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Abstract—The incorporation of performance indicators as
the selection mechanism of a multi-objective evolutionanalgo-
rithm (MOEA) is a topic that has attracted increasing interest
in the last few years. This has been mainly motivated by
the fact that Pareto-based selection schemes do not perform
properly when solving problems with four or more objectives
The indicator that has been most commonly used for being
incorporated in the selection mechanism of a MOEA has been
the hypervolume. Here, however, we explore the use of the
R2 indicator, which presents some advantages with respect to
the hypervolume, the main one being its low computational
cost. In this paper, we propose a new MOEA called Many-
Objective Metaheuristic Based on theR2 Indicator (MOMBI),
which ranks individuals using a utility function. The proposed
approach is compared with respect to MOEA/D (based on
scalarization) and SMS-EMOA (based on hypervolume) using
several benchmark problems. Our preliminary experimental
results indicate that MOMBI obtains results of similar quality
to those produced by SMS-EMOA, but at a much lower compu-
tational cost. Additionally, MOMBI outperforms MOEA/D in
most of the test instances adopted, particularly when deaig
with high-dimensional problems having complicated Pareto
fronts. Thus, we believe that our proposed approach is a vide
alternative for solving many-objective optimization problems.
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offs among the objectives (i.e., the so-called nondomihate
solutions) and (2) a density estimator that allows us toapre

solutions along the Pareto front in a uniform way, so thay the
are as diverse as possible.

For many years, MOEAs have adopted selection mecha-
nisms based on Pareto optimality. These mechanisms pre-
serve solutions that are Pareto optimal with respect to afset
reference (normally the current population), and assigmé r
to each of these solutions, such that all the nondominated
solutions are considered to be equally good. Pareto-based
MOEAs have been very popular since the 1990s, but recent
studies have shown that they do not perform properly when
dealing with problems having four or more objectives (the so
called many-objective optimization problems) [2], [3].i$h
has motivated the development of new selection schemes
from which the use of quality assessment indicators is proba
bly the most popular [4]. The idea in this case, is to optimize
a quality assessment indicator that provides a good omlerin
among sets that represent Pareto approximations. From the
many indicators currently available, the Hypervolume 15]
is, with no doubt, the most popular nowadays. The main
advantage of the hypervolume indicator is that it has been
proved that its maximization is equivalent to finding the
Pareto optimal set [7], and this has also been empirically

A wide variety of real-world problems have several (ofter¢orroborated [8]. In fact, maximizing the hypervolume also

conflicting) objectives that need to be optimized at the sanleads to sets of solutions whose spread along the Pareto
time. They are called multiobjective optimization probkem front is maximized (although this does not necessarily mean
(MOPs) and their solution involves a different notion ofthat such solutions will be uniformly distributed along the
optimality than the one used for global (single-objectivePareto front). Nevertheless, the high computational cbst o
optimization. When solving a MOP, we normally aim tothe hypervolume (its computational cost grows exponetial
find the best possible trade-off among all the objective®n the number of objectives [9]) normally makes a selection
The notion of optimality most commonly used to deal withmechanism based on such indicator prohibitive for problems
MOPs is Pareto optimality, and its use produces the soetall8aving more than 5 objectives [10]. The nice mathematical
Pareto optimal set, which contains the decision variatbias t properties of the hypervolume indicator has triggered an
correspond to all the solutions that represent the besg¢tradmportant amount of research, including work that focuses
offs among all the objectives (normally, there will be moredn computing it in a more efficient way [11], [12]. It is in-
than one). The image of the Pareto optimal set is called tigi¢ed possible to approximate the hypervolume contribution
Pareto front. significantly reducing its computational cost [11], but few
studies of the performance of such approaches with respect

~ The use of evolutionary algorithms (as well as othefy those using exact hypervolume calculations are cugrentl
bio-inspired metaheuristics) for solving MOPs has becomgailaple.

increasingly popular in the last 15 years, giving rise to dewi
variety of multi-objective evolutionary algorithms (MOBRA  —1 2 Hypervolume (also known as thes metric or the Lebesgue

[1]. The two key algorithmic components of a MOEA are: (1)vieasure) of a set of solutions measures the size of the pasfiobjective
a selection mechanism that preserves the best possibée tragpace that is dominated by those solutions collectively [6]




Here, we explore the use of another indicator that iBefinition 5. The Pareto Front PF* is defined by:
known to have nice mathematical properties [1BR. In
this paper, we propose a new MOEA, called Many-Objective " 7 mi— X
Metaheuristic Based on th@2 Indicator (MOMBI) and ana- PF*={f(@) e R"|T € P}
lyze its performance with respect to that of two well-know
approaches: MOEA/D [14], which is based on scalarizatio
and SMS-EMOA [4], which is based on the hypervolum
indicator (we use the approach to approximate the hyperv
lume contribution proposed in [11]).

e thus wish to determine the Pareto optimal set from the set
of all the decision variable vectors that satisfy (2) and (3)
lote however that in practice, not all the Pareto optimal set
Is normally desirable (e.g., it may not be desirable to have
different solutions that map to the same values in objective

The remainder of this paper is organized as followsunction space) or achievable.
Section Il provides some basic concepts related to multi-

objective olptimiza.tion. The previous related WorI§ is byiefl I1l. RELATED WORK
discussed in Section Ill. Our proposed approach is destribe , i i i
in detail (including some basic concepts on findicator) In this section we review the previous related work on

in Section IV. The results obtained by our proposed approaé'ﬂe use of indicators in the selection mechanism of a MOEA.

are compared with respect to those generated by two state- As indicated before, the performance indicator that has
of-the-art MOEAs, using standard test problems and pepeen most commonly used for the selection mechanism of
formance indicators taken from the specialized literaiare a3 MOEA is the hypervolume [6]. This indicator has several

Section V. Finally, our conclusions and some possible patigjvantages, from which the main one is that it is the only

for future research are presented in Section VI. unary indicator which is known to be strictly monotonic [15]
However, computing the hypervolume is exponential in the
II. BASIC CONCEPTS number of objectives [16] and is sensitive to the choice of

. . . the reference point [4].
We are interested in solving problems of the pe point [4]

Currently, there are several MOEAs that incorporate
the hypervolume in their selection mechanism (e.g., the S
S F Y L - - - Metric Selection-Evolutionary Multi-Objective Optimitian
minimize = v fm 1 ; At
1@) =1, (@), fn()] @) Algorithm (SMS-EMOA) [4] and the multi-objective co-

subject to: variance matrix adaptation evolution strategy (MO-CMA-
gi(Z) <0 i=1,2,...,p (2) ES) [17]. However, the high computational overload of
~ ) these approaches motivated the development of alternative
hi(Z) =0 i=1,2,...,q (3) strategies. One of them is to estimate (by means of Monte
Carlo simulations) the ranking of a set of individuals that
where £ = [ml,x27___,xn]T is the vector of decision would be induced by the hypervolume indicator, without

variables, f; : R" — R, i = 1,...,m are the objective having to compute the exact indicator values. This is the
functions andg;, h; : R" = R, i=1,...,p, j =1,...,q are approach adopted by the Hypervolume Estimation algorithm

the constraint functions of the problem. for multi-objective optimization (HypE) [11].

More recently, a new performance indicator callag
To describe the concept of optimality in which we arevas proposed in [18]. This indicator can be seen as an
interested, we will introduce next a few definitions. “averaged Hausdorff distance” between the outcome set and
the Pareto frontA, is composed of slight modifications
o ) . of two well-known performance indicators: generational
Definition 1. Given two vectors?,y € R™, we say that gistance (GD, see [19]) and inverted generational distance
T < gif z; <y fori=1,..,m, and thatr dominatesy  (1GD, see [20]).A, is a pseudo-metric which simultaneously
(denoted byz < 7)) if & <y andz # i/. evaluates proximity to the Pareto front and spread of so-
lutions along it. AlthoughA, is not Pareto compliant, its

Definition 2. We say that a vector of decision variablescomputation has a much lower computational cost than that

# € X ¢ R" is nondominated with respect toX, if there of the hypervolume, and it can also handle outliers, which
does not exist anothef € X such thatf(f’) < f(f) makes it attractive for assessing performance of MOEAs.

It is worth noting, however, that for incorporatinyy, into

the selection mechanism of a MOEA, it is necessary to
Definition 3. We say that a vector of decision variableshave an approximation of the true Pareto front at all times.
* e F C R" (F is the feasible region) iPareto-optimal  This has motivated the development of techniques that can
if it is nondominated with respect t#. produce such an approximation in an efficient and effective
way. For example, in [21], the authors linearize the non-
dominated (piecewise linear) front of the current popolati
and include this mechanism in tha,-EMOA, which is
used for solving bi-objective optimization problems. This
P* = {& € F|# is Pareto-optimal algorithm is inspired by SMS-EMOA, and is assisted by
a secondary populatiord,-EMOA performs better than
2without loss of generality, we will assume only minimizatiproblems.  NSGA-II [22], while consuming a lower number of function

Definition 4. The Pareto Optimal SetP* is defined by:




evaluations. An extension of this approach to three-object which allows us to deal with non-commensurable objective
problems is reported in [23]. In this case, the algorithnfunctions (i.e., measured in different units):

requires some previous mathematical steps which include

reducing the dimensionality of the non-dominated solwtion

and calculating their convex hull. This versionAf,-EMOA ug(@) = — max w;
achieves a better distribution of solutions than MOEA/D][14 ie{lm}
SMS-EMOA and NSGA-II. However, this MOEA requires
additional parameters and consumes a high computatio
time when dealing with many-objective optimization pro
blems.

a; — 2

nad __ %
% 2

; (5)

jerew = {ws,...,w,} € W is a given weight vector,
2" and z"* are the idedl and nadif vectors, respectively.
Replacing equation (5) in equation (4) and applying the dual

property, the R2 indicator is defined as:

Another possible approach to incorporafg, into a
MOEA is to use an echelon form of the non-dominated indi-
viduals for the Pareto front. This is the mechanism adopte%Q(A W) = 1 Z . _
in A,-DDE [10], in which A, is used as the selection T W] A Gen Vet oy :
mechanism of a diferential evolution algorithm,-DDE wew 6)
was able to outperform NSGA-II and provided competitive
results with respect to SMS-EMOA, but at a considerably Since we intend to us&2 in the selection mechanism
lower computational cost for many-objective optimizatiorof a MOEA, we need to design a scheme for that purpose.
problems. The main limitation of this approach is that iOur proposal here is to produce a nondominated sorting
produces a poor spread of solutions in high-dimensionatheme based on the utility functions adopted. The core idea
search spaces. Also, it has some difficulties for dealing witis to group solutions that optimize the set of utility furcts
discontinuous Pareto fronts. chosen, and place such solutions on top, such that they get

the first rank (the best). Such points will then be removed

h I;izeQC_er(;t_ly, tsome rese?jr_chezri r;ave recommended. to tadQHH a second rank will be identified in the same manner. The
e 12 indicator proposed in [24] to compare approximation, ., os will continue until all the solutions had been rahke

sets on t.he basis of a set of u_ti!ity functio,ns [13]. A uti"tyCIearly, this is a nondominated sorting scheme [26], except
function is a model of the decision maker's preference th r the fact that Pareto dominance is not used in this case.

maps each point in the objective space into a utility valtie.
is worth noticing that the?2 indicator is weakly monotonic, The formal definition of a rank, derived from equa-
and it is correlated with the hypervolume but has a lowetion (6), is presented in equation (7):

computational overhead than such indicator [13]. Becafise o

non-dominated sets [25]. It is worth emphasizing, however, }’ (7)
that the main caveat when trying to use this performance

indicator is that each utility function adopted, must be B : .
properly scaled. where By, = {J, rank,|k > 2,1 < x < k} is the union of

of MOEAs. Here, we explore its potential use as a selectioghe\f/_rvr\]/g?uet:’vl%r'n;“/v\l'giuﬂfvceocr;gr'b?gzxv\':g ths)sg;neetgcchh%%ys'e
mechanism within a MOEA, emphasizing its possible USEL < one with the Iowgr Manhatfan horm gefi%ed by
fulness in many-objective optimization problems. ' y:

a; — 2}

nad __ %
% 2

a; — 2}

e = min max w;
WdeA\Bk ie{l,...,m}

nad _ %
% %

[l

this, the R2 indicator is widely recommended for dealing
solutions with the lowest ranks.

with many-objective optimization problems and over large rank
The R2 indicator has been scarcely studied in the context

m
IV. OUR PROPOSEDAPPROACH @1 = Z |ag] . (8)
i=1

Since the proposed approach is based omthendicator,
we have to provide more details about this indicator before

presenting our actual algorithm In order to illustrate our proposed ranking scheme, we

present here a hypothetical example of a bi-objective pro-
According to [13], the unary version of th@2 indicator blem. We assume an approximation of the Pareto opti-
for a constant reference set can be expressed as follows: mal set, which consists of twelve solutions, as shown in
Figur%l 1. The dashed lines represegt the weight vectors

1 107%,1),(1/3,2/3),(2/3,1/3),(1,107%)}, the reference

R2(A,U) = 10 > @ea}{u(ﬁ)}a (4) ég)ints ar)e (se{t t(f/* ):((1/.0, 1(2)) a&nd Z”‘wg}: (8.4,7.8). In

uet Table |, the objective functions and the optimum Tchebyichef
value of each solution are shown. The first rank is formed

where A is the Pareto set approximation abdis a set of with the solutions that are closest to the weights, accgrttin

utility functions. the Tchebycheff metric, that is poinfs, b, ¢, d}. The second

With respect to the choice of the utility functions : rank consists of the the remainder solutions, which are now

R™ — R, there are several posibilities: weighted linear, 3a ower bound of all the objective functions.
weighted Tchebycheff or augmented Tchebycheff functions.4an upper bound of each objective in the entire Pareto optiseal
We focus on the second one, but using a normalization,>min z = — max(—2)




Rank 1 individual with the lowest Manhattan norm. This procedure

el i Rank2 o does not guarantee having consecutive ranks. However, this
ae Eggti : is irrelevant for comparison purposes.
6 Algorithm 1 R2 Ranking Algorithm
en R T i i
Cofo Require: PopulationP, set of weight vector$V, reference

f2(%)

points 2* and 7"¢
Ensure: Ranking of the population
1: for all p € P do
2. prank «— oo

3 paut—
4: end for
0 , , , , s: for all @ € W do
0 2 4 6 8 6: forall pe P do
(@) 7 p.o — ug(p.f, 2*, Zmed
8: if p.a < p.u* then
. *
Fig. 1. lllustration of the ranking procedure based on R#indicator that 9 pu —pa«
we propose here. 10: end if
11: end for
TABLEI. A HYPOTHETICAL EXAMPLE FORMOMBI. 12:  Sort the pupulation? with respect to the fieldy in
Solution | f1 | Jz | w' (@) increasing order
a 1.0 | 7.5 | 0.00009 130 rank — 1
b 3.0 | 4.0 | 0.18018 )
c o551 01676t 14: for_ all pe P do
d 84 | 1.2 | 0.00010 15: if rank < p.rank then
e 11 [ 55 [ 0.01351 16: p.rank «— rank
i 2.0 | 50 | 0.13513 . ;
g 55 | 2.0 | 0.12121 ir end if
h 68 | 2.0 | 0.12121 18: rank «— rank +1
i 12 | 7.8 | 002702 19: end for
] 2.8 | 5.1 | 0.19696 )
K 33 | 34 | 0.20720 20: end for
1 7.0 | 2.2 | 0.15151

In Algorithm 2 we introduce our proposed approach,
called MOMBI. This approach is based on a Genetic Al-
closest to the weights, i.e., poinfg, f, g}. The third rank gorithm, and it first initializes the population by randomly
consists of pointgh, i, j, k}. Finally, the farthest solutioh  selectingV solutions fromF (using a uniform distribution).
belongs to the last rank. It is worth noticing that, in thisea In lines 3 to 5, we obtain the objective function values,
solutionsg andh contribute equally to the weiglit0—*,1).  the reference points, and the ranking of the population. At
Howeverg has a lower Manhattan norm than(7.5 vs 8.8)  each generation, the algorithm performs a binary tournamen

and is, therefore, considered to be better than selection, using the rank of each solution (line 7). In line
8, we use mutation and crossover operators to produce an
A. Our Proposed Ranking Algorithm offspring of V individuals. The reference points are updated

ith the minimum and maximum objective function values

. . W
In ,Ailgprlthrg 1,dwe present a ga'v\?v approach tﬁ ranl|‘r|hline 10. The parent and offspring population are ranked
a population, based on equation (7). We assume that €3gjine 11, |n line 12, the reduction of the population is

individual p has the following structure: performed by selecting the beat candidates according to

p.rank Hierarchy of the individual. their rank, the best utility value obtained, and the Mararatt
p.u*  The best utility value obtained. norm.
g ?‘;» ;r/gcetgrugf ngléilg\);ev]?lj zitifgr:sa weight vectar. It is worth indicating that this approach produces a

finer-grained ranking (with fewer ties) than the nondom-

Lines 1 to 4 initialize the variablesink andu* for each inated sorting procedure adopted by NSGA-II. Re-taking
individual to the worst values. In lines 5 to 11, for everyrpajOur prévious example, if we wanted to select a half of the
of weight vector and objective functionf of an individual —Solutions, using MOMBI, we would keep the individuals

», the utility value is computed and stored in recard. If  {a-b;¢.d; €, 9}, sincee, f andg are in the same rank. In this
the obtained value of an individual outperforms its presiouc@Se, we choose the solutions with the lowest Tchebycheff

one, it is updated in fielgh.u*. In line 12, the population values. According to Pareto dominance, the nondominated
P is sorted with respect to the fiejda in increasing order. Solutions are{a,b,c,d, e, f,g,k}. Although f and k are

Lines 13 to 19 perform the ranking assignment of the sortgPndominated, in this casg2 removes them with the aim
population. of preserving diversity.

As mentioned in the previous section, in line 12, when The set of weightdV is controlled by a parametéft.
two individuals have the same utility function, we prefee th Each weight vector takes a value from:



Algorithm 2 Main LOOp of MOMBI TABLE II. PROPERTIES OF THE TEST PROBLEMS

Require: MOP, set of Weight vectorsl/ Problem Separability Modali_ty Gelometry
. . K tA to the Pareto front DTLZ1 separable multi linear
EnSL_Jre- ApprOX|mat|on se 0 DTLZ2 separable uni concave
1. 1+ 0 DTLZ3 separable multi concave
2: Initialize population/; DTLZ5 | ko i arc, degenerared
. u W uni s
3: Evaluate populauorPi . . —nad DTLZ6 unknown uni arc, degenerated
4: Calculate reference poml{sz*, zZna } DTLz7 | notapplicable | fi.,—y uni disconnected,
5. ExecuteRR2 ranking algorithm(P;, W, 7%, znad) separable fom_mult mixed
6: repeat WFG1 separable uni ] convex, mixed
7. Perform tournament selection WFG2 | non-separable f}:?n]ulL:im diseonnected
8:  Generate offspring®/ using variation operators wigi non-SePag?b'e U“llt_ linear, degenerats
. - / separable mulfti concave
9 Evaluate populatlorPi_ = nad WFG5 separable deceptive concave
10: Update reference points: *, Zm%¢} WFG6 | non-separable uni concave
11:  ExecuteR2 ranking algorithm(P; | P/, W, z*, znad) WEG? separable uni concave
12: Reduce populatio®: - {P- UP,} WFG8 non-separable uni concave
: ) - 1p p i+1 g % WFG9 non-separable| multi, deceptive concave
13: |
14: until termination condition fullfilled

A. Test problems

€y =y =y ey — (9) Laumanns-Zitzler [29] and the Walking-Fish-Group [30]ttes

H H H suites. All the minimization problems adopted are scalable
: 4 with respect to the number of objectives and have a variety
wheree is a value close to zerol(™* is recommended), ot geometries for the Pareto front, such as linear, mixed
in order to prevent cancellation in the calculations. The-,ncave/convex), degenerate and disconnected. They also
total amogrltmcflvectors is represented by the comblnaton%dude some aspects such as separability and multifigntal
numberC;;, 71" which make them more difficult to solve. In Table Il we
summarize the main features of these test problems [30].

{ 1 92 H} For comparison purposes, we adopted the Deb-Thiele-

V. EXPERIMENTAL RESULTS

We compare the performance of our proposed MOMBIB. Parameters Settings
with respect to that of two state-of-the-art MOEAs. The

first is the multi-objective evolutionary algorithm based o ; :
o . MOEAs compared, in each of the test instances adopted.
decomposition (MOEA/DY14], which transforms an op- In DTLZ, theptotal number of variables is given by :p

timization problem into a number of scalar optimization +k— 1, wherem is the number of objectived: was set

subprobler_ns that are sn‘_nultaneogsly optlml_zed. The seco%i5 for DTLZ1, 10 for DTLZ2-6 and 20 for DTLZ7. The
approach is the S Metric Selection-Evolutionary Multiob-

jective Optimization Algorithm (SMS-EMOR) [4], which is nuroer Of decision variables in WES was set to 24, and the
a popular hypervolume-based MOEA. SMS-EMOA adoptgOSI ion-refated parameter was se '

non-dominated sorting as its primary selection criteriod a The variation operators adopted in our implementations
the hypervolume contribution as its secondary criteriorwere: simulated binary crossover (SBX) and polynomial-
Since SMS-EMOA requires a considerably large computdased mutation [31]. The crossover rate was set to 0.9, while
tional time in problems of high dimensionality (i.e., MOPsthe mutation rate was set to/n. The distribution indexes
having 4 or more objectives) [10], we use here a version thédr both SBX and the polynomial-based mutation were set
incorporates the algorithm proposed in [11] for estimatingo 20. The total number of function evaluations was set in
the hypervolume using Monte Carlo sampling, instead afuch a way that it did not exceed 50,000. The population
the exact hypervolume calculations adopted in the origingize and the maximum number of generations adopted in our
algorithm [4]. experiments are shown in Table Ill, and varied according to
Abe value ofm (i.e., number of objectives) adopted.

We performed 30 independent runs of each of three

We decided not to compare results with respect to NSG
Il [22], because several studies currently available iatgic In MOEA/D and MOMBI, the number of weight vectors
that MOEA/D is able to outperform it ([27], [28]), and our is the same as the population size. Following the proposal
first experiments corroborated such results. described in [14], MOEA/D used the Tchebycheff approach
ith a neighborhood size of 20. The number of samples in

All the experiments reported here were conducted o MS-EMOA was set td 0°.

identical PCs having Intel(R) Core(TM) i7 processors run=
ning at 2.67GHz and with 3.8 GBytes in RAM. The three
MOEAs adopted in our comparative study were implemented- Performance Assessment

in C/C++ under Linux, using real-numbers encoding. For comparing results, we selected the hypervolume indi-
6The source code and the complete study of MOMBI is availahle a cator, which is equal to the Sum. of al.l the re.Ctangmar area§,

http: // comput aci on. cs. ci nvest av. mk/ ~r her nandez/ monbi / Pounded by some reference point. Since this reference point
"We used the implementation from 2007 for continuous seapaces: IS important, we provide the values that we adopted for each

http://dces. essex. ac. uk/ st af f / zhang/ webof moead. ht m  test problem in Table IV. Mathematically, the hypervolume




TABLE lll.  PARAMETERS. TABLE V.  COMPARISON OF RESULTS FOR THIDTLZ TEST
. . § . . PROBLEMS. AVERAGE HYPERVOLUME AND AVERAGE RUNTIME(IN
m H Population Size | Generations | Function Evaluations PARENTHESES
2 | 119 :
3| 14 120 416 49920
4 7 m | MOMBI MOEA/D [ SMS-EMOA
> 126 396 49896 DTLZ1
6 | 4 2 | 8.737838e-011.50s) | 8.737470e-010.60s) | 8.735790e-01 (7.42m)
I 3 84 595 49980 3 | 9.693597e-011.55s) | 9.689446e-01 (0.69s)| 9.738787e-017.38m)
8 120 416 49920 4 | 9.854892e-01 (1.64s)| 9.884462e-010.78s) | 9.924153e-015.02m)
5 | 9.919373e-011.83s) | 9.032330e-010.92s) | 9.878291e-01 (3.83m)
6 | 9.944634e-011.95s) | 9.955037e-010.07s) | 9.656273e-01 (4.73m)
TABLE IV. REFERENCE POINTS FOR THE TEST INSTANCES 7 97529936-011365) 98654746-011035) 0.533103e-01 (620m)
oSt ProBiem Referance Poirt 8 | 9.845820e-012.13s) | 9.805640e-011.11s) | 9.354406e-01 (6.52m)
DTLZL T.L,1,.) DTLZ2
STCZ2 DTLZ4 R 2 | 3.210785e+00(1.52s) | 3.210866e+0(0.72s) | 3.210667e+00 (20.21m)
5T73 o) 3 | 7.388812e+00(1.57s) | 7.383274e+00 (0.85s) 7.427998e+0G51.74m)
DTLIE CR) 4 | 1.5421866+01 (1.69s] 1.542219e+01(0.90s) | 1.5581636+0159.29m)
DTLZE EEISE I 5 | 3.153492e+01(1.89s) | 3.153351e+01 (1.03s) 3.168830e+0174.86m)
BTz BT oo 6 | 6.209770e+0X2.01s) | 6.287641e+01 (1.155] 6.375897e+0178.05m)
WEG ERAN Ty 7 | 1.226035e+041.44s) | 1.219099e+02 (1.15s) 1.277801e+0458.98m)
Loy 8 | 2.453361e+042.21s) | 2.438129e+02 (1.235) 2.558339e+0293.74m)
DTLZ3
2 | 4.8202926+011.54s) | 4.8201226+010.675) | 4.819756e+01 (4.32m)
. . ) o . 3 | 3.423640e+071.58s) | 3.423744e+020.83s) | 3.3914156+02 (2.99m)
can be described using equation (10) (it is worth noting thatz | 2.200275¢+031.68s) | 2.400109e+030.91s) | _1.5240836+03 (3.06m)
higher hypervo|ume values are preferred): 5 1.680506e+041.89s) | 1.680405e+041.00s) 2.303193e+03 (3.27m)
6 | 1.175943e+052.01s) | 1.1760686+0%1.08s) | 4.2760676+03 (4.24m)
7 | 8.228736e+0%1.44s) | 8.2244886+051.105) | 4.5088926+04 (4.91m)
8 | 5.752984e+062.21s) | 5.756130e+0§1.21s) | 9.710261e+04 (6.15m
HV(A) = {U volume(v)|v € A} ) 42.215) DTLZZ 41.215) ¢ )
2 | 3.089723e+0Q1.54s) | 2.565073e+00 (0.665) 3.0088986+00(17.17m)
. . o 3 | 7.2928026+001.61s) | 6.479912e+00 (0.83s) 7.126184e+00(57.30m)
Additionally, we also considered the running time of eac{T2 | 1.518143e+011.765) | 1.4205446+01 (0.915] 1.509114e+01(63.68m)
a|gorithm, measured in seconds (s) or minutes (m) Runninog 3.128310e+0]1(2.01s)) 2.868783e+01 El.OSS 3.076816e+0;(69.85m§
: ; ; ; ; 6 | 6.278644e+01(2.22s) | 6.022725e+01 (1.165) 6.337518e+0174.71m
e
times are _partlcular_ly relevant n th's. Case, SINCé W€ ate;——1as0e+01.645) | 1.1711856+02 (1225 1.2727276+0263.35m)
interested in analyzing the way in which each of the threes | 2423006e+022 525) | 2.419017e+02 (1.385] 2.5549846+0279.34m)
MOEAs behaves when increasing the number of objectives, DTLZ5
o ; ; ; 2 | 1.521078e+01(1.52s) | 1.5210856+070.73s) | 1.5210656+01 (20.81m)
and this includes measuring their computational cost. 3 | 5.9843506+01(1.58s) | 5.084280e+01 (0.85s) 5.0868656+0140.89m)
4 | 2.392736e+041.68s) | 2.3876496+02 (0.9%s) 2.392747e+0433.37m)
D. Discussion of Results 5 | 9.494039e+041.88s) | 9.452332e+02 (0.995) 9.579889e+0247.84m)
) 6 | 3.768958e+032.00s) | 3.746660e+03 (1.05s) 3.834024e+0353.24m)
; 7 | 1.494773e+041.43s) | 1.492053e+04 (1.09s) 1.529317e+0458.51m)
Table V pr(_)Vldes the average hypervolume and the av 8 | 5.983042e+042.21s) | 5.046643e+04 (1.185) 6.129900e+0473.26m)
rage runtime (in parentheses) of each compared MOEA for DTLZ6
each instance of the DTLZ test suite. The best results are | 1.201014e+021.56s) | 1.200361e+02 (0.63s] 1.2010156+0416.00m)
| - in this case is SMS-EMOA. since it was able th-*_|_L447895e+041 74s) | 1.448415¢+040.905) | 1447694€+04 (24.23m)
clear winner in | , : B 5 | 1.5502766+05 (1.025] 1.5822206+051.025) | 1.502011e+0542.63m)
outperform the other two MOEAS in 46.9% of the instances 6 | 1.697309e+06 (2.08s] 1.732222e+06(1.07s) | 1.7528236+0653.79m)
adopted. However, this comes at the expense of a comp taé ;-ggggggﬁgg (;-gs ;-gg;i;gﬁgﬂiégﬂ ;-igiéggﬁglgg.ggm)
tional cost which is considerably higher than the one resglir ' e+08 (2.255) 2. i qL.239) | 2. ©+0§68.94m)
by the two other compared MOEAs. On the other hand; 2 T 3915723e+022.34s) | 3.872996e+02 (1.285] 3.9157016+0229.69m)
MOEA/D presents the lowest running times, but was the win-3 | 8.029312e+032.23s) | 7.796863e+03 (1.40s] 7.975963e+0340.50m)
: o 4 | 1.647751e+042.28s) | 1.592504e+05 (1.40s)| 1.6220556+0553.12m)
ner in only 18.4% of the problems_. Our pro_pose(_tl MO.MB 5 | 3.3683436+042.645) | 3.1395356+061.525) | 3.0938056+06 (74.06m)
represents some sort of intermediate solution, since it wass 5.6830266+0(2.845) | 6.276078e+07(1.855) | 5.0372046+07 (86.32m)
able to outperform the other two approaches in 34.7% ¢f7 | 1197319e+092.07s) | 1.177091e+091.72s) | 1.107867e+09 (77.17m)
the instances, while requiring reasonably low running im 8 2.461092e+1(2.88s) | 2.314593e+1(0(1.91s) | 2.007093e+10 (102.93m

(considerably lower than those required by SMS-EMOA
and not much higher than those required by MOEA/D).

Remarkably, our proposed MOMBI outperformed the otheMOEA/D in 95.2% of the test instances considered, while
two compared MOEAs in all instances of DTLZ7. Figure 2requiring only slightly higher CPU times than this other
presents a graphical representation of the approximatbns MOEA. Also, MOMBI outperformed the other two compared
the Pareto front obtained by our proposed MOMBI in som&OEAs in all instances of WFGL1.

of the DTLZ test problems adopted.

In Tables VI and VII, we show the comparison of results VI. CONCLUSIONS ANDFUTURE WORK

for the WFG test suite. Here, again SMS-EMOA outper- In this paper, we have introduced a new multi-objective
formed the other two MOEAs in 71.4% of the problemsegvolutionary algorithm whose selection mechanism is based
but requiring a considerably higher CPU time. Our proposeoh theR2 indicator. It is worth emphasizing that the proposed
MOMBI ranks second, but requiring less than 3 seconds tapproach is entirely based on ti2 indicator, since it does
solve any of the test instances considered in this case. Rest incorporate Pareto dominance anywhere. Our preliminar
markably, in this case, our proposed MOMBI outperformeéxperimental results show that our proposed approachés abl



TABLE VI. COMPARISON OF RESULTS FOR THBVFG TEST TABLE VII. C OMPARISON OF RESULTS FOR THBVFG TEST
PROBLEMS PROBLEMS(CONTINUATION).

m_| MOMBI MOEA/D SMS-EMOA m MOMBI MOEA/D [ SMS-EMOA
WFGI WFG6

2 | 6.294468e+0qQ1.73s) | 5.836052e+00 (1.07s] 6.253419e+006.14m) 2 | 8.366185e+0Q1.75s) | 8.339773e+0(0(1.20s) | 8.335931e+00 (15.04m

3 | 5.494206e+011.82s) | 5.169631e+011.22s) | 5.069579e+01 (31.06m) 3 | 7.180386e+01(1.78s) | 7.090983e+01 (1.28s)| 7.396142e+0127.41m)

4 | 4.700020e+021.92s) | 4.565852e+021.29s) | 4.153136€+02 (38.56m)| | 4 | 6.905283e+01.87s) | 6.335617e+02 (1.27s)] 7.273866€+0426.21m)

5 | 4.992548e+032.11s) | 4.665130e+031.41s) | 4.247997e+03 (44.16m)| [ 5 | 7.992895e+032.04s) | 7.166289e+03 (1.31s)| 8.453112e+0324.98m)

6 | 6.546410e+042.23s) | 5.654459e+041.41s) | 5.448022e+04 (52.01m)| | 6 | 9.657006e+042.15s) | 8.711648e+04 (1.35s)| 1.114382e+0526.89m)

7 | 1.050149e+0§1.64s) | 8.222872e+05 (1.43s) 8.667918e+0535.36m) 7 | 1.069256e+06 (1.61s) 1.094029e+061.37s) | 1.484532e+0632.95m)

8 | 2.027665e+072.37s) | 1.353975e+07 (1.50s| 1.509819e+07(43.54m) 8 | 1.720793e+07(2.38s) | 1.568331e+07 (1.42s| 2.804717e+0¢36.11m)
WFG2 WFG7

2 [ 1.096112e+01(1.64s) | 1.045158e+01 (0.98s] 1.099152e+017.65m) 2 | 8.676485e+0(1.64s) | 8.665153e+001.07s) | 8.659994e+00 (25.32m

3 | 9.377662e+011.70s) | 8.526391e+01 (1.16s| 9.242151e+01(13.52m) 3 | 7.495940e+01(1.72s) | 7.376198e+01 (1.22s| 7.689421e+0133.91m)

4 | 9.023867e+041.81s) | 7.729761e+02 (1.17s)| ©.664688e+016.27/m) 4 | 7.207621e+021.84s) | 6.801568e+02 (1.29s)] 7.6260036+0435.63m)

5 | 9.027867e+031.99s) | 8.599778e+03 (1.265) 9.685033e+0320.05m) 5 | 8.374343e+032.04s) | 7.683882e+03 (1.425)| 8.907564e+0330.54m)

6 | 1.292477e+052.11s) | 1.104339e+05 (1.31s) 1.293052e+0§15.93m) 6 | 1.013138e+052.17s) | 9.488079e+04 (1.47s) 1.156273e+0%34.36m)

7 | 1.798632e+06(1.52s) | 1.550014e+06 (1.31s) 1.826704e+0§16.16m) 7 | 1.126400e+06(1.66s) | 1.011440e+06 (1.52s) 1.653699e+0G43.30m)

8 | 3.115276e+07(2.32s) | 2.824171e+07 (1.41s| 3.206849e+0722.95m) 8 | 1.844738e+07(2.42s) | 1.533142e+07 (1.64s)| 2.943970e+0748.29m)
WFG3 WFG8

2 [ 1.090903e+011.65s) | 1.084768e+01 (1.06s] 1.088469e+01(13.50m) 2 | 8.081846e+0Q1.79s) | 8.070813e+0((1.33s) | 8.058860e+00 (7.15m)

3 | 7.533956e+011.69s) | 7.343757e+01 (1.13s)| 7.521931e+01(28.47m) 3 | 6.842167e+01(1.83s) | 6.806646e+01 (1.44s) 7.021008e+0119.32m)

4 | 6.521278e+041.78s) | 5.922803e+02 (1.20s] 6.725993e+0437.40m) 4 | 5.851432e+021.93s) | 5.489519e+02 (1.47s)| 6.8621656+0427.23m)

5 | 6.536085e+031.96s) | 5.8688546+03 (1.255) 7.388436€+0352.33m) 5 | 5.010892e+032.10s) | 4.748502e+03 (1.49s) 7.782572e+0338.25m)

6 | 8.169419e+042.07s) | 7.015066e+04 (1.24s) 9.622059e+0456.04m) 6 | 5.680393e+042.19s) | 4.633819e+04 (1.53s) 9.848530e+0456.00m)

7 | 1.139849e+0§1.49s) | 9.341369e+05 (1.27s| 1.106727e+0685.61m) 7 | 7.871659e+051.66s) | 5.748249e+05 (1.53s)| 1.318850e+0§57.39m)

8 | 1.919048e+07(2.24s) | 1.571596e+07 (1.31s| 2.346759e+0{115.11m) 8 | 1.299050e+07(2.38s) | 9.495123e+06 (1.51s| 2.461203e+0¢77.00m)
WFG4 WFG9

2 | 8.663414e+0Q1.69s) | 8.638790e+001.13s) | 8.622096e+00 (16.62m) 2 | 8.234320e+00(1.99s) | 8.065763e+00 (1.64s] 8.252136e+0@23.99m)

3 | 7.428724e+01(1.76s) | 7.367783e+01 (1.265)] 7.655320e+0132.23m) 3 | 6.712947e+01 (1.99s) 6.785035e+01(1.74s) | 7.108843e+0139.76m)

4 | 6.809212e+021.88s) | 6.683063e+02 (1.30s] 7.565462e+0440.65m) 4 | 5.889761e+022.08s) | 5.654998e+02 (1.765)] 6.930176€+0240.48m)

5 | 7.963947e+032.06s) | 7.477385e+03 (1.375) 8.613500e+0340.79m) 5 | 5.852350e+032.25s) | 5.585894e+03 (1.82s) 7.684327e+0341.68m)

6 | 9.172554e+042.18s) | 8.358673e+04 (1.42s) 1.116341e+0%52.17m) 6 | 6.393249e+042.48s) | 5.933684e+04 (1.85s) 1.017342e+0%48.38m)

7 | 1.114922e+0§1.68s) | 9.895873e+05 (1.41s| 1.551352e+0§47.11m) 7 | 6.670261e+051.84s) | 6.585370e+05 (1.84s| 1.519268e+0§43.50m)

8 | 1.840730e+07(2.36s) | 1.563104e+07 (1.51s| 2.832567e+0(63.59m) 8 | 1.078788e+07(2.61s) | 1.002607e+07 (1.93s| 2.583169e+0763.17m)
WFG5

2 | 8.208059e+0Q1.65s) | 8.135799e+00 (1.05s] 8.165422e+0021.52m)

3 | 7.111670e+0X(1.71s) | 6.980779e+01 (1.155) 7.337062e+0129.56m)

4 | 6.676005e+041.92s) | 6.374582e+02 (1.20s] 7.323117e+0430.40m)

5 | 7.690169e+032.00s) | 7.402440e+03 (1.34s) 8.421103e+0329.38m)

6 | 9.592303e+042.11s) | 9.477511e+04 (1.39s| 1.097473e+0%38.55m)

7 | 1.061202e+06 (1.54s) 1.085262e+061.44s) | 1.576659e+0§40.72m)

8 | 1.742656e+07(2.32s) | 1.720052e+07 (1.50s| 2.749614e+0749.43m)

to outperform MOEA/D in most cases and that it requires a e -
considerably lower computational cost than SMS-EMOA in ' :

all cases. Also, we hypothesize that our proposed MOMBI
outperforms SMS-EMOA and MOEA/D in problems in
which the Pareto front is mixed or disconnected.

more work is required. We are interested, for example, in
studying the sensitivity of our proposed approach to the
reference set and in incorporating a mechanism to handle -~
constraints. It would also be interesting to combine this
indicator with another one (e.g4,), with the aim of
combining their advantages and compensate for their dessib
limitations. Since in many-objective optimization theger
is not only convergence and distribution, but also pertiyén
[32], we are intent on integrating preference informatioto i

Evidently, our results are only preliminary and much - S I

(© (d)

Fig. 2. Plots of the approximations obtained by our propdd€MBI for
m = 3in: (@) DTLZ2, (b) DTLZ5, (c) DTLZ6 and (d) DTLZ7. These plots

MOMBI. correspond to the mean hypervolume value from 30 indepéndes.
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