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Abstract-
This paper presents a genetic programming based ap-

proach to the synthesis of logic functions by means of
multiplexers. The approach uses the

�
-control line multi-

plexer as the only design unit, designing any logic function
(defined by a truth table) through the replication of this
single unit. Our fitness function works in two stages: it
finds feasible solutions, and then concentrates in the min-
imization of the circuits. The proposed approach does not
take any knowledge from the application domain.

1 Introduction

The synthesis of logic circuits is a problem as old as the first
computer. Initial steps in this direction were given by Shan-
non [17], who found important mathematical properties that
led to the synthesis of Boolean functions. Akers [2] proposed
binary decision diagrams as the vehicle to represent and min-
imize Boolean functions. Bryant [4] proposed ordered binary
decision diagrams (OBDD). Both approaches are based in
the manipulation of the nodes of the graph, thus, the initial
graph is transformed into functional equivalent subgraphs.
The repetitive application of two or three simplification rules
(derived from the problem domain) have proven to be suffi-
cient to minimize the graphs. In essence, the goal is achieved
by a top-down minimization strategy, that is, reduced graphs
are produced from complete graphs. Several researchers have
added the decision diagram simplification rules into the ge-
netic programming environment by modifying the crossover
and mutation operators [20, 7]. The additioned knowledge re-
duces the convergence time, and improves the ability to find
optimal solutions. Mechanisms of this sort do not synthe-
size circuits; they rather simplify a set of fully functional ini-
tial circuits (by reducing graphs). They also manifest lost of
generality since the additioned knowledge makes its applica-
bility specific. The genetic programming (GP) approach we
are to describe follows the automatic programming capacity
proclaimed by Koza [10], that is, GP synthesizes programs
or functions that reproduce a desired behavior. In our system,
GP constructs boolean functions by combining samples taken
from the space of partial solutions. Once a 100% functional
solution is found, our goal is turned to their minimization.
Thus, the fitness function is updated to reward fully functional
solutions with fewer elements. Trees (that represent circuits)

are therefore trimmed, and nodes are replicated without hav-
ing added any heuristic other than a simple change in the fit-
ness function. The enormous difference in the approaches is
evident. Graph techniques apply minimization rules to the
binary decision diagrams. GP with additioned knowledge
becomes a top-down reduction method [20, 7]. Our system
works with the purest form of genetic programming, thus, no
problem domain knowledge is included in the evolutionary
process, and yet, it is able to sinthesize optimal or near opti-
mal size circuits.

Our approach is analog to the“gate-level design”. Com-
monly, gate-level design using evolutionary techniques make
use of a sound and complete set of gates (AND, OR, NOT,
XOR). Therefore, circuit synthesis is achieved by the correct
composition (conexions) of a sound set of gates. [15, 9, 6, 12,
11]. We took a radical approach to the circuit design problem
and we have substituted gates by binary multiplexers. Bi-
nary multiplexers are universal function generators (defined
later), thus, they form a sound basis for the synthesis of logic
functions. The working hypothesis is that GP can synthesize
logic circuits by means of binary multiplexers [10], and that
the replication of only one element (instead of five or six dif-
ferent gates) will decrease the manufacturing process cost (in
this paper we address only the first issue). We emphasized
the importance of replication by allowing the use of only

�
-

control line multiplexers in the evolutionary process. In our
approach we permit only “1s” and “0s” to be fed into the
multiplexers. Thus, we allow the variables to be only used as
control signals of the muxes. In fact, this makes a clear dif-
ference to well known tabular strategies where a variable can
be fed into a Mux (this restriction is also valid in OBDDs).

The organization of this paper is the following: first, we
will describe the problem that we wish to solve in a more de-
tailed form. Then, we will introduce a methodology based on
genetic programming to synthesize logic functions using mul-
tiplexers. To end, we will compare optimal solutions found
by other approaches (OBDD) with the solutions delivered by
our GP system.

2 Problem Statement

The problem of interest to us is the design of a logic circuit
that performs a desired Boolean function using the least pos-
sible number of

�
-control line multiplexers (Mux). It is well



known that logic functions of � variables can easily be im-
plemented by

����� � �
-control line multiplexers. Likewise,

what is widely unknown is the degree of redundancy of the
solution. We address this problem in the first set of exper-
iments. Further comparison is provided by contrasting our
circuits against those created using OBDD techniques. In the
last set of experiments we report an important circuit design
problem: partially specified boolean functions.

3 Previous Work

It is possible to find in the literature several reports concern-
ing the design of combinational logic circuits using GAs.
Louis [14] was one of the first researchers who reported this
class of work. Further work has been reported by Koza � [10],
Coello et al. [5, 6], Iba et al. [9], and Miller et al. [15].
However, none of these approaches has concentrated on the
exclusive use of multiplexers to design combinational circuits
using evolutionary techniques. Several strategies for the de-
sign of combinational circuits using multiplexers have been
reported after the concept of universal logic modules [21].
Chart techniques [13], graphical methods for up to 6 vari-
ables [19], and other algorithms more suitable for program-
ming have been proposed [16, 8, 3, 18]. The aim of these
approaches (muxes in cascade or tree or a combination of
both), is either to minimize the number of multiplexers, or to
find � control variables such that a boolean function is realiz-
able by a multiplexer with � � control signals. A popular ap-
proach named Ordered Binary Decision Diagrams (OBDD)
make use of node transformations to reduce the size of the ini-
tial tree. Akers also shows a suitable transformation of trees
into logic functions implemented by means of multiplexers
[2]. Thus, multiplexers are only the implementation device
(never seen during the design) while binary decision diagrams
encode a Boolean function. Yanagiya [20] is credited as be-
ing the first to use OBDDs to learn the 20-multiplexer. After
him, several researchers have included the OBDD minimiza-
tion rules in the form of crossover and mutation operations
into a GP based system (like Droste [7]). These systems per-
form circuit design by tree simplification and reduction.

4 Multiplexers as Function Generators

A binary multiplexer with � selection lines is a combinational
circuit that selects data from

���
input lines and directs it to a

single output line. The concept that supports the use of this
device as an universal logic unit is known as residues of a
function.
Definition 1. The residue of a boolean function	�
�

���
���
���������

� ��� with respect to a variable
���

is the value
of the function for a specific value of

���
. It is denoted by

	����
,

for
� ��� �

and by
	��� �

for
� � �"!

.

#
Koza’s approach to the design of combinational circuits has only con-

centrated on the generation of fully functional circuits and not in their
optimization.

Any Boolean function can then be expressed in terms of these
residues in the form of an expansion known as Shannon’s de-
composition [17].

	 �%$���&	(' ����*)+���,	(' ���

The logic function - that represent the mapping of two in-
puts A and B onto the output port of a multiplexer with one
selector line . is: - � .&/ ) $.&0 . This output function quickly
takes the Shannon’s expansion form if the same function is
used in both input ports. Say

	 � / � 0 is any logic func-
tion, then - � . 	1) $. 	 . If we pick

� �
as the selector and

the inputs are the residues
	����

and
	 ����

, the output becomes
- � ���32�	4���5) $���627	 ����

. Further expansion of the residues
into selector-residue pairs leads to an expansion as shown in
Figure 1. As can be observed, every � -control signals multi-
plexer can be synthesized by

�8�9� � �
-control signal multi-

plexers. Notice that the number of layers or depth of the array
is equal to � .

Multiplexers can be “active low” or “active high” devices,
a quality that we simply name class A and class B. For a class
A multiplexer, when the control is set to one the input labeled
as “1” is copied to the output, and vice-versa, the input la-
beled as “0” is copied to the output when the control is zero.
For a class B multiplexer the logic is exactly the opposite:
copy the input labeled “0” when the control line is one, and
copy the input labeled “1” when the control is zero. In order
to differentiate this property, class A muxes have the control
signal on the right hand side and class B on the left, as can be
seen in Figure 1. Therefore, the control signal is located on
the side of the input to be propagated when the control is in
active state (The active state will be “1” for all our examples).

It is possible to use both classes of multiplexers simulta-
neously in a circuit, or during the circuit synthesis. Two char-
acteristic properties of circuits of this nature should be taken
into consideration during the design process:

: Class Transformation Property: Class A and class
B multiplexers can be converted freely from one class
into the other, by just switching their inputs, thus input
labeled “1” goes to input “0” and input labeled “0” now
goes into “1” (see Figure 1).

: Complement Function Property: For every logic
function ; , its complement ;=< is derivable from the
very same circuit that implements ; by just negating
the inputs, that is, by changing “0s” to “1s” and “1s”
to “0s”. Circuits can also be sinthesized using only one
class of multiplexers.

5 The Genetic Programming Environment

In the following we describe genetic programming issues that
should help to fully understand the approach. Representation,
and the evolutionary operators: selection, crossover, and mu-
tation are covered.
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Figure 1: Implementation of a multiplexer of � -control signals by means of 7
�
-control signal muxes. Muxes class “A” and

class “B”. Functional equivalence between both classes

: Representation Binary trees encoding the popula-
tion are represented by means of lists. Essentially
each element of the list is the triplet


������
�
��� 		� �


��� ��� � ������
� � 
��� ��� � that encodes subtrees as nested

lists. The tree captures the essence of the circuit topol-
ogy allowing only children to feed their parent node.
In other words, a multiplexer takes only inputs from
the previous level. This is shown in Figure 2.

Both classes of binary multiplexers are implemented.
Since multiplexers / ! and 0 ! are controlled by � ! ,
the former is depicted with the control signal on its
right side, and the latter with the signal on its left side.

: Selection operator The mating pool is created by
ternary selection, thus, three individuals are randomly
chosen from the entire population and the one with
highest fitness is placed into the pool. The overall effect
is the increment of the selection pressure that should
decrease the convergence time.

: Crossover operator The exchange of genetic informa-
tion between two trees is accomplished by exchang-
ing subtrees. Our implementation does not impose
any kind of restriction to the selection of subtrees or
crossover points. Node-node, node-leaf, and leaf-leaf
exchange are allowed. The particular case when the
root node is selected to be exchanged with a leaf is dis-
allowed, so that, no leaf may be mistakenly converted
into a node thus avoiding the generation of invalid trees
(in such cases the valid children are replicated twice).

: Mutation operator Mutation is implemented in a sim-
ple way: first a mutation point is randomly chosen
among the nodes and leaves. When a node (multi-
plexer) is selected, its control input is changed as fol-
lows (assuming � control signals): ������� � , � � ���

�
,

� ��� � ��� � , � � � �!� . Similarly simple is the muta-
tion of a leaf:

! � �
,

� � ! .

: Fitness function Our goal is to produce a fully func-
tional design (i.e., one that produces the expected be-
havior stated by its truth table) which minimizes the
number of multiplexers used. Therefore, we decided to
use a two-stages fitness function. At the beginning of
the search, only compliance with the truth table is taken
into account, and the evolutionary approach is basically
exploring the search space. Once the first functional so-
lution appears, we switch to a second fitness function
in which fully functional circuits that use less multi-
plexers are rewarded. The fitness function is switched
regardless of individuals that are not fully functional.
The fitness function is the only agent responsible for
the life span of the individuals.

: Initial population The depth of the trees randomly
created for the initial population is set to a maximum
value equal to the number � of variables of the logic
function. This is a fair limit because for complete bi-
nary trees with � variables,

�8� � �
is the upper bound

on the number of nodes required. However, we found
in our experiments that in the initial population trees
of shorter depth were created in larger numbers than
trees of greater depth. This led us to allow the trees to
grow without any particular boundaries as to allow a
rich phenotypic variation in the population.

6 Further Refinement of the Solutions

Our two-stages fitness function does not take into account the
redundancy of the terminal nodes. It simply rewards shorter
trees with higher credit. Nonetheless, terminal nodes are usu-
ally replicated in vast numbers. Indirectly, this property pro-
vides for further minimization because duplicated terminal
nodes are pruned away from the solution. Terminal nodes
are deleted accordingly to the rules shown in Figure 3. Sim-
ilar rules derived from the problem domain are given in [2].
Rule 1 is applied for transforming one multiplexer class into
the other, aiming to maximize redundant nodes that can be
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deleted and the entire set replaced by just one of them. Sub-
trees as shown in rule 2 have been observed occasionally.

7 Experiments

The design metric in the following experiments is the num-
ber of elements. We contrast solutions against the standard
implementation, ordered binary decision diagrams, and the
design of partially specified boolean functions.

7.1 GP - Standard implementation

Using the standard implementations, Boolean functions with
� variables can be implemented using

� � � �
binary multi-

plexers. A considerable reduction in the number of elements
is achieved by our system. We ran this experiments with a
population size of 600 individuals. Maximum number of it-
erations is 100 for ; �

, 200 for ; � , ; � , and 700 for ; � . This
functions are found elsewhere.

Functions implemented
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F Vars SI GP Saved
1 3 7 5 2
2 4 15 7 8
3 5 31 15 16
4 6 63 21 42

Table 1: Comparison GP-standard implementation
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The table 1 condenses the results of these experiments.
First column is the function implemented (itemized above),
next the number of variables of that function, then the num-
ber of muxes required by the standard implementation, then
the number of muxes required by our GP system. The last
column shows the savings in the number of muxes, thus the
difference between SI and GP.

7.2 GP - OBDDs

In the second set of experiments we contrast the evolved so-
lutions against solutions delivered by OBDDs. It is widely
known that OBDD are very sensitive to the node order, thus,
circuit design in that case is mostly reduced to the computa-
tion of the variable order that minimizes the size of the circuit.



Since our interest is in the reduction of the number of nodes,
some circuits are found to have less elements than in their op-
timal OBDD version.

Functions implemented

: ; �

 � �

�
� 
 �
�
�
�
�
	 � � � � ) 
 � ) � 	

: ; �

 � �

�
� 
 �
�
�
�
�
	 � � � � ) � � ) � 	

: ; 	

 � �

�
� 
 �
� ��� � � 
 “odd-parity”

Function F5. The OBDD of any function similar to ; � with
� variables has � nodes. The optimal order of the variables is

�

�
�
� � �

�
��������������� � � . [4]. We have found optimal solutions to

functions of this sort with 4, 6, 8 and 10 variables. In Figure 4
the OBDD tree is depicted along with evolved solution. The
subtree

�
� is repeated on both branches. Even more,

�
� can be

further minimized. Careful count indicates that the evolved
tree is optimal.

The genetic programming system found the optimal so-
lution at generation 300, population size=990 individuals,
probability of crossover=0.35, and probability of mutation
per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus
non-terminals in the tree.
Function F6. The next design is the synthesis of a similar
function with 6 variables. The optimal solution found by
OBDD to this problem has 14 non-terminal nodes with vari-
able ordering

�

�
�
� � �

�
������� . Thus, no other variable ordering

will find a better solution using OBDD techniques [4]. In Fig-
ure 5 we show the evolved optimal solution delivered by the
genetic programming system. It is implemented with only 10
nodes.

The genetic programming system found the optimal so-
lution at generation 219, population size=990 individuals,
probability of crossover=0.35, and probability of mutation
per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus
non-terminals in the tree.
Function F7. The “odd parity” function is a very hard prob-
lem to solve using multiplexers and genetic programming. In
fact we have only found optimal solutions for up to 4 vari-
ables. Its hardness is due in part to the fact that there exist
an ideal solution using

��� � gates. Therefore, any other ap-
proach will have more elements that the number of

��� � . Us-
ing OBDD, the solution for � variables has at most

� � � �

non-terminal nodes. In Figure 6 we show the OBDD solu-
tion, and the evolved optimal solution delivered by the ge-
netic programming system with 7 nodes that can be reduced
to 5.

The genetic programming system found the optimal so-
lution at generation 26, population size=510 individuals,
probability of crossover=0.35, and probability of mutation
per individual=0.65 Therefore, probability of mutation per
gene=0.65/L, where L is the total number of terminals plus
non-terminals in the tree.

Input F
0000 0
0001 1
0010 1
0100 1
1000 1
0111 1
1011 1
1101 1
1110 1
1111 0

Table 2: Partial function of 4 variables

k vars size aver
2 4 7 60
3 8 15 200
4 16 31 700

Table 3: Convergence to the optimum

7.3 Partially specified functions

We want to address the ability of the system to synthesize cir-
cuits of optimal size for boolean functions with “large” num-
ber of variables. The following property allow us to verify
our GP system. Boolean functions with

���
variables, where

( � � �

�
�
������� ), is implemented with exactly


 � 2 ��� � � �
bi-

nary muxes. For example, for � � �
, a boolean function of� � � �

variables is implemented with exactly 	 muxes when
the truth table is specified as shown in table 2. A similar tech-
nique has been used by Droste to specify the 11-multiplexer
[7].For greater � , that is, number of variables, we specify the
table in a similar way. There are exactly

� 2 � � ) �
entries in

the table.
The table 3 shows the high rate of convergence of the GP

system to the optimum. We ran 100 experiments for each
function (each � ). Column “vars” is the number of vari-
ables for some integer � , “size” is the optimum number binary
muxes needed to implement the partial boolean function, and
“aver” is the average number of iterations needed to find the
optimum. In all cases we found optimum size circuits in more
than 90% of the iterations.

8 Final remarks

We have shown a genetic programming approach for the syn-
thesis of logic functions and minimization of their number
of elements. The systems delivers quite smaller circuits than
the standard implementation does. Solutions delivered by our
GP system are quite similar in size to the solutions delivered
by OBDDs. More experimentation is needed in this respect.
The ability to generate large partial functions has been veri-
fied to be optimal (in most cases) for functions with up to 16
variables. Some specific problems, as the “odd-parity” turned
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to be very hard to solve. We know the optimal solutions are
not achievable by multiplexers but by the composition of

� � �
gates.
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