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Abstract—Algorithms based on the Particle Swarm Optimiza-
tion (PSO) scheme have become popular to solve both single-
and multi-objective optimization problems. In this paper, we
focus on SMPSO, a PSO designed to cope with this second
group of problems. Taking it as our starting point, we analyze
different leader selection schemes, which give rise to four new
variants of SMPSO. These new versions, along with the original
algorithm, are compared using a benchmark composed of 21
problems. Our study reveals that SMPSOhv, a variant that uses
the hypervolume indicator to guide leader selection, is the best
performing algorithm in our comparison, outperforming also the
original version of SMPSO. To further assess the performance
of SMPSOhv, we compare it against NSGA-II and SMS-EMOA,
achieving again the best overall results in this new comparative
study. Based on these observations, we conclude that the use of
the hypervolume for leader selection is a promising approach for
multi-objective PSO algorithms.

I. INTRODUCTION

Particle Swarm Optimizers (PSO) [1] have been widely
used in the last decade because of both their good performance
and simplicity. In the field of multi-objective optimization,
numerous variants of multi-objective PSO algorithms have
been proposed [2]. In our research work, we proposed the
so-called Speed-constrained Multi-objective PSO algorithm, or
SMPSO [3], which has shown a remarkable performance in
terms of different assessment criteria: quality of results [4],
convergence towards the optimum solutions [5], and scalability
with the problem size [6].

From a high level of abstraction, in a PSO algorithm a set
(swarm) of candidate solutions (particles) to the problem navi-
gate through the search space of an optimization problem. This
navigation takes place attending to a velocity equation, which
rules the way in which particles change their position. Among
the factors that govern that velocity equation, two of them can
be highlighted: the current position of the particle and the best
positions visited so far, also referred to as leaders. Usually, the
best position visited by a particle (local leader) and the best
particle visited by any particle in the swarm (global leader)
are considered. Nevertheless, many other different alternatives
have been studied, and the use of different leader selection
strategies have been analyzed in a number of works [7][8][9].

While in a single-objective PSO, the best position visited
by a particle corresponds to the one having the lowest/highest
value of the problem to be minimized/maximized, the selec-
tion of these best positions presents additional challenges in

multi-objective optimization, where two or more conflicting
functions must be optimized simultaneously. The reason is
related to the non-dominance concept, that applies to two
solutions when none of them improves the other in all the
objectives; if so, then one dominates the other. By adopting
non-dominance the result is a partial-order relationship, so
defining the concept of “best solution” is not so clear as
in single-objective optimization. Thus, additional mechanisms
have to be considered to properly select the leaders.

Our aim in this work is to evaluate different alternatives for
the leader selection scheme of our SMPSO algorithm. Besides
the original mechanism included in SMPSO, we analyze three
different alternatives: random selection of leaders, selection
of leaders based on a neighborhood structure, and selection
based on a quality indicator, such as the hypervolume [10]. The
use of this last strategy follows the current trend of designing
indicator-based techniques [11][12], and it was applied to a
PSO algorithm in [13]; our purpose is to adopt this concept in
SMPSO. To put the obtained results in a proper context, we
have also compared the best performing SMPSO variant with
respect to NSGA-II [14] (which is representative of the Pareto-
based algorithms) and with respect to SMS-EMOA [12] (which
is an indicator-based algorithm which has gained increasing
popularity in recent years).

The rest of this work is structured as follows. Section II
reviews some previous related work. The proposed versions
of the SMPSO algorithm are described in Section III. The
methodology applied to carry out our experimental study
and the obtained results are detailed in Sections IV and V,
respectively. Finally, Section section:conclusions summarizes
the paper and provides some possible lines for future work.

II. PREVIOUS RELATED WORK

This section is aimed at reviewing the most relevant
previous related work. We focus mainly on approaches that
provide a particular global leader selection mechanism in
multi-objective PSO algorithms.

The first implementation of a multi-objective PSO algo-
rithm was done by Moore et al. [15]. That seminal paper
did not include, however, any information on how the local
or global leader were selected. Since then, many strategies
have been proposed. Most of these approaches share the use of
an external archive where the non-dominated solutions found
during the search are stored. Among them, the differences lie



on the number of selected global leaders and in the way in
which they are selected.

The most commonly employed strategy has consisted in
using only one global leader. In [16] that leader was randomly
selected from the archive. The main target of that work was
the use on an elitist-mutation-mechanism in combination with
PSO and it was not clear whether or not the random selection
of leaders had any impact on the final solution. Others works
considered the use of a density estimator for selecting leaders
from the archive, trying to favor the spread of the computed
approximation to the Pareto front. Examples of these indicators
are, to mention a few, the crowding distance, used in [17] or
in the original SMPSO itself, and a grid structure such as the
one adopted in [18]. In [19], Hernández et al. criticized that
the use of density estimators like the crowding distance tends
to benefit solutions placed on the edges of the Pareto front. To
mitigate that effect, the authors proposed a mechanism based
on the inverse distance to the centroid of the archive content,
trying to increase the diversity. In this same line, the so-called
sigma-method, proposed by Mostaghim et al. [20], considered,
for each particle, the closest leader in objective function space.
The idea was to direct each particle towards a different area of
the Pareto front without any interference of any other leader.

Two interesting leader selection mechanisms are described
in [21] and [22]. In the first paper, the leader was computed
by applying differential evolution [23] to the contents of the
archive. In the second one, besides other evaluated approaches,
a method based on a reward mechanism for the points in the
archive was proposed. This mechanism consisted on giving a
higher priority to those particles which were used as successful
leaders in the past. A similar idea was applied in [24], where
the particles memorized successful leaders for some iterations;
in that proposal, whenever a new particle entered the archive,
it was considered as a global leader with the aim of exploring
new areas of the search space.

A few approaches considered the use of more than one
particle from the archive as global leaders at the same time.
In [25], the velocity of a particle was computed by considering
all the solutions in the archive that dominate the particle’s
current local leader. In [26] no local leader was used, and
instead, the information of several global leaders was selected.

A number of guide selection schemes and their application
to a multi-objetive PSO were analyzed in [13]. One of such
schemes is based on the hypervolume quality indicator; our
proposal differs in that we use the hypervolume for both leader
selection and for density estimator in the archive.

III. ANALYZED SMPSO VARIANTS

In this section, we include first some background on PSO.
After that, the original SMPSO variant is described. Finally,
four versions of SMPSO with different schemes for leader
selection are presented.

A. Background on Particle Swarm Optimisation

PSO is a population-based optimization technique which
has its inspiration on bird flocking [1]. In its more basic form,
each particle in PSO updates its position, ~xi, at the generation
t with the formula:

~xi(t) = ~xi(t− 1) + ~vi(t) (1)

where the factor ~vi(t) is known as the velocity and is given
by

~vi(t) = w ·~vi(t−1)+C1 ·r1 ·(~xpi−~xi)+C2 ·r2 ·(~xgi−~xi) (2)

In this formula, ~xpi is the best solution that ~xi has viewed,
~xgi is the best particle that the entire swarm has viewed, w
is the inertia weight of the particle and controls the trade-
off between global and local experience, r1 and r2 are two
uniformly distributed random numbers in the range [0, 1], and
C1 and C2 are specific parameters which control the effect of
the personal and global best particles.

In order to control the particle’s velocity, instead of using
upper and lower parameter values which limit the step size of
the velocity, in SMPSO we adopted a constriction coefficient
(Eq. 3) obtained from the constriction factor χ originally
developed by Clerc and Kennedy (Eq. 2) in [27].

χ =
2

2− ϕ−
√
ϕ2 − 4ϕ

(3)

where

ϕ =

{
C1 + C2 if C1 + C2 > 4

1 if C1 + C2 ≤ 4
(4)

We also introduced a mechanism for bounding the accu-
mulated velocity of each variable j (in each particle) by means
of the following velocity constriction equation:

vi,j(t) =


deltaj if vi,j(t) > deltaj
−deltaj if vi,j(t) ≤ −deltaj
vi,j(t) otherwise

(5)

where

deltaj =
(upper limitj − lower limitj)

2
(6)

Summarizing, in SMPSO the velocity of the particles is
calculated according to Eq. 2; the resulting velocity is then
multiplied by the constriction factor (Eq. 3) and the resulting
value is constrained by using Eq. 5.

B. Pseudocode of the SMPSO Algorithm

Algorithm 1 depicts the pseudocode of SMPSO. It starts
by initializing the swarm (Line 1). This phase includes the
position, velocity, and p (individual best) of the particles. The
leaders archive is initialized with the non-dominated solutions
in the swarm (Line 2). Then, the main loop of the algorithm is
executed for a maximum number of iterations. The velocities
and positions of the particles are calculated first (Lines 5 and
6) and a mutation operator is applied with a given probability
(Line 7). The resulting particles are evaluated (Line 8) and



Algorithm 1 Pseudocode of SMPSO
1: initializeSwarm()
2: initializeLeadersArchive()
3: generation = 0
4: while generation < maxGenerations do
5: computeSpeed() // Eqs. 2 - 6
6: updatePosition() // Eq. 1
7: mutation() // Turbulence
8: evaluation()
9: updateLeadersArchive()

10: updateParticlesMemory()
11: generation ++
12: end while
13: returnLeadersArchive()

both the particle’s memory and the leaders archive are updated
(Lines 9 and 10). The algorithm returns the leaders archive as
the approximation set found (Line 13).

Given that the leaders archive can become full, the crowd-
ing distance of NSGA-II is used to decide which particles
must remain in it. The turbulence operator is the polynomial
mutation operator [28]. To choose the pbest particle to apply
Eq. 2, two solutions are randomly taken from the leaders
archive and the one having the largest crowding distance is
selected. This mechanism is intended not only to guide the
particles in the swarm towards the area where non-dominated
solutions are located, but also to achieve a uniform diversity.

C. SMPSO Variants

Here, we present the different SMPSO variants analyzed
in this work. In particular, we focus on three methods for
leader selection: random selection of leaders, use of a neigh-
borhood structure, and use of a quality indicator. Using these
schemes, we propose four new variants of SMPSO: SMPSO r,
cellSMPSO, SMPSOhv, and SMPSOhv r. It is worth mention-
ing that all the evaluated proposals differ only in the way that
the global leader is selected, being the local leader selection
the same as in the original SMPSO. The proposed variants are
explained in the following.

1) SMPSO r: This is the simplest of the analyzed versions.
It behaves exactly as SMPSO but, when the velocity of a
particle has to be updated, it considers as leader a solution
randomly selected from the leaders archive, as in [16]. We
have included this version as a sanity check, to see if any
possible improvement in the SMPSO variants are due to the
leader selection scheme.

2) cellSMPSO: This variant analises the effect of struc-
turing the swarm using a neighborhood for leader selection.
For this, we have used a cellular topology as the one adopted
in [29], that allows to define a set of neighbors for each
particle based on the position where the particle is located.
In particular, we have considered eight neighbors for each
solution. The idea is that the global leader is selected among
the local leaders of the neighbor particles. Preliminary experi-
ments showed, however, that this approach experimented some
troubles for converging towards the Pareto optimal front. One
of the hypothesis for this behavior is that selecting leaders
in this way may increases too much the diversity of the
algorithm, penalizing convergence. To diminish this effect, we
have considered that in 50% of the cases, the leaders are
selected among the neighboring solutions and in the other 50%
the leaders are selected as in the original SMPSO.

3) SMPSOhv: This variant uses the hypervolume quality
indicator (described later in Section IV), following the idea
of selecting as a leader one of the particles contributing the
most to the hypervolume of the Pareto front approximation
computed so far by the algorithm. To apply this scheme, we
changed the archive of leaders for an archive managed by the
contribution of each solution to the value of this indicator.
This archive works as the one described for SMPSO but, when
the archive becomes full, instead of discarding the solution
with the smallest crowding distance, we choose the solution
contributing the least to the hypervolume. In this variant, when
the velocity of a particle has to be updated, two solutions are
randomly selected from the archive, and the one contributing
the most to the archive’s hypervolume is selected as the leader.

4) SMPSOhv r: This variant uses the same archive de-
scribed for the previous variant, but the leader is randomly
selected from the archive, without considering its contribution
to the hypervolume.

IV. EXPERIMENTAL METHODOLOGY

This section describes the benchmark problems adopted for
our tests, the parameter settings and the methodology followed
in our experiments.

A. Benchmark Problems

We have considered three different benchmark families, ac-
counting for a total of 21 test problems. More specifically, we
have considered the following benchmarks: ZDT [30] (prob-
lems ZDT1-4 and ZDT6), DTLZ [31] (problems DTLZ1-7),
and WFG [32] (problems WFG1-9).

Overall, our benchmarking set contains problems with
different properties: convex, non-convex, disconnected, multi-
frontal, many-to-one problems. The WFG and DTLZ problems
are configured with two and three objectives, respectively.

B. Parameters Settings

For all the variants we have used the same parameters
settings to guarantee a fair comparison among the techniques.
We have used 100 particles in all cases and an archive
consisting of a maximum of 100 leaders. As SMPSO uses
a polynomial-based mutation, we have considered that this
perturbation is applied with a probability 1/L to each variable,
being L the number of variables of the problem.

As indicated in the introduction, the best performing
SMPSO variant will be compared with two algorithms, NSGA-
II and SMS-EMOA, to put the results in an appropriate context.
Both algorithms use populations of size equal to 100 and
SBX [28] and polynomial-based mutation are adopted for
crossover and mutation, respectively. The crossover probability
is pc = 0.9 and the mutation probability is pm = 1/L, as in
SMPSO. The stopping condition is to perform 25, 000 function
evaluations in each of the studied problems.

C. Quality Assessment

To assess the performance of a multi-objective evolutionary
algorithm, a number of quality indicators have been proposed,
aiming to quantify to some extent convergence (how close it



Optimal Pareto Front

Fig. 1: Hypervolume enclosed by the non-dominated solutions
A, B, and C.

is the computed approximation to the Pareto optimal front)
and diversity (how well distributed are the solutions in that
approximation). Here, we adopt two widely used indicators:
additive epsilon [33]) and hypervolume [10]. These quality
indicators are defined as follows:

• Epsilon (I+ε ). Given a computed approximation front
for a problem, A, this indicator is a measure of the
smallest distance that one would need to translate
every solution in A, so that it dominates the Pareto
optimal front of this problem. More formally, given
~z1 = (z11 , . . . , z

1
n) and ~z2 = (z21 , . . . , z

2
n), where n is

the number of objectives:

I1ε+(A) = inf
{
ε ∈ R|∀ ~z2 ∈ PF∗ ∃ ~z1 ∈ A : ~z1 ≺ε ~z2

}
(7)

where, ~z1 ≺ε ~z2 if and only if ∀1 ≤ i ≤ n : z1i <
ε+ z2i .
Fronts with small values of I+ε are desirable.

• Hypervolume (IHV ). This indicator calculates the
volume, in objective function space, covered by mem-
bers of a non-dominated set of solutions Q = A,B,C
and a reference point W , e.g., the region enclosed
into the discontinuous line in Fig. 1, for problems
where all the objectives are to be minimized [10].
Mathematically, for each solution i ∈ Q, a hypercube
vi is constructed with a W and the solution i as the
diagonal corners of the hypercube. The reference point
can be simply found by constructing a vector with the
worst objective function values. Thereafter, the union
of all hypercubes is computed and its hypervolume
(IHV ) is calculated as:

IHV = volume

 |Q|⋃
i=1

vi

 . (8)

The higher the value of IHV , the better the approxi-
mated Pareto front is.

Since these indicators are not free from arbitrary scaling
of the objectives, we apply them after normalizing the values
of the objective functions.

D. Analysis of Results

For each combination of algorithm and problem we have
made 30 independent runs, and we report the median, x̃,

TABLE II: Comparison among the SMPSO variants: Problems
in which no statistical confidence has been found for the I+ε

SMPSO r cellSMPSO SMPSOhv SMPSOhv r

SMPSO DTLZ2 WFG8
ZDT1, ZDT2, ZDT3
ZDT4, ZDT6, DTLZ1
DTLZ2, DTLZ3, DTLZ4

SMPSO r DTLZ5, DTLZ6, DTLZ7
WFG1, WFG2, WFG3
WFG4, WFG5, WFG6
WFG7, WFG8, WFG9

cellSMPSO WFG8
ZDT1, ZDT4, ZDT6

SMPSOhv DTLZ1, DTLZ2, DTLZ3
DTLZ5, DTLZ6, WFG1
WFG5, WFG9

and the interquartile range, IQR, as measures of location (or
central tendency) and statistical dispersion, respectively, for
each considered indicator. When presenting the obtained values
in tables, we emphasize with a dark gray background the best
result for each problem, and a clear grey background is used
to indicate the second best result; this way, we can see at a
glance the most salient algorithms.

When comparing the values yielded by two algorithms
on a given problem, we check if differences in the results
are statistically significant. To cope with this issue, we have
applied the unpaired Wilcoxon rank-sum test, a non-parametric
statistical hypothesis test, which allows us to make pairwise
comparisons between algorithms to analyze the significance
of the obtained data [34]. A confidence level of 95% (i.e.,
significance level of 5% or p-value under 0.05) has been used
in all cases, meaning that the differences were unlikely to occur
by chance with a probability of 95%.

V. RESULTS

This section compares the different proposed SMPSO
variants in the aforementioned benchmark problems. The best
performing variant will be later compared with SMS-EMOA
and NSGA-II.

A. SMPSO Variants Comparison

We first analyze the values obtained in the I+ε indicator,
which are included in Table I. The SMPSO variant which se-
lects the leaders based on their contribution to the hypervolume
indicator, SMPSOhv, has been the most salient alternative,
obtaining the best results in all but four cases, in which it
was the second best alternative. SMPSOhv r, which selects the
leader randomly from the archive managed by the hypervolume
for discarding solutions, has obtained the best value in two out
of the 21 evaluated problems and the second best results in
another 15 cases. The original SMPSO algorithm has obtained
the best results in only two problems and the second best
results in another two. The other two analyzed versions have
obtained the poorest values in the comparison.

Table II summarizes the results of our statistical analysis. In
particular, for each pair of algorithms, the table includes the
problems in which no statistical confidence has been found
in our experiments. We can observe that, from the point of
view of the convergence indicator, there are no statistical dif-
ferences between the two worst techniques in the comparison,
SMPSO r and cellSMPSO. The number of problems in which
no statistical significance has been found between SMPSOhv



TABLE I: Median IQR of the comparison among the different SMPSO variants with respect to I+ε
SMPSO SMPSO r cellSMPSO SMPSOhv SMPSOhv r

ZDT1 5.56e − 031.9e−04 5.75e − 032.7e−04 9.71e − 032.0e−03 5.22e − 032.3e−04 5.31e − 032.2e−04
ZDT2 5.51e − 031.1e−04 5.45e − 031.7e−04 7.91e − 031.9e−03 5.06e − 031.5e−04 5.26e − 032.1e−04
ZDT3 5.68e − 031.0e−03 6.29e − 031.8e−03 2.63e − 022.3e−02 3.84e − 035.4e−04 4.13e − 031.0e−03
ZDT4 6.19e − 033.5e−04 6.36e − 036.5e−04 5.70e − 025.4e−02 5.53e − 032.7e−04 5.60e − 033.4e−04
ZDT6 4.59e − 034.1e−04 4.64e − 032.1e−04 6.13e − 032.4e−03 4.43e − 032.8e−04 4.44e − 033.8e−04
DTLZ1 5.69e − 029.5e−03 6.11e − 021.1e−02 8.63e − 022.5e−02 2.79e − 021.2e−03 2.84e − 021.0e−03
DTLZ2 1.32e − 011.9e−02 1.49e − 012.4e−02 1.45e − 012.0e−02 5.35e − 022.3e−03 5.35e − 022.7e−03
DTLZ3 1.49e − 015.0e−01 1.49e − 013.0e−02 4.79e − 012.5e−01 5.29e − 024.6e−03 5.38e − 022.8e−03
DTLZ4 1.24e − 013.7e−02 1.24e − 014.8e−02 2.10e − 014.3e−02 5.70e − 021.7e−02 8.14e − 027.4e−02
DTLZ5 4.61e − 033.0e−04 4.60e − 033.3e−04 6.72e − 031.2e−03 3.83e − 032.7e−04 3.80e − 032.2e−04
DTLZ6 4.38e − 033.2e−04 4.32e − 036.1e−04 4.65e − 035.0e−04 3.73e − 031.3e−04 3.77e − 033.0e−04
DTLZ7 1.78e − 017.1e−02 1.67e − 017.3e−02 1.99e − 018.6e−02 1.44e − 017.2e−03 1.45e − 018.4e−03
WFG1 1.14e + 004.4e−02 1.19e + 007.3e−02 1.35e + 005.1e−02 1.16e + 005.9e−02 1.20e + 006.5e−02
WFG2 1.48e − 022.1e−03 2.02e − 027.7e−03 7.49e − 021.1e−02 1.04e − 024.6e−03 1.97e − 026.4e−03
WFG3 2.00e + 009.6e−04 2.00e + 001.4e−03 2.03e + 001.4e−02 2.00e + 001.2e−04 2.00e + 002.7e−04
WFG4 5.22e − 026.6e−03 5.49e − 024.8e−03 7.13e − 028.8e−03 5.13e − 025.9e−03 5.48e − 021.2e−02
WFG5 6.36e − 027.2e−04 6.38e − 023.6e−03 6.60e − 023.5e−02 6.25e − 021.0e−03 6.26e − 021.4e−03
WFG6 1.66e − 021.3e−03 1.74e − 022.3e−03 5.97e − 021.1e−02 1.33e − 021.1e−03 1.39e − 021.3e−03
WFG7 1.86e − 021.4e−03 1.84e − 021.5e−03 7.05e − 021.5e−02 1.42e − 027.3e−04 1.48e − 028.5e−04
WFG8 3.84e − 015.5e−02 4.16e − 014.1e−02 4.28e − 015.0e−02 3.92e − 015.7e−02 4.24e − 013.8e−02
WFG9 2.84e − 022.3e−03 2.74e − 023.1e−03 3.79e − 025.4e−03 2.32e − 021.7e−03 2.38e − 022.0e−03

and SMPSOhv r is also high. However, there were still many
cases where the former algorithm outperformed the latter with
statistical significance.

The main conclusion extracted from these results is that the
algorithms which incorporate an archive based on hypervolume
for discarding solutions have computed fronts with better
convergence than the others. This result could be somehow
expected, since the crowding distance (i.e., the density estima-
tor used in the other alternatives) does not take convergence
into account. It is remarkable that the original SMPSO, which
proved to be very effective when solving the ZDT problems,
is clearly outperformed on this suite by the versions using the
hypervolume.

The results yielded by the analyzed SMPSO variants for
IHV are included in Table III. SMPSOhv has obtained the
best results in all the evaluated problems but in three instances
(DTLZ6, DTLZ7, and WFG1), and SMPSOhv r has been the
second best alternative in a high number of cases (16 out of
the 21 problems adopted). SMPSO obtained the best values
of the indicator in two cases, and the second best value in
another two. cellSMPSO and SMPSO r have also obtained
good figures in a couple of problems, which is something that
didn’t happen in the case of the convergence indicator.

The results of our statistical analysis for the IHV indicator
are summarized in Table IV. In this case, the number of prob-
lems in which statistical differences can be assured between
SMPSOhv and SMPSOhv r is higher than when using I+ε .
This means that leader selection based on IHV helps to obtain
fronts with a better spread in a high number of problems. This
fact is, however, not as noticeable in the comparison between
SMPSO and SMPSO r, where no statistical confidence has
been found in many problems.

B. Comparison with State-of-the-art Algorithms

In this section, we compare the SMPSO variant performing
the best, SMPSOhv, with respect to NSGA-II and SMS-
EMOA. The idea is to put the obtained results in context
with those produced by two state-of-the-art multi-objective
optimizers.

Proceeding as before, we analyze first the obtained values
with respect to the I+ε indicator (Table V). We can observe

TABLE IV: Comparison among the SMPSO variants: Prob-
lems in which no statistical confidence has been found for
IHV

SMPSO r cellSMPSO SMPSOhv SMPSOhv r

ZDT1, DTLZ3, DTZL6 DTLZ6 DTLZ6, WFG1
SMPSO DTLZ7, WFG5, WFG6 WFG5 WFG1 WFG2, WFG7

WFG8, WFG9 WFG3 WFG8
DTLZ2 DTLZ6 DTLZ6, WFG1

SMPSO r WFG5 WFG1 WFG3, WFG7
WFG8

cellSMPSO
DTLZ1, DTLZ5

SMPSOhv DTLZ6, WFG1
WFG5

TABLE VI: Comparison SMPSOhv vs SMS-EMOA vs
NSGA-II: Problems in which no statistical confidence has been
found with respect to the I+ε

SMSEMOA NSGA-II
SMPSOhv DTLZ4, DTLZ5 WFG8

DTLZ7, WFG2
SMSEMOA ZDT4, DTLZ4

WFG3

that SMPSOhv has obtained the best values in 13 out of the
21 evaluated problems, and the second best values in other six
problems. SMS-EMOA and NSGA-II have yielded the best
indicator values in 6 and 2 problems, respectively.

Table VI includes the problems in which no statistical
confidence has been found among the evaluated algorithms
in terms of I+ε . In this case, we see that the results have been
significant in most cases. Only in the comparison between
SMPSOhv and SMS-EMOA, statistical confidence was not
found in 4 out of the 21 evaluated problems.

In the case of the IHV (see Table VII), the analysis of
the algorithms has the same sign: SMPSOhv has been the
most salient algorithm, followed by SMS-EMOA and, finally,
NSGA-II. In fact, the results are practically the same, in terms
of the problems in which each algorithm has yielded the best
values, that those obtained with the convergence indicator. This
fact is also reflected in Table VIII, where the problems in which
no statistical confidence has been found between SMPSOhv
and SMS-EMOA, for this indicator, are almost the same as
for the other performance indicator.

To illustrate the fronts that can be produced by the three



TABLE III: Median IQR of the comparison among the different SMPSO variants with respect to IHV
SMPSO SMPSO r cellSMPSO SMPSOhv SMPSOhv r

ZDT1 6.62e − 011.1e−04 6.62e − 011.6e−04 6.59e − 011.4e−03 6.62e − 019.3e−06 6.62e − 011.6e−05
ZDT2 3.29e − 011.4e−04 3.29e − 011.2e−04 3.27e − 011.1e−03 3.29e − 016.3e−06 3.29e − 011.5e−05
ZDT3 5.15e − 015.1e−04 5.15e − 019.6e−04 5.08e − 014.7e−03 5.16e − 019.3e−05 5.16e − 014.9e−04
ZDT4 6.61e − 012.7e−04 6.61e − 012.4e−04 6.52e − 011.3e−02 6.62e − 012.0e−05 6.62e − 012.6e−05
ZDT6 4.01e − 011.1e−04 4.01e − 011.2e−04 4.01e − 012.4e−04 4.01e − 012.3e−05 4.01e − 013.1e−05
DTLZ1 7.36e − 011.4e−02 7.30e − 011.1e−02 7.10e − 013.4e−02 7.89e − 015.4e−04 7.89e − 015.7e−04
DTLZ2 3.52e − 018.8e−03 3.43e − 017.8e−03 3.43e − 019.8e−03 4.25e − 013.6e−04 4.25e − 016.3e−04
DTLZ3 3.48e − 011.1e−01 3.46e − 011.6e−02 3.30e − 013.2e−02 4.25e − 011.6e−03 4.24e − 012.8e−03
DTLZ4 3.59e − 011.7e−02 3.60e − 011.2e−02 2.91e − 011.9e−02 4.16e − 018.0e−03 4.05e − 014.6e−02
DTLZ5 9.37e − 021.0e−04 9.36e − 021.6e−04 9.33e − 021.7e−04 9.40e − 026.3e−05 9.40e − 027.2e−05
DTLZ6 9.49e − 024.5e−05 9.49e − 026.2e−05 9.50e − 025.3e−05 9.49e − 026.6e−05 9.49e − 026.4e−05
DTLZ7 2.74e − 018.4e−03 2.72e − 015.9e−03 2.64e − 018.5e−03 2.56e − 011.5e−03 2.57e − 017.0e−03
WFG1 1.18e − 014.7e−03 1.15e − 015.3e−03 9.42e − 023.7e−03 1.17e − 015.8e−03 1.15e − 018.7e−03
WFG2 5.61e − 017.2e−04 5.60e − 011.6e−03 5.37e − 013.3e−03 5.63e − 017.9e−04 5.61e − 019.7e−04
WFG3 4.41e − 011.5e−04 4.41e − 012.6e−04 4.29e − 011.9e−03 4.42e − 015.4e−05 4.42e − 016.3e−05
WFG4 2.03e − 012.4e−03 2.01e − 011.4e−03 1.92e − 011.5e−03 2.04e − 012.5e−03 2.01e − 012.4e−03
WFG5 1.96e − 018.6e−05 1.96e − 016.5e−05 1.96e − 019.1e−05 1.97e − 014.6e−05 1.97e − 013.4e−05
WFG6 2.09e − 013.3e−04 2.09e − 013.5e−04 1.95e − 012.2e−03 2.11e − 011.2e−04 2.11e − 011.5e−04
WFG7 2.09e − 012.1e−04 2.09e − 013.4e−04 1.91e − 012.2e−03 2.11e − 017.4e−05 2.11e − 011.2e−04
WFG8 1.48e − 011.5e−03 1.48e − 016.3e−04 1.35e − 012.2e−03 1.49e − 017.9e−04 1.48e − 019.5e−04
WFG9 2.35e − 017.2e−04 2.35e − 015.7e−04 2.30e − 017.1e−04 2.38e − 017.4e−04 2.37e − 014.7e−04

TABLE V: Median IQR of the comparison SMPSOhv vs SMS-EMOA vs NSGA-II with respect to I+ε
SMPSOhv SMSEMOA NSGA-II

ZDT1 5.22e − 032.3e−04 5.69e − 032.6e−04 1.26e − 021.9e−03
ZDT2 5.06e − 031.5e−04 5.76e − 033.1e−04 1.33e − 022.0e−03
ZDT3 3.84e − 035.4e−04 4.04e − 036.6e−04 8.80e − 031.8e−03
ZDT4 5.53e − 032.7e−04 1.41e − 025.8e−02 1.45e − 024.1e−03
ZDT6 4.43e − 032.8e−04 7.46e − 034.5e−04 1.50e − 023.3e−03
DTLZ1 2.79e − 021.2e−03 2.84e − 021.8e−03 7.03e − 022.1e−02
DTLZ2 5.35e − 022.3e−03 5.10e − 021.8e−03 1.29e − 012.6e−02
DTLZ3 5.29e − 024.6e−03 3.68e + 002.1e+00 5.26e + 002.7e+00
DTLZ4 5.70e − 021.7e−02 3.40e − 015.9e−01 1.13e − 012.2e−02
DTLZ5 3.83e − 032.7e−04 3.77e − 031.4e−04 1.03e − 022.8e−03
DTLZ6 3.73e − 031.3e−04 3.30e − 014.1e−02 8.51e − 018.5e−02
DTLZ7 1.44e − 017.2e−03 1.44e − 011.7e−02 1.23e − 014.5e−02
WFG1 1.16e + 005.9e−02 1.00e + 003.9e−01 2.67e − 014.3e−01
WFG2 1.04e − 024.6e−03 3.59e − 017.0e−01 3.65e − 017.0e−01
WFG3 2.00e + 001.2e−04 2.00e + 001.4e−03 2.00e + 001.6e−03
WFG4 5.13e − 025.9e−03 1.29e − 028.6e−04 3.36e − 028.5e−03
WFG5 6.25e − 021.0e−03 6.21e − 025.8e−04 8.35e − 029.2e−03
WFG6 1.33e − 021.1e−03 2.38e − 022.6e−02 4.48e − 021.9e−02
WFG7 1.42e − 027.3e−04 1.31e − 027.2e−04 3.49e − 021.0e−02
WFG8 3.92e − 015.7e−02 5.21e − 019.7e−02 5.11e − 012.3e−01
WFG9 2.32e − 021.7e−03 1.53e − 021.5e−03 3.63e − 027.4e−03

TABLE VIII: Comparison among SMPSOhv vs SMS-EMOA
vs NSGA-II: Problems in which no statistical confidence has
been found with respect to IHV

SMSEMOA NSGA-II
SMPSOhv DTLZ4, DTLZ5 WFG2

WFG2, WFG5
SMSEMOA ZDT4, DTLZ4

WFG6, WFG8

compared metaheuristics, Fig. 2 shows some examples of
the best approximation sets computed by these algorithms
according to the hypervolume. The chosen problems are ZDT4,
WFG6, and DTLZ6.

To finish this section, is worth mentioning the issue of
running times, given that it is well-known that computing the
hypervolume is expensive. All the algorithms in this paper have
been implemented with the jMetal framework [35]. In both,
SMS-EMOA and SMPSOhv, we have not included any tech-
nique to improve the calculation of the contribution of the hy-
pervolume [36]. Thus, while the original SMPSO and NSGA-II
required less than a second to complete a typical run in our
testing computer when solving the bi-objective problems, the
hypervolume techniques needed about one minute. Improving
the implementation of these algorithms is in progress but, in
any case, this does not affect the numerical performance of the
techniques.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed a number of leader se-
lection mechanisms in SMPSO, a competitive multi-objective
particle swarm optimizer. In particular, four new different
versions of SMPSO have been tested. These versions involve
the selection of leaders randomly from an external archive
(SMPSO r), from the swarm using a neighborhood structure
(cellSMPSO), by considering the contribution to the hypervol-
ume of the particles in the external archive and taking the best
of two randomly chosen particles (SMPSOhv), and the same
as SMPSOhv but simply randomly selecting the leaders from
it (SMPSOhv r).

These variants have been tested using a benchmark com-
posed of problems with two and three objectives. The obtained
results have been analyzed by applying two quality indicators,
measuring convergence and diversity. Our results showed that
SMPSOhv has been the overall best technique in our com-
parison. SMPSOhv has been also compared with respect to
SMS-EMOA and NSGA-II, two state-of-the-art algorithms,
obtaining better values than them in a high number of cases,
thus pointing out the advantages of using the hypervolume
quality indicator for leader selection in a multi-objective PSO
algorithm.

Further work will focus on analyzing the inclusion of other
quality indicators in SMPSO and applying SMPSOhv to real-
world optimization problems.



TABLE VII: Median IQR of the comparison SMPSOhv vs SMS-EMOA vs NSGA-II with respect to IHV
SMPSOhv SMSEMOA NSGA-II

ZDT1 6.62e − 019.3e−06 6.62e − 015.5e−05 6.59e − 014.3e−04
ZDT2 3.29e − 016.3e−06 3.29e − 018.5e−05 3.26e − 016.0e−04
ZDT3 5.16e − 019.3e−05 5.16e − 016.2e−05 5.15e − 012.5e−04
ZDT4 6.62e − 012.0e−05 6.57e − 014.3e−03 6.56e − 013.1e−03
ZDT6 4.01e − 012.3e−05 3.97e − 011.2e−03 3.88e − 012.0e−03
DTLZ1 7.89e − 015.4e−04 7.87e − 011.9e−03 7.26e − 012.9e−02
DTLZ2 4.25e − 013.6e−04 4.27e − 013.8e−04 3.74e − 017.2e−03
DTLZ3 4.25e − 011.6e−03 0.00e + 000.0e+00 0.00e + 000.0e+00
DTLZ4 4.16e − 018.0e−03 3.14e − 012.1e−01 3.74e − 015.8e−03
DTLZ5 9.40e − 026.3e−05 9.40e − 024.1e−05 9.28e − 023.5e−04
DTLZ6 9.49e − 026.6e−05 0.00e + 000.0e+00 0.00e + 000.0e+00
DTLZ7 2.56e − 011.5e−03 2.54e − 017.2e−03 2.79e − 015.1e−03
WFG1 1.17e − 015.8e−03 3.53e − 011.7e−01 5.95e − 011.1e−01
WFG2 5.63e − 017.9e−04 5.62e − 012.9e−03 5.62e − 012.5e−03
WFG3 4.42e − 015.4e−05 4.42e − 012.9e−04 4.41e − 015.5e−04
WFG4 2.04e − 012.5e−03 2.19e − 011.5e−05 2.17e − 013.8e−04
WFG5 1.97e − 014.6e−05 1.97e − 013.2e−05 1.95e − 013.5e−04
WFG6 2.11e − 011.2e−04 2.04e − 011.7e−02 2.04e − 011.1e−02
WFG7 2.11e − 017.4e−05 2.11e − 012.6e−05 2.09e − 014.3e−04
WFG8 1.49e − 017.9e−04 1.48e − 011.6e−03 1.47e − 013.5e−03
WFG9 2.38e − 017.4e−04 2.41e − 011.2e−03 2.37e − 011.6e−03
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Fig. 2: Example of fronts computed by SMPSOhv, SMS-EMOA, and NSGA-II for three of the evaluated benchmark problems:
ZDT4 (top), WFG6 (middle), and DTLZ6 (bottom).
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