithm. When applying NMM, an initial simplex
consists of the isolated particieand the otherV vertices

are randomly generated using the mean values‘ofind

the standard desviation of the scaled search scope or error
goal. The authors report that this hybrid algorithm obtains
good results for multimodal continuous functions, compare
with other algorithms. However, as in the previous case, thi
hybrid cannot properly deal with high-dimensional probtem

The main problem of the previous algorithms, when work-
ing with high-dimensional problems, is related to choosing
the points that will form the initial simplex taking into
account information provided by the evolutionary alganith
and aiming to form a hypercube of volume different from
zero.

Finally, in [8], the authors propose an algorithm called
“Low Dimensional Simplex Evolution (LDSE)” for uncon-
strained optimization. First, they propose a hybrid of DE
and NMM, in which DE is used as a global search engine
and NMM as a local search engine. However, the straight-
forward combination of these two approaches turned out to
be disappointing, since its convergence rate was too slow,
specially for high dimensional problems. Thus, the authors
roduced a dimensionality reduction techique, prodgcin
new algorithm called LDSE. For each individual in the
current populationm + 1 points are randomly selected to
form an m-simplex (n < n is a user-defined parameter).
Each individual is subject to reflection (as defined in the

Several researchers have proposed hybrids between eyoinal NMM). If this does not improve the individual, then

lutionary algorithms and NMM. Next, we will review three

contraction is applied. Again, if no improvement is proddice

proposals that we consider as the most closely related to the, . ihe individual is replaced adopting a mechanism that

work presented here.

In [10], the authors propose an algorithm called “Contin

aims to improve the diversity in the population. The numer-

ical experiments performed by the authors show that LDSE

uous Hybrid Algorithm (CHA)” for continuous optimization outperforms the original DE algorithm.

of multimodal functions. This is a hybrid of a genetic
algorithm (GA) called Continuous Genetic Algorithm (CGA) V. OUR PROPOSEDAPPROACH
and NMM. CHA has two main stages: diversification and In order to extend DE to handle constraints, only its
intensification. In the diversification phase, CGA startshwi selection criterion needs to be modified. Currently, theiste
a large population, and a high mutation probability, teseveral selection criteria for incorporating constraiirtto
homogeneously cover the whole search space, and detedEAs [4], [12]. For example, in [13], a simple comparison cri-
promising area. The intensification phase is then performeerion is proposed for a binary tournament selection scheme
inside this promising area by performing a local search witBetween two feasible solutions, the one with the smaller
NMM. They report that the results are satisfactory (theybjective function value wins. If one solution is feasible
obtained similar or better results than the other methodis wiand the other one is infeasible, the feasible solution wins.
respect to which they compare their approach, but with H both solutions are infeasible, the one with the lowest sum
lower computational cost), provided that the intensifimati of constraint violation is preferred. Stochastic RankiSg],
phase is not prematurely performed. However, these resultéich is one of the most popular approaches adopted for
are achieved only for functions with less than 10 decisiosolving constrained optimization problems with evolution
variables. algorithms, applies a ranking process to sort the populatio
In [11], a hybrid of a particle swarm optimization (PSO)based on their feasibility. However, a stochastic compbnen



is added to the process such that, with a certain probgbilityAlgorithm 2: Selection Criterion in DE (SCDE)

a solution is selected (from a binary comparison) based only |npyt : A pair of solutions,#; and ., and P;

on its objective function value, disregarding feasibility (probability of comparing with respect to the
In the two previous approaches, the situation in which the objective function value)

two solutions compared are infeasible and have the sameQutput: Selected solutionZ,

amount of constraint violation is not considered. In such it Y(7) = ¥(Z2) then

case, we select the solution with the best objective functio if f(i1) < f(Z) then
value. Thus, our selection rules are the following: Solugio | 2%, — %1;
are compared in pairs. If they have the same constraint | else
violation value, then they are compared with respect torthei | X5 — To;
objective function value (it is worth noting that this indies end
the case in which the two solutions are feasible); otherwise else
a probability P, is used to decide if the two solutions are if U(0,1) < Py then
compared according to the objective function value or with if f(#1) < f(Z2) then
respect to their constraint violation value. This criteris | ¥ — 715
shown in Algorithm 2 wherd/(0,1) is a uniform random eIseA B
number generator and is a function which determines the | Ty — 2,
violation of constraints. end
For the hybridization, we decided to base our scheme | €IS€
in LDSE, since it has been shown that such approach if ¥ (7) < ¥(72) then
outperforms the original DE algorithm. Our core idea was | T =2
to incorporate the NMM as an additional operator to our DE elseﬁ .
. . . . . | Tg < T9,
algorithm. We call it thesimplex operatgrand it is shown in end
Algorithm 4. However, our preliminary experiments showed
: . end
that such sort of hybrid scheme had a poor performance in end

some cases. This led us to modify our scheme such that

the NMM-based operator was not applied all the time, but

only with a certain frequency. Additionally, we modified

the constraint-handling mechanism previously adopted fé@tal number of solutions randomly generated. In this case,
our DE algorithm (only for the simplex operator). The new’ = 1,000,000 random solutions.

mechanism is called Selection Criterion in Simplex Oparato We performed 100 independent runs for each test prob-
(SCSO) and it simply removes the use®f in the selection |€m. Equality constraint,(7) = 0 were transformed into
rules previously described. This is shown in Algorithm 3inequalitiesg(Z) using:

This has the effect of always preferring feasible solutions

over infeasible solutions, and infeasible solutions witier |h(@)] < e 4
constraint violation values over infeasible solutionshwit  For our experiments, we adopted= 0.0001 as in [14].

higher constraint violation values. This aims to incredse t The parameters adopted for our HDESMCO were the follow-
selection pressure, which seeks to speed up convergengg (these values were empirically derived after numerous
Summarizing, the idea of our proposed hybrid approach isxperiments):

to use the DE's mutation operator to approach quickly a | \ysed for DE:N. = 100. G — 1600. Cr — 0.99
promising region of the search space, and then our sim- andF:mnd(O??) 0.9) Lo '

plex operator can exploit it in order to approach quickly | \jsed for the constraint-handling mechanisi#; =
the optimum within that region. This approach is called rand(0.0,0.3) '
“Hybrid of Differential Evolution and the Simplex Method
for Constrained Optimization Problems” (HDESMCO) and
is illustrated in Algorithm 5.

o Used for the simplex operatof. = 1.3, 3 = 0.5, m =
2, pGenApSim =1 and fopsimpiea = 20
rand(min, mazx) returns a real number betweenin and
max using a uniform distributionF" and Py were randomly
generated per generation. It is important to indicate that t
To validate our proposed HDESMCO we used the 22 te$dtal number of objective function evaluations performegd b
functions described in [14]. These functions contain charaour approach is variable, but does not exceed 176,00,
teristics that are representative of what can be considereqWhen we apply the simplex operator to each individual in tbguiation
difficult constrained optimization prOblems for an EA. Aeach application requires 3 objective function evaluai¢@FEs). If Wé
summary of their main features is shown in Table |, where apply this operator since the beginning of the search, aye@generations,

is an estimate of the ratio between the feasible region amd tfen, according to the parameters that we adopted, the giapulvill evolve
1520 times using the DE operators and 80 times using the sxmgerator.

whole Sea_rCh space and it's def_ined as f(_)llOWi |F|/|S|' Therefore, in the worst case we have that: OEE1520 * 100) + (80 =
where|F| is the number of feasible solutions apf] is the 100 = 3) = 176, 000.

V1. EXPERIMENTAL RESULTS



TABLE |
MAIN FEATURES OF THE22 TEST PROBLEMS CHOSENn IS THE NUMBER OF DECISION VARIABLES LI IS THE NUMBER OF LINEAR INEQUALITIES NI

THE NUMBER OF NONLINEAR INEQUALITIES LE IS THE NUMBER OF LINEAR EQUALITIES ANDNE IS THE NUMBER OF NONLINEAR EQUALITIES p IS

AN ESTIMATE OF THE RATIO BETWEEN THE FEASIBLE REGION AND THE WOLE SEARCH SPACEa IS THE NUMBER OF CONSTRAINTS ACTIVE AT THE

OPTIMUM.

Prob.| n  Function P LI NI LE NE a
g01 | 13 quadratic 0.0111% 9 0 0 0 6
g02 | 20 nonlinear 99.9971% O 2 0 0 1
g03 | 10 polynomial 0.0% 0 0 0 1 1
g04 | 5 quadratic 52.123% O 6 0 0 2
g05 | 4  cubic 0.0% 2 0 0 3 3
g06 | 2  cubic 0.0066% O 2 0 0 2
g07 | 10 quadratic 0.0003% 3 5 0 0 6
g08 | 2 nonlinear 0.8560% O 2 0 0 0
g09 | 7 polynomial 0.5121% O 4 0 0 2
glo | 8 linear 0.001% 3 3 0 0 6
gll | 2 quadratic 0.0% 0 0 0 1 1
gl2 | 3 quadratic 4.7713% O 1 0 0 0
gl3 |5 nonlinear 0.0% 0 0 0 3 3
gl4 | 10 nonlinear 0.0% 0 0 3 0 3
gl5 | 3 quadratic 0.0% 0 0 1 1 2
gl6 |5 nonlinear 0.0204% 4 34 0 0 4
gl7 | 6 nonlinear 0.0% 0 0 0 4 4
gl8 | 9 quadratic 0.0% 0 13 0 0 6
gl9 | 15 nonlinear 33.4761% O 5 0 0 0
g21 | 7 linear 0.0% 0 1 0 5 6
023 | 9 linear 0.0% 0 2 3 1 6
g24 | 2 linear 79.6556% O 2 0 0 2

Algorithm 3: Selection Criterion in Simplex Operator

(SCSO)

Input : A pair of solutions:Z; and s

Output: Selected solutiont,

if 1[)(551) = 11)(1?2) then

if f(z1) < f(&2) then
Ts < 271,

else

| 2 a5

end

else

if ¥(Z1) < ¢(Z2) then
Ts < 1,

else

| Zs « ;

end

end

for comparison purposes, we consider that our approa

always performs 176,000 objective function evaluations.

version of stochastic ranking (ISR)15] and Diversity-

DE [16]. Results are summarized in Table Il. Finally, we
compared our proposed approach with respect to the so-
called Generalized Differential Evolution [17]. Resultea
shown in Table I11. It should be mentioned that for the 22 test
functions HDESMCO found feasible solutions, transforming
equality constraints into inequality constraints as g

at the beginning of this section.

It is important to note that ISR performed 350,000 ob-
jective function evaluations, and Diversity-DE performed
225,000 evaluations. From Table Il, we can see that our
approach produced competitive results, in spite of its lowe
number of objective function evaluations (176,000). This
means that our proposed approach produces savings of 50%
with respect to ISR and of 22% with respect to Diversity-DE.

Regarding GDE, if we observe the Feasible Rate and
Succes Rate in Table Ill we can see that our proposed
HDESMCO was better than GDE y03, 05, g14, g15, ¢17,

918, ¢g19 and g23. And GDE was better than HDESMCO

in g02, ¢g13 and g21. However, if we take into account the
Success Performance we can note that GDE performs fewer
&\{aluations of the objective function to find the optimum in
most of the test functions. It is important to mention that

2|SR uses the same constraint-handling scheme explainedebéiut in-

We compa_red our proposed HDESMCO first Wit_h respec{?oduces some changes in the search engine, which impreygetifiormance
to two algorithms from the state-of-the-art: an improveaf the approach.



Algorithm 4: Simplex operator

Input : Dimension of the simplexin, current
population: X wherei = 1,2, ..., N,, the

Algorithm 5: Hybrid of Differential Evolution and the
Simplex Method for Constrained Optimization Problems

individual to be modifiedZ;
Output: New point
Randomly choosen individuals from the current
population, in order to build thex—simplex;

Find &, (worst point) andz, (best point);
m+1

2

i=1,i%h

Compute the reflection poin,. «— Z. +~ - (fc — 7,
[ *Apply SCSO

if Z, is better thanz; then

| 2 — Zp;

else

Make a contractionZ,,¢,, < . + 3 - (fh - fc);
/*Apply SCSO */
if T, IS better thant; then

| Zi — Tnew;

else

if Z, is better thanz; then

‘ Frow — Ti + 0.618 - (fb - :E)
else

‘ Frew — 5 +0.382- (f - fh);
end

Compute the centroidz, «— L+ T

) .

*/

Input : N, (population size)gmq. (Maximum number
of generations))N (number of decision
variables),Cr (crossover probability) Py
(probability of comparing with respect to the
objective function value)f,,simpies
(frequency of the application of the simplex
operator),pGenApSim (first generation in
which the simplex operator starts acting) and
m (dimension of simplex)

Output: Last population

contGen « 0;

Create a random initial population;

repeat

if contGen mod fopsimpies 7 0 OR

contGen < pGenApSim then

Obtain the next generation from DE’s mutation
and crossover operators and from the modified
selection operator.

else

Obtain the next generation from the proposed
simplex operator;

end

_contGen «— contGen + 1;
until contGen < gmas ;

/ = Appl y SCSO */
if T,e iS better thanz; then

| f’L — fnew;

end

end

end

there are functions in which GDE performed on average
over 300,000 evaluations and our proposal always performed
176,000 evaluations, in the worst case, for any of the 22 test
functions adopted in our study.

Our proposed HDESMCO was able to find the optimum in
21 from the 22 test functions adopted. However, in problems

901’ 902 and 913 Its performance IS not very robust. In STATISTICAL RESULTS OBTAINED BY THE IMPROVED VERSION OF THE

TABLE IV
ADJUSTED PARAMETERS FORJ01, g02 AND g13. NOTE THAT m,
pGenApSim AND fopSimple ARE NOT MODIFIED.

Cr Py m_ pGenApSim  fopSimples
g0l | 0.6 035 2 1 20
gd2 | 04 O 2 1 20
gl3| 1.0 0.3 2 1 20
TABLE V

901, we can find the optimum value '_n _the_beSt CaS_e, bUtSTOCHASTICRANKING (ISR), DIVERSITY-DEAND OUR HDESMCO
not on average (and the standard deviation is very high). IQ\/ITH ADJUSTED PARAMETERS RESULTS INboldface CORRESPOND TO

¢02 we are unable to reach the optimum, andgil8, we
can find the optimum in the best case, but not on average
(and the standard deviation is high). We can improve th

THE OPTIMUM OR BEST KNOWN VALUES

. N best mean worst std
performance of our approach in these three problems, b = 15.000 | -15.000 | -15.000 | 5.8E-14
setting its parameters to the values shown in Table [V} g0l | owersiy-0e -ig.ggg -ig.ggg -ig.ggg é.OE-9

H 1 1 HDESMCO - . - . - .
The results obtained with the new parameters are shown in — S R036T9 T D oEr TS D 97355 2 3ED
Tables V and VI. 902 | owerswy-oe | -0.803619 | -0.798079 | -0.751742 | 1.01E-2
noesmco | -0.803619 | -0.800249 | -0.772897 | 0.005012
VIlI. EFFECT OF THE PARAMETERS ISR 0.053942 | 0.06677 | 0.438803 | 7.0E-2
N . ) g13 | owesiy-oe | 0.053941 | 0.069336 | 0.438803 | 7.58E-2
We performed additional experiments in order to assess noesmco | 0.053942 | 0.065487 | 0.438803 | 0.022399

the impact of the parameters of our proposed approach
on its performance. Our conclusions were the following:



STATISTICAL RESULTS OBTAINED BY THE IMPROVED VERSION OF THESTOCHASTICRANKING (ISR), DIVERSITY-DEAND OUR HDESMCO.

TABLE Il

RESULTS INboldface CORRESPOND TO THE OPTIMUM OR BEST KNOWN VALUES

best mean worst std
ISR -15.000 -15.000 -15.000 5.8E-14
g0l | Diversity-DE | -15.000 -15.000 -15.000 1.0E-9
HDESMCO | -15.000 -14.515 -9.000 0.815325
ISR -0.803619 | -0.782715 | -0.723591 | 2.2E-9
g02 | Diversity-DE | -0.803619 | -0.798079 | -0.751742 | 1.01E-2
HDESMCO | -0.744986 | -0.514042 | -0.362386 | 0.047385
ISR -1.001 -1.001 -1.001 8.2E-9
g03 | Diversity-DE | -1.000 -1.000 -1.000 0
HDESMCO | -1.0005 -0.960465 | 0 0.076837
ISR -30665.539| -30665.539| -30665.539| 1.1E-11
g04 | Diversity-DE | -30665.539| -30665.539| -30665.539| 0
HDESMCO | -30665.539| -30665.539| -30665.539| 0
ISR 5126.497 5126.497 5126.497 7.2E-13
g05 | Diversity-DE | 5126.497 5126.497 5126.497 0
HDESMCO | 5126.497 5126.497 5126.497 0
ISR -6961.814 | -6961.814 | -6961.814 | 1.9E-12
g06 | Diversity-DE | -6961.814 | -6961.814 | -6961.814 | 0
HDESMCO | -6961.814 | -6961.814 | -6961.814 | O
ISR 24.306 24.306 24.306 6.3E-5
g07 | Diversity-DE | 24.306 24.306 24.306 8.22E-9
HDESMCO | 24.306 24.306 24.306 0
ISR -0.095825 | -0.095825 | -0.095825 | 2.7E-17
g08 | Diversity-DE | -0.095825 | -0.095825 | -0.095825 | O
HDESMCO | -0.095826 | -0.095826 | -0.095826 | O
ISR 680.630 680.630 680.630 3.2E-13
g09 | Diversity-DE | 680.630 680.630 680.630 0
HDESMCO | 680.630 680.630 680.630 0
ISR 7049.248 7049.250 7049.270 3.2E-3
gl0 | Diversity-DE | 7049.248 7049.266 7049.617 4,45E-2
HDESMCO | 7049.248 7049.248 7049.248 0
ISR 0.75 0.75 0.75 1.1E-16
gll | Diversity-DE | 0.75 0.75 0.75 0
HDESMCO | 0.75 0.75 0.75 0
ISR -1.000 -1.000 -1.000 1.2E-9
gl2 | Diversity-DE | -1.000 -1.000 -1.000 0
HDESMCO | -1.000 -1.000 -1.000 0
ISR 0.053942 0.06677 0.438803 7.0E-2
gl3 | Diversity-DE | 0.053941 0.069336 0.438803 7.58E-2
HDESMCO | 0.053942 0.259401 0.438841 0.190166
TABLE VI

parameters does not improve the quality of the solutions in

FEASIBLE RATE, SUCCESSRATE AND SUCCESSPERFORMANCE[14] L
a significant manner.

OBTAINED BY GENERALIZED DIFFERENTIAL EVOLUTION (GDE),AND

OURHDESMCO. With regard to the parameters used by the simplex opera-

tor, we observed a good performance in all the test functions

Feasoible Rate Succoess Ratg Success Perf, when using it since the beginning of the search, and at
gor | > 18802 18802 iggég‘l every 20 generations. Also, the use of2asimplex with
g0z | = 100 % 72 % 20510 ~+ = 1.3 and = 0.5 provided the best results. However, we
npesmco | 100 % 87 % 192593 found out that we could significantly reduce the number of
GOE 88 % 40 % 840766 ; i i i iusti
913 | " | 99 o 96 % 60021 function evaluations in some test functions by adjustirg th

parametersn, pGenApSim and f,psimpie.. We analyzed

the functions that benefitted from these parameter seftings
but we were unable to find a pattern regarding the type of
the paramete’R (used by DE), as well as the parametefunction, the number of decision variables or the value of

Py (used by our constraint-handling scheme) has a great#rat seemed responsible of a good performance. Performance
impact in 3 of the 13 test functions adoptef1, g02 and does not seem to relate to the diversity of the population, be
¢13). However, in the other 10 test functions, changing theseause sometimes the simplex operator produces good results



TABLE Il
FEASIBLE RATE, SUCCESSRATE AND SUCCESSPERFORMANCE[14] OBTAINED BY GENERALIZED DIFFERENTIAL EVOLUTION (GDE),AND OUR

HDESMCO.
Feasible Rateg Success Rate Success Perf
g01 GDE 100 % 100 % 40519
HDESMCO | 100 % 81 % 84854
g02 GDE 100 % 72 % 40519
HDESMCO | 99 % 0% -
903 GDE 96 % 4 % 3577150
HDESMCO | 100 % 94 % 185737
q04 GDE 100 % 100 % 15281
HDESMCO | 100 % 100 % 23329
g05 GDE 96 % 92 % 193503
HDESMCO | 100 % 100 % 172879
406 GDE 100 % 100 % 6503
HDESMCO | 100 % 100 % 16570
q07 GDE 100 % 100 % 123996
HDESMCO | 100 % 100 % 156934
g08 GDE 100 % 100 % 1469
HDESMCO | 100 % 100 % 6734
909 GDE 100 % 100 % 30230
HDESMCO | 100 % 100 % 56436
910 GDE 100 % 100 % 82604
HDESMCO | 100 % 100 % 170740
g11 GDE 100 % 100 % 8460
HDESMCO | 100 % 100 % 73380
g12 GDE 100 % 100 % 3149
HDESMCO | 100 % 100 % 19680
913 GDE 88 % 40 % 840766
HDESMCO | 100 % 17 % 934882
g14 GDE 100 % 96 % 230126
HDESMCO | 100 % 100 % 103674
g15 GDE 100 % 96 % 74885
HDESMCO | 100 % 100 % 35916
916 GDE 100 % 100 % 13224
HDESMCO | 100 % 100 % 51126
g17 GDE 76 % 16 % 2148377
HDESMCO | 99 % 57 % 298554
918 GDE 84 % 76 % 480080
HDESMCO | 100 % 99 % 173241
g19 GDE 100 % 88 % 230282
HDESMCO | 99 % 99 % 171806
921 GDE 88 % 60 % 579422
HDESMCO | 83 % 25 % 271504
923 GDE 88 % 40 % 1063354
HDESMCO | 94 % 46 % 356370
924 GDE 100 % 100 % 3059
HDESMCO | 100 % 100 % 10277




when it is applied since the beginning of the search (whenv] J. A. Nelder and R. Mead, “A simplex method for functionnimniza-

diversity is high), and with a high frequency. However, in g
other cases, the simplex operator produces good resulfs oni ]
if applied at the end of the search (when the population has

little diversity). Clearly, this requires further study.

VIII. CONCLUSIONS ANDFUTURE WORK

We have proposed a new selection criterion for candidate
solutions to a constrained optimization problems and w; o]

embedded it into a differential evolution algorithm in orde

be able to handle constraints. Additionally, we have pregos
the hybridization of differential evolution with the Nelde
Mead method, incorporating this direct search optimizatio
technique as an additional operator, which acts as a local
search engine. The aim was to speed up convergence towards

good quality solutions.

Our proposed approach was validated using standard test
functions adopted in the specialized literature. Our tssul
were compared with respect to three evolutionary algo-
rithms from the state-of-the-art in constrained optimizat
(improved stochastic ranking, Diversity-DE and Genegdiz
Differential Evolution). We showed that our approach profi4]
duced competitive results while performing a lower number

of objective function evaluations. This indicates that ine-

posed operator based on the Nelder-Mead method certainly
speeds up convergence towards good quality solutionsg siné5]
it reduces the total number of evaluations performed betwee

20% and 50% with respect to the three algorithms againgis

which it was compared.

As part of our future work, we plan to undertake an
in-depth study of the behavior of the simplex operator,
in order to understand why is that sometimes it produces
very important reductions in the total number of evaluation!
performed, whereas in others it does not work properly. We
believe that such behavior is somehow related to the shape
of the feasible region, and that this problem could be solv
by devising a different mechanism to choose the points that

are used to build then-simplex.

We are also planning to couple our simplex operator to
other metaheuristics such as particle swarm optimization

[18].
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