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Abstract—The development of multi-objective evolutionary
algorithms (MOEAs) assisted by surrogate models has sig-
nificantly increased in the last few years. However, in real-
world applications, the high modality and dimensionality that
functions normally have, often causes problems to such mod-
els. Therefore, if the Pareto optimal set of a multi-objective
optimization problem is located in a search space in which the
surrogate model is not able to shape the corresponding region,
the search could be misinformed and thus converge to wrong
regions. This has naturally motivated the idea of incorporating
refinement mechanisms to such approaches. In this paper, we
present a local search mechanism which improves the search of
a MOEA assisted by surrogate models. Our preliminary results
indicate that our proposed approach can produce good quality
results when it is restricted to performing only between 1,000
and 5,000 fitness function evaluations. Our proposed approach
is validated using a set of standard test problems and an airfoil
design problem.

I. I NTRODUCTION

Multi-objective evolutionary algorithms (MOEAs)
have been successfully adopted to solve multi-objective
optimization problems (MOPs) in a wide variety of
engineering and scientific problems [1]. However, in
real-world applications, it is common to find objective
functions which are very expensive to evaluate (in terms
of computational time). This has considerably limited the
use of MOEAs to deal with these types of problems. In
recent years, several researchers have developed different
strategies for reducing the computational time (measured
in terms of the number of fitness function evaluations) that
a MOEA requires to solve a determined problem. The use
of surrogate models has been one of the most commonly
adopted techniques to solve computationally expensive
problems. In the last few years, several authors have reported
the use of surrogate models for dealing with MOPs, see
for example [5], [9], [10], [16], [25]. The main idea behind
these approaches is to explore the regions that, according to
the surrogate model, promise suitable compromises among
the objectives. However, the prediction error of such models
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often directs the search towards regions in which, no Pareto
optimal solutions are found. Because of this, an important
number of researchers have tried to improve the prediction
of surrogate models by adding new solutions to the training
set and then retraining the surrogate model at each iteration
of the MOEA, see for example [25], [20].

Recently, in [23], a MOEA based on decomposition
assisted by Radial Basis Functions (RBFs) was introduced.
This evolutionary approach (called MOEA/D-RBF) employs
different kernels for building different RBF networks. Each
RBF network provides different shapes of the search space
and all of them provide information to predict the value of
an arbitrary solution. In fact, the high modality and dimen-
sionality of some problems, often constitute major obstacles
for surrogate models. Therefore, if MOEA/D-RBF is not able
to shape the region in which the Pareto set is contained, the
search could be misinformed and converge to wrong regions.
This has motivated the idea of incorporating procedures to re-
fine the solutions provided by surrogate models, such as local
search mechanisms. In general, the use of local search mech-
anisms combined with MOEAs assisted by surrogate models
has been only scarcely explored in the specialized literature.

In 2009, Georgopoulou and Giannakoglou [6] proposed
a multi-objective memetic algorithm assisted by RBFs. The
local search mechanism uses a function which corresponds to
an ascent method that incorporates gradient values provided
by the surrogate model. In order to improve the function
prediction, at each iteration, the model is retrained by con-
sidering the current offspring, parent and elite populations.
A more recent work, is the one presented by Zapotecas and
Coello [20]. The proposed multi-objective memetic algorithm
is assisted by Support Vector Regression (SVR). The local
search mechanism is directed by several scalarization
functions, which are solved by using the Hooke and Jeeves
algorithm [8]. The local search is assisted by the surrogate
model and the improved solutions are incorporated into the
current population of the MOEA by using Pareto ranking. To
improve the model accuracy, the surrogate model is retrained
by adding the new solutions found to the training set.

The two above approaches assist their local search
mechanisms with surrogate models. Therefore, even though
these approaches use refinement mechanisms, the prediction
error may misguide the local search engine. In this paper,



we present a MOEA assisted by surrogate models adopting
a local search engine (which is not assisted by surrogate
models) in order to improve the search. The proposed
approach is based on MOEA/D-RBF [23] and the refinement
mechanism is based on Nelder and Mead’s method [15]. We
hypothesized that an appropriate combination of the explo-
rative power of MOEA/D-RBF with the exploitative power
of a local search engine, could improve the performance of
MOEA/D-RBF when performing a low number of fitness
function evaluations. To validate or proposed approach, we
adopt standard test functions and a real-world problem.

The remainder of this paper is organized as follows.
In Section II, we present the basic concepts required to
understand the rest of the paper. Section III presents the
general framework of MOEA/D-RBF, which is adopted in
our study. In Section IV, we describe in detail our proposed
approach. In Section V, the test problems adopted to validate
our approach are described. In Section VI, we show and
discuss the results obtained by our proposed approach.
Finally, in Section VII, we provide our conclusions and
some possible paths for future research.

II. BASIC CONCEPTS

A. Multi-Objective Optimization

Without loss of generality we will assume only minimiza-
tion problems. Thus, a nonlinear multi-objective optimization
problem can be formulated as:

min
x∈Ω

F(x) (1)

where Ω ⊂ R
n defines the decision variable space and

F : Ω → R
k defines the vector of objective functions

F(x) = (f1(x), . . . , fk(x))T , such thatfi : R
n → R

is a nonlinear function. In order to describe the concept
of optimality in which we are interested on, the following
definitions are introduced [14].

Definition Let’s assume thatx,y ∈ Ω, then, we say thatx
dominatesy (denoted byx ≺ y) if and only if, fi(x) ≤
fi(y) andF(x) 6= F(y).

Definition Let x⋆ ∈ Ω, we say thatx⋆ is a Pareto optimal
solution, if there is no other solutiony ∈ Ω such thaty ≺ x⋆.

Definition The Pareto optimal setPS is defined by:PS =
{x ∈ Ω|x is Pareto optimal solution}, and thePareto opti-
mal front PF is defined as:PF = {F(x)|x ∈ PS}.

We are interested in maximizing the number of elements
of the Pareto optimal set and maintaining a well-distributed
set of solutions along the Pareto optimal front.

B. Decomposing Multi-Objective Optimization Problems

In the specialized literature, there are several approaches
for transforming a MOP into a single-objective optimization
subproblem [4], [14]. These approaches use a weighted
vector as their search direction. In this way, and under certain
assumptions (e.g., the minimum is unique, the weighting co-
efficients are positive, etc.), a Pareto optimal point is achieved
by solving such subproblems. Therefore, an approximation
of the Pareto optimal front can be achieved by decomposing

a MOP into several single-objective optimization problems.
Among these methods, perhaps the two most widely used are
theTchebycheffand theWeighted Sumapproaches. It is worth
noting, however, that the approaches based on boundary in-
tersection have certain advantages over those based on either
Tchebycheff or the Weighted Sum [2], [24]. In the following,
we briefly describe a method based, precisely, on the bound-
ary intersection approach, which is referred to in this work.

1) Penalty Boundary Intersection Approach:The Penalty
Boundary Intersection (PBI) approach proposed by Zhang
and Li [24], uses a weighted vectorw and a penalty valueθ
for minimizing both the distance to the utopian vectord1 and
the direction error to the weighted vectord2 from the solution
F(x). Therefore, the optimization problem can be stated as:

Minimize: g(x|w, z⋆) = d1 + θd2 (2)

where,

d1 =
||(F(x) − z

⋆)T
w||

||w||
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such that: x ∈ Ω and z⋆ = (z1, . . . , zk)T , where
zi = min{fi(x)|x ∈ Ω}.

In this way, a good representation of the Pareto front can
be generated by solving a set of problems defined by a well-
distributed set of weighted vectors. That has been the main
incentive for the development of current decomposition-
based MOEAs, see for example [24], [17], [21].

III. T HE FRAMEWORK OF MOEA/D-RBF

The multi-objective evolutionary algorithm based on
decomposition assisted by RBF networks (MOEA/D-RBF)
proposed in [23] decomposes the problem (1) intoN single-
objective optimization problems. MOEA/D-RBF uses a well-
distributed set ofN weight vectorsW = {w1, . . . ,wN}
to define a set of single-objective optimization subproblems
by using the PBI approach. Each subproblem is solved by
using the multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [24], which is assisted by the
RBF networks. Algorithm 1 shows the general framework of
MOEA/D-RBF. In the following sections, we briefly describe
the components of MOEA/D-RBF outlined in Algorithm 1.

A. Building the surrogate model

MOEA/D-RBF uses three different kernels (Gaussian,
multi-quadratic and inverse multi-quadratic) for building
different RBF networks. Each RBF network provides
different shapes of the search space and all of them provide
information to predict the value of an arbitrary solution.
ConsideringTset = {x1, . . . ,xNt

} as the set ofNt solutions
evaluated with the real fitness function. The RBF networks
are trained by using the setTset and adopting different
kernels for each one.

Once the three RBF networks are built, the prediction
of the function is carried out. LetϕGK(x), ϕMK (x) and
ϕIMK(x) be the predicted value given by RBF networks
using the Gaussian, multi-quadratic and inverse multi-
quadratic kernel, respectively. These three RBF networks
cooperate by providing information of the search space that



Algorithm 1: General framework of MOEA/D-RBF
Input :
W = {wi, . . . ,wN}: A well-distributed set of weight vectors.
Nt: The number of points in the initial training set.
Emax: The maximum number of evaluations allowed in
MOEA/D-RBF.
Output :
A: An approximation to thePF .

1 begin
2 INITIALIZATION : Generate a setTset = {x1, . . . ,xNt

} of
Nt points such thatxi ∈ Ω (i = 1, . . . Nt), by using an
experimental design method. Evaluate theF-functions values
of these points. SetA as the set of nondominated solutions
found in Tset. Setneval = Nt. Generate a population
P̂ = {x1, . . . , xN} of N individuals such thatxi ∈ Ω
(i = 1, . . . N ), by using an experimental design method.
stopping criterion = FALSE.

3 while (stopping criterion == FALSE) do
4 MODEL BUILDING : Using theF-function values of the

points inTset, build the predictive surrogate model by
using different RBF networks. Calculate the weights for
each RBF network according to its training error inTset,
see Section III-A.

5 EVALUATE P̂ : Evaluate the population̂P using the
surrogate model.

6 FIND AN APPROXIMATION TO PF : By using MOEA/D,
the surrogate model and the population̂P , obtain
P̂ ⋆ = {x̂i, . . . , x̂Nt

}, whereP̂ ⋆ is an approximation to
PF .

7 SELECT POINTS FOR UPDATINGTset : By using the
selection scheme, select a set of solutions fromP̂ ⋆ to be
evaluated and included in the training setTset. UpdateA
using the selected solutions. For each evaluated solution,
setneval = neval + 1. If neval < Emax then
stopping criteria = TRUE. For a detailed description
of this step see Section III-B.

8 UPDATE POPULATIONP̂ : Update the population̂P
according to the updating scheme, see Section III-C.

9 end
10 return A;
11 end

they model. Therefore, the function prediction̂f for an
arbitraryx ∈ Ω is defined by:

f̂(x) = λ1 · ϕGK(x) + λ2 · ϕMK(x) + λ3 · ϕIMK(x) (3)

where Λ = (λ1, λ2, λ3)
T is a weight vector, i.e.λi ≥ 0

and
∑3

i=1 λi = 1. The weight vectorΛ is then calculated
as λi = αi

|Tset|
, i = 1, 2, 3, where αi is the number of

solutions in Tset with the lowest prediction error for the
ith RBF network (Gaussian, multi-quadratic and inverse
multi-quadratic, respectively).

B. Selecting Points to Evaluate

Let W be the well-distributed set of weight vectors
used by MOEA/D. LetP̂ ⋆ be the approximation toPF
obtained by MOEA/D. LetWs be a well-distributed set of
weight vectors, such that|Ws| < |W |. For eachws

i ∈ Ws,
a neighborhoodBs(w

s
i ) = {w1, . . . ,wNa

} is defined, such
that w1, . . . ,wNa

∈ W are theNa = ⌊ N
Ns

⌋ closest weight
vectors fromW to ws

i . Once the neighborhoodsBs(w
s
i )

have been defined, a set of solutions is selected to be included
in the training setTset, according to the next description.

1) Selecting Points to be Evaluated using the Real
Fitness Function: MOEA/D-RBF takes from P̂ a set
S = {x1, . . . ,xNs

} of Ns solutions to be evaluated using
the real fitness function. Each solution inS is selected such
that it minimizes the problem defined by a weight vector
wj ∈ Bs(w

s
i ), wherei = 1, . . . , Ns andj = 1, . . .Na.

At each call of the selection procedure, the weight
vectorwj is selected by sweeping the set of weight vectors
in Bs(w

s
i ) in a cyclic way. No solution inS should be

duplicated. If this is the case, the repeated solution should
be removed fromS. For each newly evaluated solution,
neval is increased in one, ifneval ≥ Emax then set
stopping criterion = TRUE, whereneval and Emax are
the current and the maximum number of fitness function
evaluations, respectively.

2) Updating the Training Set and the External Archive:
The maximum number of solutions in the training setTset is
defined by the parameterNt. The updating ofTset is carried
out by defining a well-distributed setWt of Nt weight
vectors. Therefore, the bestNt different solutions from
T = {Tset ∪ S}, such that they minimize the subproblems
defined by each weight vectorwt

i ∈ Wt (i = 1, . . . , Nt),
are used to updateTset. If, after updating the training set,
any solutionsj ∈ S was not selected to be included in
Tset, then, it is added by replacing the closest solution (in
the objective space) inTs. With this, all solutions inS are
included inTset and the model can be improved even if it
has been previously misinformed.

The external archiveA contains the nodominated
solutions found during the search. For eachsj ∈ S, the
external archive is updated by removing fromA all the
solutions dominated bysj, and then,sj is stored inA if no
solutions inA dominatesj .

C. Updating the Population

Once the external archive is updated, the populationP̂ is
also updated for the next iteration of MOEA/D. Considering
the external archiveA as the set of nondominated solutions
found by MOEA/D-RBF, the population̂P of N solutions
is updated according to the following description.

Let m and σ be the average and standard deviation
of the solutions contained inA. Then, new bounds in the
search space are defined according to:

Lbound = m − σ
Ubound = m + σ

where Lbound and Ubound are the vectors which define
the lower and upper bounds of the new search space,
respectively.

Once the new bounds have been defined, a setQ of
N − |A| solutions is generated by means of the Latin
hypercube sampling method [13] in the new search space.
The populationP̂ is then redefined by the union ofQ and
A, that isP̂ = {Q ∪ A}.

In this section, we have briefly explained the components
of MOEA/D-RBF. However, in order for a more detailed
description of MOEA/D-RBF, see [23].



Algorithm 2: General framework of MOEA/D-
RBF+LS

Input :
W = {wi, . . . ,wN}: A well-distributed set of weight vectors.
Nt: The number of points in the initial training set.
Emax: The maximum number of evaluations allowed in
MOEA/D-RBF+LS.
Output :
A: An approximation to thePF .

1 begin
2 Step 1. INITIALIZATION : Generate a set

Tset = {x1, . . . , xNt
} of Nt points such thatxi ∈ Ω

(i = 1, . . . Nt), by using an experimental design method.
Evaluate theF-functions values of these points. SetA as the
set of nondominated solutions found inTset. Setneval = Nt.
Generate a population̂P = {x1, . . . , xN} of N individuals
such thatxi ∈ Ω (i = 1, . . . N ), by using an experimental
design method.stopping criterion = FALSE.

3 while (stopping criterion == FALSE) do
4 Step 2.MODEL BUILDING : See section III-A.
5 Step 3.EVALUATE P̂ : Evaluate the population̂P using

the surrogate model.
6 Step 4.FIND AN APPROXIMATION TO PF : By using

MOEA/D, the surrogate model and the populationP̂ ,
obtain the approximation̂P to PF .

7 Step 5.SELECT POINTS FOR UPDATINGTset : See
section III-B.

8 Step 6.UPDATE POPULATIONP̂ : See section III-C.
9 Step 7.LOCAL SEARCH: Apply nonlinear simplex search

by using the training setTset, see section IV-B and
Algorithm 3.

10 end
11 return A;
12 end

IV. T HE PROPOSEDMOEA/D-RBF WITH A LOCAL
SEARCH MECHANISM

A. General Framework

Our proposed MOEA/D-RBF with Local Search
(MOEA/D-RBF+LS) decomposes the problem (1) into
N single-objective optimization problems. MOEA/D-
RBF uses a well-distributed set ofN weight vectors
W = {w1, . . . ,wN} to define a set of single-objective
optimization subproblems by using the PBI approach. Each
subproblem is solved by MOEA/D, which is assisted by
RBF networks. After each iteration of MOEA/D, the local
search procedure is applied. Algorithm 2 shows the general
framework of our proposed MOEA/D-RBF+LS. In the
following sections, we describe in detail the proposed local
search mechanism adopted by our approach.

B. Local Search Mechanism

As indicated before, the local search adopted by
MOEA/D-RBF+LS is based on the Nelder and Mead algo-
rithm [15] (also known as Nonlinear Simplex Search (NSS)).
The search done by the NSS is based on geometric operations
on a set of points, which define ann-dimensional polygon
called “simplex”, wheren is the number of decision variables
of the problem. The effectiveness of NSS as a local search
mechanism in MOEAs has been shown by several authors,
see for example [11], [22], [26]. Here, we take the advantage
of the decomposition approach to direct the search of the

Algorithm 3: Use of Local Search
Input :
a stopping criterion;
Tset: The training set used by MOEA/D-RBF+LS.
Wls = {wi, . . . ,wN}: A well-distributed set of weight vectors for
the local search.
St: the similarity threshold for the local search;
Els: the maximum number of evaluations for the local search.
Output :
Tset: the updated training setTset.

1 begin
2 Step 1.DEFINING THE POPULATION Pls : Using the weight set

Wls and the training setTset, define the populationPls from
which the local search is performed, see Section IV-B1;

3 Step 2 DEFINING THE SEARCH DIRECTION AND THE INITIAL

SOLUTION: Define the search direction and the initial solutions
from which the local search starts, according to Section IV-B2

4 Step 3.CHECKING SIMILARITY : Obtain the similarity (Sls)
betweenpini and the previous initial solution (p′

ini) for the
local search, see Section IV-B3;

5 if there are enough resourcesand St < Sls then
6 Step 4.BUILDING THE SIMPLEX : Build the initial simplex

for the nonlinear simplex search, see Section IV-B4;
7 Step 5. DEFORMING THESIMPLEX : Perform any

movement (reflection, contraction or expansion) for
obtainingpnew according to Nelder and Mead’s method,
see Section IV-B5;

8 Step 6. UPDATING THE POPULATION AND THE

EXTERNAL ARCHIVE: Update the populationPls and the
external archiveA using the new solutionpnew according
to the rules presented in Section IV-B6.

9 Step 7.STOPPINGCRITERION: If the stopping criterion is
satisfied then stop the local search and go toStep 7.
Otherwise, go toStep 4, see Section IV-B7.

10 end
11 Step 8.UPDATING THE TRAINING SET: Update the training

setTset according to the updating scheme, see Section IV-B8.
12 end

NSS. In this way, the NSS is employed for minimizing a sub-
problem defined by a weight vector using the PBI approach.
In the following, we present in detail the components of our
local search engine outlined in Algorithms 2 and 3.

1) Defining the PopulationPls: At the beginning, a new
populationPls of Nls individuals is defined in order to direct
the local search. LetWls andTset be a well-distributed set
of weight vectors and the training set, respectively.Pls is
stated by choosing different solutionsxt ∈ Tset such that
they minimize:

g(xt|wi, z
⋆), for eachwls

i ∈ Wls

The cardinality ofWset should be much less that the
cardinality of the weight setW (which directs the search
of MOEA/D-RBF+LS), i.e., |Wls| << |W |. With that, a
small portion of search directions are considered by the
local search engine, in order to obtain well-spread solutions
along the Pareto Front.

2) Defining the Search Direction and the Initial Solution:
The proposed local search mechanism, approximates
solutions to the maximun bulge (sometimes called knee) of
the Pareto front. Therefore, the local search is focused on
minimizing the subproblem that approximates the solutions



lying on the knee of the Pareto front. Thus, the search
direction is defined by the weighting vector:

ws = (1/k, . . . , 1/k)T

wherek is the number of objective functions. Considering the
use of the PBI approach, the penalty valueθ is set toθ = 10.

Let A be the set of nondominated solutions found during
the search of MOEA/D-RBF+LS. Letws be the weighting
vector that defines the search direction for the nonlinear
simplex search. The solutionpini which starts the search
is defined by:

pini = x ∈ A, such that minimizes:g(x|ws, z
⋆)

Solutionpini represents not only the initial search point, but
also the simplex head from which the simplex will be built.

3) Checking Similarity:The NSS explores the neighbor-
hood of the solutionpini ∈ A. Since the simplex search is
applied after each iteration of the MOEA/D, most of the time,
the initial solutionpini does not change its position from one
generation to another. For this reason, the proposed local
search mechanism stores a record (p′

ini) of the last position
from which the nonlinear simplex search starts. At the begin-
ning of the execution of MOEA/D-RBF+LS, the initial posi-
tion record is set as empty, that is:p′

ini = ∅. Once the sim-
plex search is performed, the initial solution is stored in the
historical record, i.e.,p′

ini = pini. In this way, for the next
call of the local search, a previous comparison of similarity
is performed. That is, the local search will be applied, if and
only if, ||pini −p′

ini|| > Sls, whereSls represents the simi-
larity threshold. Both the updating of the historical record and
the similarity operator are performed for each initial solution
pini which minimizes the subproblem defined byws. As
in [23], we adopted a similarity thresholdSls = 0.001.

4) Building the Simplex: Let A be the set of
nondominated solutions found during the search of
MOEA/D-RBF+LS. Then, the simplex∆ is built in three
different ways, depending of the cardinality ofA.

i. |A| = 1: Setσ = (0.01, . . . , 0.01)T and the simplex
is defined as:

∆ = {a, ∆2, . . . , ∆n+1}

wherea ∈ A ⊂ Ω and the remainingn vertices
∆i ∈ Ω (i = 1, . . . , n) are generated by using a
low-discrepancy sequence. In our study, we adopted
the Hammersley sequence [7] to generate a well-
distributed sampling of solutions in a determined
search space. The search space is defined by:

Lbound = a − σ
Ubound = a + σ

In this way, the vertices are generated by means of
the Hammersley sequence using as boundsLbound

andUbound.
ii . 1 < |A| < (n+1): The simplex is defined by using

all solutions inA and the remainingl = (n+1)−|A|
solutions are generated by using the Hammersley
sequence. However, the bounds are defined as:

Lbound = m − σ
Ubound = m + σ

where(m) and(σ) are the average and the standard
deviation of the solutions contained inA, respec-
tively. Lbound andUbound are the lower and upper
bounds of the new search space, respectively.

iii . |A| ≥ (n + 1): In this case, the simplex is built by
choosing in a random way,n + 1 solutions taken
from A.

5) Deforming the Simplex:Let ws be the weight vector
that defines the search direction for the NSS. Let∆ be
the simplex defined by the above description. The simplex
search will be focused on minimizing the subproblem
defined by the weighting vectorws. At each iteration of
the simplex search, then + 1 vertices of the simplex∆ are
sorted according to their value for the subproblem that it tries
to minimize (the best value is the first element). In this way,
a movement into the simplex is performed for generating the
new solutionpnew. The movements are calculated according
to the equations provided by Nelder and Mead [15]. Each
movement is controlled by three scalar parameters:reflection
(ρ), expansion(χ) andcontraction (γ).

The NSS was conceived for unbounded problems. When
dealing with bounded variables, the created solutions can be
located outside the allowable bounds after some movements
of the NSS. In order to deal with this, we bias the new
solution if any component ofpnew lies outside the bounds
according to:

p(j)
new =







L
(j)
bound , if p

(j)
new < L

(j)
bound

U
(j)
bound , if p

(j)
new > U

(j)
bound

p
(j)
new , otherwise.

(4)

whereL
(j)
bound andU

(j)
bound are the lower and upper bounds

of the jth parameter ofpnew, respectively.

6) Updating the Population and the External Archive:
The information provided by the local search mechanism
is introduced into the populationPls. Since we are dealing
with MOPs, the new solution generated by any movement
of the simplex search could be better than more than one
solution in the current population. Thus, we adopt the
following mechanism in which more than one solution from
the population could be replaced.

Let pnew be the solution generated by any movement of
the NSS. LetB(ws) and Wls be the neighborhood of the
T closest weighting vectors tows, and the well-distributed
set of all weighting vectors, respectively. We define:

Q =
{

B(ws) , if r < δ
W otherwise

wherer is a random number having a uniform distribution.
In this work, we useδ = 0.5.

The populationPls is updated by replacing at mostRls

solutions fromPls such that,g(pnew|wi, z) < g(xi|wi, z),
wherewi ∈ Q and xi ∈ Pls, such thatxi minimizes the
subproblem defined bywi. In our study, we setRls = 15
as the maximum number of solutions to replace.

The external archiveA contains the nodominated
solutions found during the search of MOEA/D-RBF+LS. For
each new solutionpnew , the external archive is updated by
removing fromA all the solutions dominated bypnew, and
then,pnew is stored inA if no solutions inA dominatepnew .



7) Stopping Criterion: The local search procedure is
limited to a maximum number of fitness function evaluations
defined byEls. In this way, the proposed local search has
the following stopping criteria:

1) If the nonlinear simplex search overcomes the max-
imum number of evaluations (Els) or there are
not enough resources for continuing the search of
MOEA/D+LS, the local search is stopped.

2) The search could be inefficient if the simplex has
been deformed so that it has collapsed into a region
in which there are no local minima. According to
Lagarias et al. [12] the simplex search finds a better
solution in at mostn+1 iterations (at least in convex
functions with low dimensionality). Therefore, if
the simplex search does not find a better value for
the subproblem defined byws in n + 1 iterations,
we stop the search. Otherwise, we perform another
movement into the simplex by going toStep 3 of
Algorithm 3.

8) Updating the Training Set:The knowledge obtained
by the local search is introduced to MOEA/D-RBF+LS
by updating the training setTset. The maximum number
of solutions in the training setTset is defined by the
parameterNt. The updating ofTset is carried out by
defining a well-distributed set ofNt weight vectors
Wt = {wt

1, . . . ,w
t
Nt

}. Therefore, the bestNt different
solutions fromT = {Tset ∪A}, such that they minimize the
subproblems defined by each weight vectorwt

i ∈ Wt, are
used to updateTset. With this, the nondominated solutions
found by the local search are included inTset and the model
can be improved even if it has been previously misinformed.

V. TEST PROBLEMS

A. Standard Test Problems

In order to assess the performance of our proposed
MOEA/D-RBF+LS, we compare its results with respect to
those obtained by MOEA/D-RBF [24]. We adopted five test
problems whose Pareto fronts have different characteristics
including convexity, concavity, disconnections and multi-
modality. The bi-objective test suite of Zitzler-Deb-Thiele
(ZDT) [27] (except for ZDT5, which is a binary problem) is
adopted. We used 30 decision variables for problems from
ZDT1 to ZTD3, while ZDT4 and ZDT6 were tested using
10 decision variables, as suggested in [27].

B. Airfoil Shape Optimization: A case study

The case study presented here, consists of the multi-
objective optimization of an airfoil shape problem adapted
from [19] (denoted as MOPRW). This problem corresponds
to the airfoil shape optimization of a standard-class glider,
aiming to obtain an optimum performance for a sailplane. In
this study, the trade-off among two aerodynamic objectives
is evaluated using our proposed approach, and its results are
compared with respect to those obtained by MOEA/D-RBF.

1) Problem Statement:Two conflicting objective func-
tions are defined in terms of a sailplane average weight and
operating conditions [19]. They are defined as:

TABLE I. PARAMETER RANGES FOR MODIFIEDPARSECAIRFOIL

REPRESENTATION

Design Variable Lower Bound Upper Bound

rleup 0.0085 0.0126
rlelo 0.0020 0.0040
αte 7.0000 10.0000
βte 10.0000 14.0000
Zte -0.0060 -0.0030

∆Zte 0.0025 0.0050
Xup 0.4100 0.4600
Zup 0.1100 0.1300

Zxxup -0.9000 -0.7000
Xlo 0.2000 0.2600
Zlo -0.0230 -0.0150

Zxxlo 0.0500 0.2000

i) Minimize: CD/CL

s.t. CL = 0.63, Re = 2.04 · 106, M = 0.12

ii) Minimize: CD/C
3/2
L

s.t. CL = 1.05, Re = 1.29 · 106, M = 0.08

whereCD/CL and CD/C
3/2
L correspond to the inverse of

the glider’s gliding ratio and sink rate, respectively. Both
are important performance measures for this aerodynamic
optimization problem.CD and CL are the drag and lift
coefficients, respectively.

The aim is to maximize the gliding ratio (CL/CD) for
objective (i), while minimizing the sink rate in objective (ii ).
Each of these objectives is evaluated at different prescribed
flight conditions, given in terms of Mach and Reynolds
numbers. The aim of solving this MOP is to find a better
airfoil shape, which improves a reference design.

2) Geometry Parameterization:In the present case study,
the PARSEC airfoil representation [18] was adopted. Fig. 1
illustrates the 11 basic parameters used for this representa-
tion: rle leading edge radius,Xup/Xlo location of maximum
thickness for upper/lower surfaces,Zup/Zlo maximum
thickness for upper/lower surfaces,Zxxup/Zxxlo curvature
for upper/lower surfaces, at maximum thickness locations,
Zte trailing edge coordinate,∆Zte trailing edge thickness,
αte trailing edge direction, andβte trailing edge wedge angle.

For the present case study, the modified PARSEC
geometry representation adopted allows us to define
independently the leading edge radius, both for upper and
lower surfaces. Thus, a total of 12 variables are used. Their
allowable ranges are defined in Table I. The PARSEC airfoil
geometry representation uses a linear combination of shape
functions for defining the upper and lower surfaces. These
linear combinations are given by:

Zupper =

6
∑

n=1

anx
n−1

2 , Zlower =

6
∑

n=1

bnx
n−1

2 (5)

In the above equations, the coefficientsan, and bn are
determined as functions of the 12 described geometric
parameters, by solving two systems of linear equations, one
for each surface. It is important to note that the geometric
parametersrleup/rlelo, Xup/Xlo, Zup/Zlo, Zxxup/Zxxlo,
Zte, ∆Zte, αte, and βte are the actual design variables in
the optimization process, and that the coefficientsan, bn

serve as intermediate variables for interpolating the airfoil’s



coordinates, which are used by the CFD solver (we used
the Xfoil CFD code [3]) for its discretization process.

VI. COMPARISON OFRESULTS

A. Performance Assessment

To assess the performance of our proposed MOEA/D-
RBF+LS and MOEA/D-RBF on the test problems adopted,
the Hypervolume (IH ) indicator was employed [28].
This performance measure is Pareto compliant [29], and
quantifies both approximation and maximum spread of
nondominated solutions along the Pareto front. A highIH

value, indicates that the approximationP is close toPF
and has a good spread towards the extreme portions of the
Pareto front. The interested reader is referred to [28] for a
more detailed description of this performance measure.

B. Experimental Setup

As indicated before, the proposed approach is compared
with respect to the original MOEA/D-RBF. For each MOP,
30 independent runs were performed with each algorithm.
Each algorithm was restricted to 1,000 fitness function
evaluations. For the airfoil design problem, the search was
restricted to 5,000 fitness function evaluations.

The parameters used for MOEA/D, which is employed by
MOEA/D-RBF and MOEA/D-RBF+LS, were set as in [24].
This is because there is empirical evidence that indicates
that these are the most appropriate parameters for solving
the ZDT test suite, see [24]. The weight vectors for the
algorithms were generated as in [24], i.e., the settings of
N and W = {w1, . . . ,wN} is controlled by a parameter
H . More precisely,w1, . . . ,wN are all the weight vectors
in which each individual weight takes a value from:

{

0

H
,

1

H
, . . . ,

H

H

}

Therefore, the number of such vectors inW is given by
N = Ck−1

H+k−1, wherek is the number of objective functions
(for the test problems adoptedk = 2). For MOEA/D-RBF
and MOEA/D-RBF+LS, the setW was defined withH =
299, i.e.,300 weight vectors. The setWt was generated with
H = 10n − 1. Therefore,Nt = 10n weight vectors (which
define the cardinality of the training set), wheren is the
number of decision variables of the MOP. The setWs uses
H = 9, i.e., Ns = 10 weight vectors. Note that these values
of parameters are the ones used by MOEA/D-RBF in [23].

For the local search, the setWls was generated using
H = 99, thereforeNls = 100. The NSS was performed using
ρ = 1, χ = 2 andγ = 1/2, for the reflection, expansion and

Fig. 1. PARSEC airfoil parameterization.

contraction, respectively. The maximum number of solutions
to be replaced was set toRls = 15 and the maximum number
of fitness function evaluations was set toEls = 2(n + 1).
Finally, the similarity threshold was set toSls = 0.01. The
execution of the algorithms was carried out on a computer
with a 2.66GHz processor and 4GB in RAM.

As indicated before, the algorithms were evaluated using
the IH performance measure. The results obtained are sum-
marized in Table II. This table display both theaverage and
the standard deviation (σ) of theIH indicator for each MOP,
respectively. The reference vectorr used for computing
IH , for each MOP, is shown in Table II. For an easier
interpretation, the best results are presented inboldface for
each test problem adopted.

C. Discussion of Results

1) ZDT Test Problems:Table II shows the results ob-
tained for theIH indicator when the algorithms were tested
on the ZDT test problems. From this table it is possible to
see that MOEA/D-RBF+LS obtained a better approximation
to PF than the one achieved by MOEA/D-RBF in most
of the test problems adopted. The exception was ZDT1
where MOEA/D-RBF was better than MOEA/D-RBF+LS.
However, MOEA/D-RBF was not significantly better than
MOEA/D-RBF+LS. The performance of MOEA/D-RBF+LS
and MOEA/D-RBF was very similar for ZDT1 and ZDT2.
The differences were more significant for ZDT3, ZDT4
and ZDT6. These last problems have special features that
deteriorate the good performance of surrogate models. ZDT3
is a problem whose PF consists of several noncontiguous
convex parts. ZDT4 is multi-modal problem, which causes
difficulties to model the search space in a suitable way. ZDT6
has two difficulties caused by the nonuniformity of the search
space: first, the Pareto optimal solutions are nonuniformly
distributed along the PF; second, the density of the solutions
is lowest near the PF and gets higher as we move away from
the PF. These features evidently present a major obstacle to
the surrogate model employed by MOEA/D-RBF. However,
the use of local search for these problems, improved the
performance of MOEA/RBF. In fact, MOEA/D-RBF+LS
obtained better approximations to the PF for these MOPs,
and in some cases, such as in ZDT4 and ZDT6, it was
significantly better.

2) Airfoil Design Problem:For this particular problem,
the features of the PF are unknown. According to the results
presented in Table II, we can see that MOEA/D-RBF+LS
obtained betterIH values than those reached by MOEA/D-
RBF. This means that our proposed MOEA/D-RBF+LS
obtained a better approximation and spread of solutions along
the PF than MOEA/D-RBF.

According to the results reported in [23], the orig-
inal MOEA/D employed, on average, 5,050 seconds to
achieve convergence with 5,000 fitness function evaluations.
MOEA/D-RBF and MOEA/D-RBF+LS employed, on aver-
age, between 1,900 and 2,000 seconds to achieve a value in
theIH indicator similar to the one reported by MOEA/D, re-
spectively. Therefore, we argue that our proposed MOEA/D-
RBF is a good choice for dealing with computationally
expensive MOPs.



TABLE II. R ESULTS OF THEIH METRIC FORMOEA/D-RBF+LS
AND MOEA/D-RBF

MOP
MOEA/D-RBF+LS MOEA/D-RBF

Reference vectorraverage average
(σ) (σ)

ZDT1
0.868197 0.870908

(1.1, 1.1)T

(0.002837) (0.000371)

ZDT2
0.536389 0.536265

(1.1, 1.1)T

(0.004921) (0.000593)

ZDT3
0.876380 0.837894

(1.1, 1.1)T

(0.102611) (0.179280)

ZDT4
12.441923 5.739229

(30.0, 30.0)T

(30.715277) (30.906695)

ZDT6
96.299610 95.313012

(10, 10)T

(0.761493) (1.271933)

MOPRW
2.6818676e-07 2.493786e-07 (0.007610,

(6.417924e-09) (6.483342e-09) 0.005236)T

VII. C ONCLUSIONS ANDFUTURE WORK

The effectiveness of MOEA/D-RBF was tested in [23],
where it was compared with respect to the original MOEA/D
and a current state-of-the-art MOEA assisted by surrogate
models (the MOEA/D-EGO [25]). Here, we have introduced
an extension of MOEA/D-RBF which includes a local search
mechanism in order to improve the convergence to the Pareto
front, when a low number of fitness function evaluations is
used. The proposed MOEA/D-RBF+LS was able to improve
the convergence of MOEA/D-RBF, when the search was lim-
ited to a low number of fitness function evaluations. We also
validated our proposed approach with a real-world computa-
tionally expensive MOP: an airfoil design problem. The ob-
tained results have shown that MOEA/D-RBF+LS is a viable
choice to deal with MOPs having different features, and the
applicability to real-world applications could speed up con-
vergence to the PF in comparison to conventional MOEAs.

As part of our future work, we plan to use our approach in
problems having three or more objectives, which represent a
challenge to MOEAs assisted by surrogate models. Also, we
intend to explore the use of other mathematical programming
techniques in the local search mechanism. Finally, we are
also interested in testing our approach with more real-world
problems having a higher number of decision variables, and
this is, indeed, part of our ongoing research.
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