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Abstract—The incorporation of performance indicators as
the selection mechanism of a multi-objective evolutionaryalgo-
rithm (MOEA) is a topic that has attracted increasing interest
in the last few years. This has been mainly motivated by
the fact that Pareto-based selection schemes do not perform
properly when solving problems with four or more objectives.
The indicator that has been most commonly used for being
incorporated in the selection mechanism of a MOEA has been
the hypervolume. Here, however, we explore the use of the
R2 indicator, which presents some advantages with respect to
the hypervolume, the main one being its low computational
cost. In this paper, we propose a new MOEA called Many-
Objective Metaheuristic Based on theR2 Indicator (MOMBI),
which ranks individuals using a utility function. The proposed
approach is compared with respect to MOEA/D (based on
scalarization) and SMS-EMOA (based on hypervolume) using
several benchmark problems. Our preliminary experimental
results indicate that MOMBI obtains results of similar qual ity
to those produced by SMS-EMOA, but at a much lower compu-
tational cost. Additionally, MOMBI outperforms MOEA/D in
most of the test instances adopted, particularly when dealing
with high-dimensional problems having complicated Pareto
fronts. Thus, we believe that our proposed approach is a viable
alternative for solving many-objective optimization problems.

I. I NTRODUCTION

A wide variety of real-world problems have several (often
conflicting) objectives that need to be optimized at the same
time. They are called multiobjective optimization problems
(MOPs) and their solution involves a different notion of
optimality than the one used for global (single-objective)
optimization. When solving a MOP, we normally aim to
find the best possible trade-off among all the objectives.
The notion of optimality most commonly used to deal with
MOPs is Pareto optimality, and its use produces the so-called
Pareto optimal set, which contains the decision variables that
correspond to all the solutions that represent the best trade-
offs among all the objectives (normally, there will be more
than one). The image of the Pareto optimal set is called the
Pareto front.

The use of evolutionary algorithms (as well as other
bio-inspired metaheuristics) for solving MOPs has become
increasingly popular in the last 15 years, giving rise to a wide
variety of multi-objective evolutionary algorithms (MOEAs)
[1]. The two key algorithmic components of a MOEA are: (1)
a selection mechanism that preserves the best possible trade-

offs among the objectives (i.e., the so-called nondominated
solutions) and (2) a density estimator that allows us to spread
solutions along the Pareto front in a uniform way, so that they
are as diverse as possible.

For many years, MOEAs have adopted selection mecha-
nisms based on Pareto optimality. These mechanisms pre-
serve solutions that are Pareto optimal with respect to a setof
reference (normally the current population), and assign a rank
to each of these solutions, such that all the nondominated
solutions are considered to be equally good. Pareto-based
MOEAs have been very popular since the 1990s, but recent
studies have shown that they do not perform properly when
dealing with problems having four or more objectives (the so-
called many-objective optimization problems) [2], [3]. This
has motivated the development of new selection schemes
from which the use of quality assessment indicators is proba-
bly the most popular [4]. The idea in this case, is to optimize
a quality assessment indicator that provides a good ordering
among sets that represent Pareto approximations. From the
many indicators currently available, the Hypervolume [5]1

is, with no doubt, the most popular nowadays. The main
advantage of the hypervolume indicator is that it has been
proved that its maximization is equivalent to finding the
Pareto optimal set [7], and this has also been empirically
corroborated [8]. In fact, maximizing the hypervolume also
leads to sets of solutions whose spread along the Pareto
front is maximized (although this does not necessarily mean
that such solutions will be uniformly distributed along the
Pareto front). Nevertheless, the high computational cost of
the hypervolume (its computational cost grows exponentially
on the number of objectives [9]) normally makes a selection
mechanism based on such indicator prohibitive for problems
having more than 5 objectives [10]. The nice mathematical
properties of the hypervolume indicator has triggered an
important amount of research, including work that focuses
on computing it in a more efficient way [11], [12]. It is in-
deed possible to approximate the hypervolume contribution,
significantly reducing its computational cost [11], but few
studies of the performance of such approaches with respect
to those using exact hypervolume calculations are currently
available.

1The Hypervolume (also known as theS metric or the Lebesgue
Measure) of a set of solutions measures the size of the portion of objective
space that is dominated by those solutions collectively [6].



Here, we explore the use of another indicator that is
known to have nice mathematical properties [13]:R2. In
this paper, we propose a new MOEA, called Many-Objective
Metaheuristic Based on theR2 Indicator (MOMBI) and ana-
lyze its performance with respect to that of two well-known
approaches: MOEA/D [14], which is based on scalarization
and SMS-EMOA [4], which is based on the hypervolume
indicator (we use the approach to approximate the hypervo-
lume contribution proposed in [11]).

The remainder of this paper is organized as follows.
Section II provides some basic concepts related to multi-
objective optimization. The previous related work is briefly
discussed in Section III. Our proposed approach is described
in detail (including some basic concepts on theR2 indicator)
in Section IV. The results obtained by our proposed approach
are compared with respect to those generated by two state-
of-the-art MOEAs, using standard test problems and per-
formance indicators taken from the specialized literaturein
Section V. Finally, our conclusions and some possible paths
for future research are presented in Section VI.

II. BASIC CONCEPTS

We are interested in solving problems of the type2:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fm(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . , p (2)

hi(~x) = 0 i = 1, 2, . . . , q (3)

where ~x = [x1, x2, . . . , xn]
T is the vector of decision

variables,fi : IRn → IR, i = 1, ..., m are the objective
functions andgi, hj : IRn → IR, i = 1, ..., p, j = 1, ..., q are
the constraint functions of the problem.

To describe the concept of optimality in which we are
interested, we will introduce next a few definitions.

Definition 1. Given two vectors~x, ~y ∈ IRm, we say that
~x ≤ ~y if xi ≤ yi for i = 1, ..., m, and that~x dominates~y
(denoted by~x ≺ ~y) if ~x ≤ ~y and~x 6= ~y.

Definition 2. We say that a vector of decision variables
~x ∈ X ⊂ IRn is nondominated with respect toX , if there
does not exist another~x′ ∈ X such that~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables
~x ∗ ∈ F ⊂ IRn (F is the feasible region) isPareto-optimal
if it is nondominated with respect toF .

Definition 4. The Pareto Optimal SetP∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

2Without loss of generality, we will assume only minimization problems.

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRm|~x ∈ P∗}

We thus wish to determine the Pareto optimal set from the set
F of all the decision variable vectors that satisfy (2) and (3).
Note however that in practice, not all the Pareto optimal set
is normally desirable (e.g., it may not be desirable to have
different solutions that map to the same values in objective
function space) or achievable.

III. R ELATED WORK

In this section we review the previous related work on
the use of indicators in the selection mechanism of a MOEA.

As indicated before, the performance indicator that has
been most commonly used for the selection mechanism of
a MOEA is the hypervolume [6]. This indicator has several
advantages, from which the main one is that it is the only
unary indicator which is known to be strictly monotonic [15].
However, computing the hypervolume is exponential in the
number of objectives [16] and is sensitive to the choice of
the reference point [4].

Currently, there are several MOEAs that incorporate
the hypervolume in their selection mechanism (e.g., the S
Metric Selection-Evolutionary Multi-Objective Optimization
Algorithm (SMS-EMOA) [4] and the multi-objective co-
variance matrix adaptation evolution strategy (MO-CMA-
ES) [17]. However, the high computational overload of
these approaches motivated the development of alternative
strategies. One of them is to estimate (by means of Monte
Carlo simulations) the ranking of a set of individuals that
would be induced by the hypervolume indicator, without
having to compute the exact indicator values. This is the
approach adopted by the Hypervolume Estimation algorithm
for multi-objective optimization (HypE) [11].

More recently, a new performance indicator called∆p

was proposed in [18]. This indicator can be seen as an
“averaged Hausdorff distance” between the outcome set and
the Pareto front.∆p is composed of slight modifications
of two well-known performance indicators: generational
distance (GD, see [19]) and inverted generational distance
(IGD, see [20]).∆p is a pseudo-metric which simultaneously
evaluates proximity to the Pareto front and spread of so-
lutions along it. Although∆p is not Pareto compliant, its
computation has a much lower computational cost than that
of the hypervolume, and it can also handle outliers, which
makes it attractive for assessing performance of MOEAs.
It is worth noting, however, that for incorporating∆p into
the selection mechanism of a MOEA, it is necessary to
have an approximation of the true Pareto front at all times.
This has motivated the development of techniques that can
produce such an approximation in an efficient and effective
way. For example, in [21], the authors linearize the non-
dominated (piecewise linear) front of the current population,
and include this mechanism in the∆p-EMOA, which is
used for solving bi-objective optimization problems. This
algorithm is inspired by SMS-EMOA, and is assisted by
a secondary population.∆p-EMOA performs better than
NSGA-II [22], while consuming a lower number of function



evaluations. An extension of this approach to three-objective
problems is reported in [23]. In this case, the algorithm
requires some previous mathematical steps which include
reducing the dimensionality of the non-dominated solutions
and calculating their convex hull. This version of∆p-EMOA
achieves a better distribution of solutions than MOEA/D [14],
SMS-EMOA and NSGA-II. However, this MOEA requires
additional parameters and consumes a high computational
time when dealing with many-objective optimization pro-
blems.

Another possible approach to incorporate∆p into a
MOEA is to use an echelon form of the non-dominated indi-
viduals for the Pareto front. This is the mechanism adopted
in ∆p-DDE [10], in which ∆p is used as the selection
mechanism of a diferential evolution algorithm.∆p-DDE
was able to outperform NSGA-II and provided competitive
results with respect to SMS-EMOA, but at a considerably
lower computational cost for many-objective optimization
problems. The main limitation of this approach is that it
produces a poor spread of solutions in high-dimensional
search spaces. Also, it has some difficulties for dealing with
discontinuous Pareto fronts.

Recently, some researchers have recommended to adopt
theR2 indicator proposed in [24] to compare approximation
sets on the basis of a set of utility functions [13]. A utility
function is a model of the decision maker’s preference that
maps each point in the objective space into a utility value. It
is worth noticing that theR2 indicator is weakly monotonic,
and it is correlated with the hypervolume but has a lower
computational overhead than such indicator [13]. Because of
this, theR2 indicator is widely recommended for dealing
with many-objective optimization problems and over large
non-dominated sets [25]. It is worth emphasizing, however,
that the main caveat when trying to use this performance
indicator is that each utility function adopted, must be
properly scaled.

TheR2 indicator has been scarcely studied in the context
of MOEAs. Here, we explore its potential use as a selection
mechanism within a MOEA, emphasizing its possible use-
fulness in many-objective optimization problems.

IV. OUR PROPOSEDAPPROACH

Since the proposed approach is based on theR2 indicator,
we have to provide more details about this indicator before
presenting our actual algorithm.

According to [13], the unary version of theR2 indicator
for a constant reference set can be expressed as follows:

R2(A, U) = −
1

|U |

∑

u∈U

max
~a∈A
{u(~a)}, (4)

whereA is the Pareto set approximation andU is a set of
utility functions.

With respect to the choice of the utility functionsu :
R

m → R, there are several posibilities: weighted linear,
weighted Tchebycheff or augmented Tchebycheff functions.
We focus on the second one, but using a normalization,

which allows us to deal with non-commensurable objective
functions (i.e., measured in different units):

u~w(~a) = − max
i∈{1,...,m}

wi

∣

∣

∣

∣

ai − z∗i
znad

i − z∗i

∣

∣

∣

∣

, (5)

where ~w = {w1, ..., wm} ∈ W is a given weight vector,
~z ∗ and~z nad are the ideal3 and nadir4 vectors, respectively.
Replacing equation (5) in equation (4) and applying the dual
property5, the R2 indicator is defined as:

R2(A, W ) =
1

|W |

∑

~w∈W

min
~a∈A

{

max
i∈{1,...,m}

wi

∣

∣

∣

∣

ai − z∗i
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i − z∗i

∣

∣

∣

∣

}

.

(6)

Since we intend to useR2 in the selection mechanism
of a MOEA, we need to design a scheme for that purpose.
Our proposal here is to produce a nondominated sorting
scheme based on the utility functions adopted. The core idea
is to group solutions that optimize the set of utility functions
chosen, and place such solutions on top, such that they get
the first rank (the best). Such points will then be removed
and a second rank will be identified in the same manner. The
process will continue until all the solutions had been ranked.
Clearly, this is a nondominated sorting scheme [26], except
for the fact that Pareto dominance is not used in this case.

The formal definition of a rank, derived from equa-
tion (6), is presented in equation (7):

rankk =
⋃

~w∈W

min
~a∈A\Bk

{

max
i∈{1,...,m}

wi

∣

∣

∣

∣

ai − z∗i
znad

i − z∗i

∣

∣

∣

∣

}

, (7)

whereBk = {
⋃

x rankx|k ≥ 2, 1 ≤ x < k} is the union of
solutions with the lowest ranks.

When two individuals contribute with the same Tcheby-
cheff value for a weight vector, then we propose to choose
the one with the lower Manhattan norm, defined by:

||~a||1 =
m

∑

i=1

|ai| . (8)

In order to illustrate our proposed ranking scheme, we
present here a hypothetical example of a bi-objective pro-
blem. We assume an approximation of the Pareto opti-
mal set, which consists of twelve solutions, as shown in
Figure 1. The dashed lines represent the weight vectors
{(10−4, 1), (1/3, 2/3), (2/3, 1/3), (1, 10−4)}, the reference
points are set to~z ∗ = (1.0, 1.2) and ~z nad = (8.4, 7.8). In
Table I, the objective functions and the optimum Tchebycheff
value of each solution are shown. The first rank is formed
with the solutions that are closest to the weights, according to
the Tchebycheff metric, that is points{a, b, c, d}. The second
rank consists of the the remainder solutions, which are now

3A lower bound of all the objective functions.
4An upper bound of each objective in the entire Pareto optimalset.
5min~z = −max(−~z)
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Fig. 1. Illustration of the ranking procedure based on theR2 indicator that
we propose here.

TABLE I. A HYPOTHETICAL EXAMPLE FORMOMBI.

Solution f1 f2 u∗(~a)
a 1.0 7.5 0.00009
b 3.0 4.0 0.18018
c 4.0 2.8 0.16161
d 8.4 1.2 0.00010
e 1.1 5.5 0.01351
f 2.0 5.0 0.13513
g 5.5 2.0 0.12121
h 6.8 2.0 0.12121
i 1.2 7.8 0.02702
j 2.8 5.1 0.19696
k 3.3 3.4 0.20720
l 7.0 2.2 0.15151

closest to the weights, i.e., points{e, f, g}. The third rank
consists of points{h, i, j, k}. Finally, the farthest solutionl
belongs to the last rank. It is worth noticing that, in this case,
solutionsg andh contribute equally to the weight(10−4, 1).
Howeverg has a lower Manhattan norm thanh (7.5 vs 8.8)
and is, therefore, considered to be better thanh.

A. Our Proposed Ranking Algorithm

In Algorithm 1, we present a naive approach to rank
a population, based on equation (7). We assume that each
individual p has the following structure:

p.rank Hierarchy of the individual.
p.u∗ The best utility value obtained.
p.α The current utility value for a weight vector~w.
p.~f Vector of objective functions.

Lines 1 to 4 initialize the variablesrank andu∗ for each
individual to the worst values. In lines 5 to 11, for every pair
of weight vector~w and objective function~f of an individual
p, the utility value is computed and stored in recordp.α. If
the obtained value of an individual outperforms its previous
one, it is updated in fieldp.u∗. In line 12, the population
P is sorted with respect to the fieldp.α in increasing order.
Lines 13 to 19 perform the ranking assignment of the sorted
population.

As mentioned in the previous section, in line 12, when
two individuals have the same utility function, we prefer the

individual with the lowest Manhattan norm. This procedure
does not guarantee having consecutive ranks. However, this
is irrelevant for comparison purposes.

Algorithm 1 R2 Ranking Algorithm
Require: PopulationP , set of weight vectorsW , reference

points~z ∗ and~z nad

Ensure: Ranking of the population
1: for all p ∈ P do
2: p.rank ←∞
3: p.u∗ ←∞
4: end for
5: for all ~w ∈W do
6: for all p ∈ P do
7: p.α← u~w(p.~f , ~z ∗, ~z nad)

8: if p.α < p.u∗ then
9: p.u∗ ← p.α

10: end if
11: end for
12: Sort the pupulationP with respect to the fieldα in

increasing order
13: rank ← 1
14: for all p ∈ P do
15: if rank < p.rank then
16: p.rank ← rank
17: end if
18: rank ← rank + 1
19: end for
20: end for

In Algorithm 2 we introduce our proposed approach,
called MOMBI. This approach is based on a Genetic Al-
gorithm, and it first initializes the population by randomly
selectingN solutions fromF (using a uniform distribution).
In lines 3 to 5, we obtain the objective function values,
the reference points, and the ranking of the population. At
each generation, the algorithm performs a binary tournament
selection, using the rank of each solution (line 7). In line
8, we use mutation and crossover operators to produce an
offspring ofN individuals. The reference points are updated
with the minimum and maximum objective function values
in line 10. The parent and offspring population are ranked
in line 11. In line 12, the reduction of the population is
performed by selecting the bestN candidates according to
their rank, the best utility value obtained, and the Manhattan
norm.

It is worth indicating that this approach produces a
finer-grained ranking (with fewer ties) than the nondom-
inated sorting procedure adopted by NSGA-II. Re-taking
our previous example, if we wanted to select a half of the
solutions, using MOMBI, we would keep the individuals
{a, b, c, d, e, g}, sincee, f andg are in the same rank. In this
case, we choose the solutions with the lowest Tchebycheff
values. According to Pareto dominance, the nondominated
solutions are{a, b, c, d, e, f, g, k}. Although f and k are
nondominated, in this caseR2 removes them with the aim
of preserving diversity.

The set of weightsW is controlled by a parameterH .
Each weight vector takes a value from:



Algorithm 2 Main Loop of MOMBI
Require: MOP, set of weight vectorsW
Ensure: Approximation setA to the Pareto front

1: i← 0
2: Initialize populationPi

3: Evaluate populationPi

4: Calculate reference points{~z ∗, ~z nad}
5: ExecuteR2 ranking algorithm(Pi, W, ~z ∗, ~z nad)
6: repeat
7: Perform tournament selection
8: Generate offspringP ′

i using variation operators
9: Evaluate populationP ′

i

10: Update reference points{ ~z ∗, ~z nad}
11: ExecuteR2 ranking algorithm(Pi

⋃

P ′
i , W, ~z ∗, ~z nad)

12: Reduce populationPi+1 ← {Pi

⋃

P ′
i}

13: i←i + 1
14: until termination condition fullfilled

{

ε,
1

H
,

2

H
, ...,

H

H

}

, (9)

where ε is a value close to zero (10−4 is recommended),
in order to prevent cancellation in the calculations. The
total amount of vectors is represented by the combinatorial
numberCH+m−1

m−1 .

V. EXPERIMENTAL RESULTS

We compare the performance of our proposed MOMBI6

with respect to that of two state-of-the-art MOEAs. The
first is the multi-objective evolutionary algorithm based on
decomposition (MOEA/D)7[14], which transforms an op-
timization problem into a number of scalar optimization
subproblems that are simultaneously optimized. The second
approach is the S Metric Selection-Evolutionary Multiob-
jective Optimization Algorithm (SMS-EMOA) [4], which is
a popular hypervolume-based MOEA. SMS-EMOA adopts
non-dominated sorting as its primary selection criterion and
the hypervolume contribution as its secondary criterion.
Since SMS-EMOA requires a considerably large computa-
tional time in problems of high dimensionality (i.e., MOPs
having 4 or more objectives) [10], we use here a version that
incorporates the algorithm proposed in [11] for estimating
the hypervolume using Monte Carlo sampling, instead of
the exact hypervolume calculations adopted in the original
algorithm [4].

We decided not to compare results with respect to NSGA-
II [22], because several studies currently available indicate
that MOEA/D is able to outperform it ([27], [28]), and our
first experiments corroborated such results.

All the experiments reported here were conducted on
identical PCs having Intel(R) Core(TM) i7 processors run-
ning at 2.67GHz and with 3.8 GBytes in RAM. The three
MOEAs adopted in our comparative study were implemented
in C/C++ under Linux, using real-numbers encoding.

6The source code and the complete study of MOMBI is available at:
http://computacion.cs.cinvestav.mx/~rhernandez/mombi/

7We used the implementation from 2007 for continuous search spaces:
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm

TABLE II. PROPERTIES OF THE TEST PROBLEMS.

Problem Separability Modality Geometry
DTLZ1 separable multi linear
DTLZ2 separable uni concave
DTLZ3 separable multi concave
DTLZ4 separable uni concave
DTLZ5 unknown uni arc, degenerated
DTLZ6 unknown uni arc, degenerated

DTLZ7
not applicable f1:m−1 uni disconnected,

separable fm multi mixed
WFG1 separable uni convex, mixed

WFG2 non-separable
f1:m−1 uni convex,
fm multi disconnected

WFG3 non-separable uni linear, degenerate
WFG4 separable multi concave
WFG5 separable deceptive concave
WFG6 non-separable uni concave
WFG7 separable uni concave
WFG8 non-separable uni concave
WFG9 non-separable multi, deceptive concave

A. Test problems

For comparison purposes, we adopted the Deb-Thiele-
Laumanns-Zitzler [29] and the Walking-Fish-Group [30] test
suites. All the minimization problems adopted are scalable
with respect to the number of objectives and have a variety
of geometries for the Pareto front, such as linear, mixed
(concave/convex), degenerate and disconnected. They also
include some aspects such as separability and multifrontality
which make them more difficult to solve. In Table II we
summarize the main features of these test problems [30].

B. Parameters Settings

We performed 30 independent runs of each of three
MOEAs compared, in each of the test instances adopted.
In DTLZ, the total number of variables is given byn =
m + k − 1, wherem is the number of objectives.k was set
to 5 for DTLZ1, 10 for DTLZ2-6 and 20 for DTLZ7. The
number of decision variables in WFG was set to 24, and the
position-related parameter was set tom− 1.

The variation operators adopted in our implementations
were: simulated binary crossover (SBX) and polynomial-
based mutation [31]. The crossover rate was set to 0.9, while
the mutation rate was set to1/n. The distribution indexes
for both SBX and the polynomial-based mutation were set
to 20. The total number of function evaluations was set in
such a way that it did not exceed 50,000. The population
size and the maximum number of generations adopted in our
experiments are shown in Table III, and varied according to
the value ofm (i.e., number of objectives) adopted.

In MOEA/D and MOMBI, the number of weight vectors
is the same as the population size. Following the proposal
described in [14], MOEA/D used the Tchebycheff approach
with a neighborhood size of 20. The number of samples in
SMS-EMOA was set to105.

C. Performance Assessment

For comparing results, we selected the hypervolume indi-
cator, which is equal to the sum of all the rectangular areas,
bounded by some reference point. Since this reference point
is important, we provide the values that we adopted for each
test problem in Table IV. Mathematically, the hypervolume



TABLE III. PARAMETERS.

m H Population Size Generations Function Evaluations
2 119

120 416 499203 14
4 7
5 5

126 396 49896
6 4
7

3
84 595 49980

8 120 416 49920

TABLE IV. R EFERENCE POINTS FOR THE TEST INSTANCES.

Test Problem Reference Point
DTLZ1 (1, 1, 1, ...)

DTLZ2, DTLZ4 (2, 2, 2, ...)
DTLZ3 (7, 7, 7, ...)
DTLZ5 (4, 4, 4, ...)
DTLZ6 (11, 11, 11, ...)
DTLZ7 (21, 21, 21, ...)
WFG (3, 5, 7, ..., 2m + 1)

can be described using equation (10) (it is worth noting that
higher hypervolume values are preferred):

HV (A) =
{

⋃

volume(v)|v ∈ A
}

. (10)

Additionally, we also considered the running time of each
algorithm, measured in seconds (s) or minutes (m). Running
times are particularly relevant in this case, since we are
interested in analyzing the way in which each of the three
MOEAs behaves when increasing the number of objectives,
and this includes measuring their computational cost.

D. Discussion of Results

Table V provides the average hypervolume and the ave-
rage runtime (in parentheses) of each compared MOEA for
each instance of the DTLZ test suite. The best results are
presented inboldfaceand the second best ones initalics. The
clear winner in this case is SMS-EMOA, since it was able to
outperform the other two MOEAs in 46.9% of the instances
adopted. However, this comes at the expense of a computa-
tional cost which is considerably higher than the one required
by the two other compared MOEAs. On the other hand,
MOEA/D presents the lowest running times, but was the win-
ner in only 18.4% of the problems. Our proposed MOMBI
represents some sort of intermediate solution, since it was
able to outperform the other two approaches in 34.7% of
the instances, while requiring reasonably low running times
(considerably lower than those required by SMS-EMOA
and not much higher than those required by MOEA/D).
Remarkably, our proposed MOMBI outperformed the other
two compared MOEAs in all instances of DTLZ7. Figure 2
presents a graphical representation of the approximationsof
the Pareto front obtained by our proposed MOMBI in some
of the DTLZ test problems adopted.

In Tables VI and VII, we show the comparison of results
for the WFG test suite. Here, again SMS-EMOA outper-
formed the other two MOEAs in 71.4% of the problems,
but requiring a considerably higher CPU time. Our proposed
MOMBI ranks second, but requiring less than 3 seconds to
solve any of the test instances considered in this case. Re-
markably, in this case, our proposed MOMBI outperformed

TABLE V. COMPARISON OF RESULTS FOR THEDTLZ TEST

PROBLEMS. AVERAGE HYPERVOLUME AND AVERAGE RUNTIME(IN
PARENTHESES).

m MOMBI MOEA/D SMS-EMOA
DTLZ1

2 8.737838e-01(1.50s) 8.737470e-01(0.60s) 8.735790e-01 (7.42m)
3 9.693597e-01(1.55s) 9.689446e-01 (0.69s) 9.738787e-01(7.38m)
4 9.854892e-01 (1.64s) 9.884462e-01(0.78s) 9.924153e-01(5.02m)
5 9.919373e-01(1.83s) 9.932330e-01(0.92s) 9.878291e-01 (3.83m)
6 9.944634e-01(1.95s) 9.955037e-01(0.97s) 9.656273e-01 (4.73m)
7 9.752993e-01(1.36s) 9.865474e-01(1.03s) 9.533103e-01 (6.20m)
8 9.845829e-01(2.13s) 9.805640e-01(1.11s) 9.354406e-01 (6.52m)

DTLZ2
2 3.210785e+00(1.52s) 3.210866e+00(0.72s) 3.210667e+00 (20.21m)
3 7.388812e+00(1.57s) 7.383274e+00 (0.85s) 7.427998e+00(51.74m)
4 1.542186e+01 (1.69s) 1.542219e+01(0.90s) 1.558163e+01(59.29m)
5 3.153492e+01(1.89s) 3.153351e+01 (1.03s) 3.168830e+01(74.86m)
6 6.299770e+01(2.01s) 6.287641e+01 (1.15s) 6.375897e+01(78.05m)
7 1.226035e+02(1.44s) 1.219099e+02 (1.15s) 1.277801e+02(58.98m)
8 2.453361e+02(2.21s) 2.438129e+02 (1.23s) 2.558339e+02(93.74m)

DTLZ3
2 4.820292e+01(1.54s) 4.820122e+01(0.67s) 4.819756e+01 (4.32m)
3 3.423640e+02(1.58s) 3.423744e+02(0.83s) 3.391415e+02 (2.99m)
4 2.400275e+03(1.68s) 2.400109e+03(0.91s) 1.524083e+03 (3.06m)
5 1.680506e+04(1.89s) 1.680405e+04(1.00s) 2.303193e+03 (3.27m)
6 1.175943e+05(2.01s) 1.176068e+05(1.08s) 4.276067e+03 (4.24m)
7 8.228736e+05(1.44s) 8.224488e+05(1.10s) 4.508892e+04 (4.91m)
8 5.752984e+06(2.21s) 5.756130e+06(1.21s) 9.710261e+04 (6.15m)

DTLZ4
2 3.089723e+00(1.54s) 2.565073e+00 (0.66s) 3.008898e+00(17.17m)
3 7.292802e+00(1.61s) 6.479912e+00 (0.83s) 7.126184e+00(57.30m)
4 1.518143e+01(1.76s) 1.420544e+01 (0.91s) 1.509114e+01(63.68m)
5 3.128310e+01(2.01s) 2.868783e+01 (1.03s) 3.076816e+01(69.85m)
6 6.278644e+01(2.22s) 6.022725e+01 (1.16s) 6.337518e+01(74.71m)
7 1.221849e+02(1.64s) 1.171185e+02 (1.22s) 1.272727e+02(63.35m)
8 2.443096e+02(2.52s) 2.419017e+02 (1.38s) 2.554984e+02(79.34m)

DTLZ5
2 1.521078e+01(1.52s) 1.521085e+01(0.73s) 1.521065e+01 (20.81m)
3 5.984359e+01(1.58s) 5.984289e+01 (0.85s) 5.986865e+01(40.89m)
4 2.392736e+02(1.68s) 2.387649e+02 (0.92s) 2.392747e+02(33.37m)
5 9.494039e+02(1.88s) 9.452332e+02 (0.99s) 9.579889e+02(47.84m)
6 3.768958e+03(2.00s) 3.746660e+03 (1.05s) 3.834024e+03(53.24m)
7 1.494773e+04(1.43s) 1.492053e+04 (1.09s) 1.529317e+04(58.51m)
8 5.983042e+04(2.21s) 5.946643e+04 (1.18s) 6.129900e+04(73.26m)

DTLZ6
2 1.201014e+02(1.56s) 1.200361e+02 (0.63s) 1.201015e+02(16.00m)
3 1.317979e+03(1.61s) 1.316642e+03 (0.77s) 1.318087e+03(25.12m)
4 1.447895e+04(1.74s) 1.448415e+04(0.90s) 1.447694e+04 (24.23m)
5 1.559276e+05 (1.92s) 1.582229e+05(1.02s) 1.592911e+05(42.63m)
6 1.697309e+06 (2.08s) 1.732222e+06(1.07s) 1.752823e+06(53.79m)
7 1.869272e+07 (1.47s) 1.907810e+07(1.10s) 1.932404e+07(48.30m)
8 2.037302e+08 (2.25s) 2.099493e+08(1.23s) 2.121759e+08(68.94m)

DTLZ7
2 3.915723e+02(2.34s) 3.872996e+02 (1.28s) 3.915701e+02(29.69m)
3 8.029312e+03(2.23s) 7.796863e+03 (1.40s) 7.975963e+03(40.50m)
4 1.647751e+05(2.28s) 1.592594e+05 (1.40s) 1.622055e+05(53.12m)
5 3.368343e+06(2.64s) 3.139535e+06(1.52s) 3.093805e+06 (74.06m)
6 6.683026e+07(2.84s) 6.276078e+07(1.85s) 5.937294e+07 (86.32m)
7 1.197319e+09(2.07s) 1.177091e+09(1.72s) 1.107867e+09 (77.17m)
8 2.461092e+10(2.88s) 2.314593e+10(1.91s) 2.007093e+10 (102.93m)

MOEA/D in 95.2% of the test instances considered, while
requiring only slightly higher CPU times than this other
MOEA. Also, MOMBI outperformed the other two compared
MOEAs in all instances of WFG1.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have introduced a new multi-objective
evolutionary algorithm whose selection mechanism is based
on theR2 indicator. It is worth emphasizing that the proposed
approach is entirely based on theR2 indicator, since it does
not incorporate Pareto dominance anywhere. Our preliminary
experimental results show that our proposed approach is able



TABLE VI. C OMPARISON OF RESULTS FOR THEWFG TEST

PROBLEMS.

m MOMBI MOEA/D SMS-EMOA
WFG1

2 6.294468e+00(1.73s) 5.836052e+00 (1.07s) 6.253419e+00(6.14m)
3 5.494206e+01(1.82s) 5.169631e+01(1.22s) 5.069579e+01 (31.06m)
4 4.700020e+02(1.92s) 4.565852e+02(1.29s) 4.153136e+02 (38.56m)
5 4.992548e+03(2.11s) 4.665130e+03(1.41s) 4.247997e+03 (44.15m)
6 6.546410e+04(2.23s) 5.654459e+04(1.41s) 5.448022e+04 (52.01m)
7 1.050149e+06(1.64s) 8.222872e+05 (1.43s) 8.667918e+05(35.36m)
8 2.027665e+07(2.37s) 1.353975e+07 (1.50s) 1.509819e+07(43.54m)

WFG2
2 1.096112e+01(1.64s) 1.045158e+01 (0.98s) 1.099152e+01(7.65m)
3 9.377662e+01(1.70s) 8.526391e+01 (1.16s) 9.242151e+01(13.52m)
4 9.023867e+02(1.81s) 7.729761e+02 (1.17s) 8.664688e+02(16.27m)
5 9.927867e+03(1.99s) 8.599778e+03 (1.26s) 9.685033e+03(20.05m)
6 1.292477e+05(2.11s) 1.104339e+05 (1.31s) 1.293052e+05(15.93m)
7 1.798632e+06(1.52s) 1.550014e+06 (1.31s) 1.826704e+06(16.16m)
8 3.115276e+07(2.32s) 2.824171e+07 (1.41s) 3.206849e+07(22.95m)

WFG3
2 1.090903e+01(1.65s) 1.084768e+01 (1.06s) 1.088469e+01(13.50m)
3 7.533956e+01(1.69s) 7.343757e+01 (1.13s) 7.521931e+01(28.47m)
4 6.521278e+02(1.78s) 5.922803e+02 (1.20s) 6.725993e+02(37.40m)
5 6.536085e+03(1.96s) 5.868854e+03 (1.25s) 7.388436e+03(52.33m)
6 8.169419e+04(2.07s) 7.015066e+04 (1.24s) 9.622059e+04(56.04m)
7 1.139849e+06(1.49s) 9.341369e+05 (1.27s) 1.106727e+06(85.61m)
8 1.919048e+07(2.24s) 1.571596e+07 (1.31s) 2.346759e+07(115.11m)

WFG4
2 8.663414e+00(1.69s) 8.638790e+00(1.13s) 8.622096e+00 (16.62m)
3 7.428724e+01(1.76s) 7.367783e+01 (1.26s) 7.655320e+01(32.23m)
4 6.899212e+02(1.88s) 6.683063e+02 (1.30s) 7.565462e+02(40.65m)
5 7.963947e+03(2.06s) 7.477385e+03 (1.37s) 8.613500e+03(40.79m)
6 9.172554e+04(2.18s) 8.358673e+04 (1.42s) 1.116341e+05(52.17m)
7 1.114922e+06(1.68s) 9.895873e+05 (1.41s) 1.551352e+06(47.11m)
8 1.840730e+07(2.36s) 1.563104e+07 (1.51s) 2.832567e+07(63.59m)

WFG5
2 8.208059e+00(1.65s) 8.135799e+00 (1.05s) 8.165422e+00(21.52m)
3 7.111670e+01(1.71s) 6.980779e+01 (1.15s) 7.337062e+01(29.56m)
4 6.676905e+02(1.92s) 6.374582e+02 (1.20s) 7.323117e+02(30.40m)
5 7.690169e+03(2.00s) 7.402440e+03 (1.34s) 8.421103e+03(29.38m)
6 9.592303e+04(2.11s) 9.477511e+04 (1.39s) 1.097473e+05(38.55m)
7 1.061202e+06 (1.54s) 1.085262e+06(1.44s) 1.576659e+06(40.72m)
8 1.742656e+07(2.32s) 1.720052e+07 (1.50s) 2.749614e+07(49.43m)

to outperform MOEA/D in most cases and that it requires a
considerably lower computational cost than SMS-EMOA in
all cases. Also, we hypothesize that our proposed MOMBI
outperforms SMS-EMOA and MOEA/D in problems in
which the Pareto front is mixed or disconnected.

Evidently, our results are only preliminary and much
more work is required. We are interested, for example, in
studying the sensitivity of our proposed approach to the
reference set and in incorporating a mechanism to handle
constraints. It would also be interesting to combine this
indicator with another one (e.g.,∆p), with the aim of
combining their advantages and compensate for their possible
limitations. Since in many-objective optimization the target
is not only convergence and distribution, but also pertinency8

[32], we are intent on integrating preference information into
MOMBI.
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TABLE VII. C OMPARISON OF RESULTS FOR THEWFG TEST

PROBLEMS(CONTINUATION).

m MOMBI MOEA/D SMS-EMOA
WFG6

2 8.366185e+00(1.75s) 8.339773e+00(1.20s) 8.335931e+00 (15.04m)
3 7.180386e+01(1.78s) 7.090983e+01 (1.28s) 7.396142e+01(27.41m)
4 6.905283e+02(1.87s) 6.335617e+02 (1.27s) 7.273866e+02(26.21m)
5 7.992895e+03(2.04s) 7.166289e+03 (1.31s) 8.453112e+03(24.98m)
6 9.657006e+04(2.15s) 8.711648e+04 (1.35s) 1.114382e+05(26.89m)
7 1.069256e+06 (1.61s) 1.094029e+06(1.37s) 1.484532e+06(32.95m)
8 1.720793e+07(2.38s) 1.568331e+07 (1.42s) 2.804717e+07(36.11m)

WFG7
2 8.676485e+00(1.64s) 8.665153e+00(1.07s) 8.659994e+00 (25.32m)
3 7.495940e+01(1.72s) 7.376198e+01 (1.22s) 7.689421e+01(33.91m)
4 7.207621e+02(1.84s) 6.801568e+02 (1.29s) 7.626003e+02(35.63m)
5 8.374343e+03(2.04s) 7.683882e+03 (1.42s) 8.907564e+03(30.54m)
6 1.013138e+05(2.17s) 9.488079e+04 (1.47s) 1.156273e+05(34.36m)
7 1.126400e+06(1.66s) 1.011440e+06 (1.52s) 1.653699e+06(43.30m)
8 1.844738e+07(2.42s) 1.533142e+07 (1.64s) 2.943970e+07(48.29m)

WFG8
2 8.081846e+00(1.79s) 8.070813e+00(1.33s) 8.058860e+00 (7.15m)
3 6.842167e+01(1.83s) 6.806646e+01 (1.44s) 7.021008e+01(19.32m)
4 5.851432e+02(1.93s) 5.489519e+02 (1.47s) 6.862165e+02(27.23m)
5 5.010892e+03(2.10s) 4.748502e+03 (1.49s) 7.782572e+03(38.25m)
6 5.680393e+04(2.19s) 4.633819e+04 (1.53s) 9.848530e+04(56.00m)
7 7.871659e+05(1.66s) 5.748249e+05 (1.53s) 1.318850e+06(57.39m)
8 1.299050e+07(2.38s) 9.495123e+06 (1.51s) 2.461203e+07(77.00m)

WFG9
2 8.234320e+00(1.99s) 8.065763e+00 (1.64s) 8.252136e+00(23.99m)
3 6.712947e+01 (1.99s) 6.785035e+01(1.74s) 7.108843e+01(39.76m)
4 5.889761e+02(2.08s) 5.654998e+02 (1.76s) 6.930176e+02(40.48m)
5 5.852350e+03(2.25s) 5.585894e+03 (1.82s) 7.684327e+03(41.68m)
6 6.393249e+04(2.48s) 5.933684e+04 (1.85s) 1.017342e+05(48.38m)
7 6.670261e+05(1.84s) 6.585370e+05 (1.84s) 1.519268e+06(43.50m)
8 1.078788e+07(2.61s) 1.002607e+07 (1.93s) 2.583169e+07(63.17m)
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Fig. 2. Plots of the approximations obtained by our proposedMOMBI for
m = 3 in: (a) DTLZ2, (b) DTLZ5, (c) DTLZ6 and (d) DTLZ7. These plots
correspond to the mean hypervolume value from 30 independent runs.
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