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Abstract—The development of multi-objective evolutionary often directs the search towards regions in which, no Pareto
algorithms (MOEAs) assisted by surrogate models has sig- optimal solutions are found. Because of this, an important
nificantly increased in the last few years. However, in real- number of researchers have tried to improve the prediction

feLIIQCt'il'ohnesrer]l(c)):;nailflytg]:.vsgirce)t[t()eno;'?%sa?ssgtrogfle?i’] L()Iti?ggjkécrtggd- set and then retraining the surrogate model at each iteratio
optimization pr’oblem is located in a search space in which ta of the MOEA, see for example [25], [20].

surrogate model is not able to shape the corresponding regio Recently, in [23], a MOEA based on decomposition
the search could be misinformed and thus converge to wrong gassisted by Radial Basis Functions (RBFs) was introduced.
regions. This has naturally motivated the idea of incorpording  Tpjg evolutionary approach (called MOEA/D-RBF) employs
refinement mechanisms to such approaches. In this paper, We iffarent kernels for building different RBF networks. Bac
present a local search mechanism which improves the searcli o RBF network provides different shapes of the search space

a MOEA assisted by surrogate models. Our preliminary resuls R - .
indicate that our proposed approach can produce good qualit and all of them provide information to predict the value of

results when it is restricted to performing only between 1,00 ~an arbitrary solution. In fact, the high modality and dimen-
and 5,000 fitness function evaluations. Our proposed appr@h  Sionality of some problems, often constitute major obstcl
is validated using a set of standard test problems and an aieil ~ for surrogate models. Therefore, if MOEA/D-RBF is not able
design problem. to shape the region in which the Pareto set is contained, the
search could be misinformed and converge to wrong regions.
I. INTRODUCTION This has motivated the idea of incorporating procedures+o r
fine the solutions provided by surrogate models, such as loca
Multi-objective  evolutionary algorithms (MOEAS) search mechanisms. In general, the use of local search mech-
have been successfully adopted to solve multi-objectivenisms combined with MOEAs assisted by surrogate models
optimization problems (MOPs) in a wide variety ofhas been only scarcely explored in the specialized litezatu
engineering and scientific problems [1]. However, in
real-world applications, it is common to find objective
functions which are very expensive to evaluate (in term
of computational time). This has considerably limited th
use of MOEAs to deal with these types of problems. |

In 2009, Georgopoulou and Giannakoglou [6] proposed
multi-objective memetic algorithm assisted by RBFs. The
ocal search mechanism uses a function which corresponds to
AN ascent method that incorporates gradient values prbvide

recent years, several researchers have developed dtﬁerg}ﬁ (tjhet surrotgate hm?delt._ In ?r:der t% ||rnpr0\/te _the dfltj)nctmn
strategies for reducing the computational time (measurd€d!clion, at each iteration, the model IS rétrained by-con

in terms of the number of fitness function evaluations) th idering the current (_)ffsprmg, parent and elite poputatio
a MOEA requires to solve a determined problem. The u more recent work, is the one presented by Zapotecas and

of surrogate models has been one of the most common eIIo_ [20]. The proposed multi-objectivg memetic algurit
adopted techniques to solve computationally expensi' assisted by Support Vector Regression (SVR). The local

earch mechanism is directed by several scalarization
problems. In the last few years, several _autho_rs have r@rﬂ)ort? nctions, which are solved by usin ythe Hooke and Jeeves
the use of surrogate models for dealing with MOPs, se% ' y 9

for example [5], [9], [10], [16], [25]. The main idea behindagorithm [8]. The local search is assisted by the surrogate

; : : odel and the improved solutions are incorporated into the
these approaches is to explore the regions that, accorollngr:'?#rrent population of the MOEA by using Pareto ranking. To

the surrogate model, promise suitable compromises amofi h del h ¢ del is redai
the objectives. However, the prediction error of such msde[) prove theé model accuracy, the surrogate modet Is remaine
y adding the new solutions found to the training set.

Jhe first author ackfowledges suppart from CONACYT throvgithol The two above approaches assist their local search
S NVESTA by Jracuate studies at e ompuier Scieneariient of - mechanisms with surrogate models. Therefore, even though
The second author gratefully acknowledges support from mofr  these approaches use refinement mechanisms, the prediction

project no. 103570. error may misguide the local search engine. In this paper,




we present a MOEA assisted by surrogate models adoptiagMOP into several single-objective optimization problems
a local search engine (which is not assisted by surrogatenong these methods, perhaps the two most widely used are
models) in order to improve the search. The proposdtie Tchebychefind theWeighted Surapproaches. It is worth
approach is based on MOEA/D-RBF [23] and the refinememioting, however, that the approaches based on boundary in-
mechanism is based on Nelder and Mead’s method [15]. Wersection have certain advantages over those based en eith
hypothesized that an appropriate combination of the expld-chebycheff or the Weighted Sum [2], [24]. In the following,
rative power of MOEA/D-RBF with the exploitative power we briefly describe a method based, precisely, on the bound-
of a local search engine, could improve the performance afy intersection approach, which is referred to in this work
MOEA/D-RBF when performing a low number of fitness
function evaluations. To validate or proposed approach, V\§
adopt standard test functions and a real-world problem. 0

1) Penalty Boundary Intersection Approachhe Penalty
undary Intersection (PBI) approach proposed by Zhang
and Li [24], uses a weighted vecter and a penalty valué

The remainder of this paper is organized as followsor minimizing both the distance to the utopian veafprand
In Section Il, we present the basic concepts required tbhe direction error to the weighted vectéy from the solution
understand the rest of the paper. Section Ill presents tli¥x). Therefore, the optimization problem can be stated as:
general framework of MOEA/D-RBF, which is adopted in o N
our study. In Section 1V, we describe in detail our proposed Minimize: g(x|w,z") = dy + 0d;, )
approach. In Section V, the test problems adopted to validaghere,
our approach are described. In Section VI, we show and
discuss the results obtained by our proposed approach.g, — IFCI —=)"wll 44 dQZH(F(x),Z*),dILH
Finally, in Section VII, we provide our conclusions and [wll [wll
some possible paths for future research. such thattx € Q and z* = (z1,...,2:)7, where

z; = min{ f;(x)|x € Q}.

In this way, a good representation of the Pareto front can
A. Multi-Objective Optimization be generated by solving a set of problems defined by a well-
distributed set of weighted vectors. That has been the main

_ Without loss of generality we will assume only minimiza-jncontive for the development of current decomposition-
tion problems. Thus, a nonlinear multi-objective optinti@a - <4 MOEAs. see for example [24], [17], [21]
problem can be formulated as: ' ' ' '

II. BAsIC CONCEPTS

meig F(x) 1) I1l. THE FRAMEWORK OF MOEA/D-RBF

where Q@ C R"™ defines the decision variable space and The m_u_Iti-objeqtive evolutionary algorithm based on
F : Q — R* defines the vector of objective flijnctionsdecompos_'t'On assisted by RBF networks (MOEA/D-RBF)
F(x) = (fi(x),...,fs(x))T, such thatf; : R" — R proposed in [23] decomposes the problem (1) iNtsingle-
is a nonlinear function. In order to describe the concePiective optimization problems. MOEA/D-RBF uses a well-
of optimality in which we are interested on, the following |str|b_uted set OfN. we|ght.veqtorsW. ~ {Wl’ o W
definitions are introduced [14]. to def_lne a set of single-objective optimization s.ubprobiem
by using the PBI approach. Each subproblem is solved by
Definition Let's assume thak,y € 2, then, we say thak  using the multi-objective evolutionary algorithm based on
dominatesy (denoted byx < y) if and only if, fi(x) < decomposition (MOEA/D) [24], which is assisted by the
fi(ly) andF(x) # F(y). RBF networks. Algorithm 1 shows the general framework of
MOEA/D-RBF. In the following sections, we briefly describe

_—_ N Y .
Definition Let x* < ), we say that™ is a Pareto optimal the components of MOEA/D-RBF outlined in Algorithm 1.

solution, if there is no other solutign € € such thay < x*.

Definition The Pareto optimal set”S is defined by:PS = A Building the surrogate model

{x € QJx is Pareto optimal solutidn and thePareto opti- _ _
mal front PF is defined asPF = {F(x)|x € PS}. MOEA/D-RBF uses three different kernels (Gaussian,

) ) o multi-quadratic and inverse multi-quadratic) for builgin
We are interested in maximizing the number of elementgifferent RBFE networks. Each RBF network provides
set of solutions along the Pareto optimal front. information to predict the value of an arbitrary solution.
Considerindl’s.; = {x1,...,xx,} as the set ofV; solutions
B. Decomposing Multi-Objective Optimization Problems evaluated with the real fithess function. The RBF networks

- . are trained by using the séf,., and adopting different
In the specialized literature, there are several apprcsachgemels for ea)éh oneg set pling

for transforming a MOP into a single-objective optimizatio

subproblem [4], [14]. These approaches use a weighted Once the three RBF networks are built, the prediction
vector as their search direction. In this way, and undeadaert of the function is carried out. Lepsk (%), ormk(x) and
assumptions (e.g., the minimum is unique, the weighting cas;sx (x) be the predicted value given by RBF networks
efficients are positive, etc.), a Pareto optimal pointisexdd using the Gaussian, multi-quadratic and inverse multi-
by solving such subproblems. Therefore, an approximatiajuadratic kernel, respectively. These three RBF networks
of the Pareto optimal front can be achieved by decomposimgoperate by providing information of the search space that



Algorithm 1: General framework of MOEA/D-RBF

Input :

W = {w;,...,wn}: A well-distributed set of weight vectors.
N¢: The number of points in the initial training set.

FEmaz: The maximum number of evaluations allowed in
MOEA/D-RBF.

Output:

A: An approximation to thePF'.

1) Selecting Points to be Evaluated using the Real
Fitness Function: MOEA/D-RBF takes from P a set
S = {x1,...,xn,} of N, solutions to be evaluated using
the real fitness function. Each solution $his selected such
that it minimizes the problem defined by a weight vector
w; € Bs(w}), wherei =1,..., Ny andj =1,...N,.

At each call of the selection procedure, the weight
vectorw; is selected by sweeping the set of weight vectors

1 begin . I\ : V=

) INITIALIZATION : Generate a sefser = {x1, ..., xx, } of in By(w;) in a cyclic way. No solution inS should be
Ny points such thak; € Q (i = 1,... N;), by using an duplicated. If this is the case, the repeated solution shoul
experimental design method. Evaluate #dunctions values be removed fromS. For each newly evaluated solution,
?;Jrf]‘gslﬁ :ﬁomtss-e?@t‘ as T?V Seteognf;?ggeog“'”gti?azg'nlmons Nevar IS increased in one, ifnepar > Fmae then set
- set. OClMeval = IVt Pop stopping_criterion = TRUE, wheren,,; and E,,,, are
P = {x1,...,xx} of N individuals such thak; € h d th . b f i f .
(i=1,...N), by using an experimental design method. the current and the maximum number of fitness function
stopping_criterion = FALSE. evaluations, respectively.

3 while (stopping_criterion == FALSE) do . . .

4 MODEL BUILDING: Using theF-function values of the 2) Up_datlng the Training Set an_d the EX_'[e'_rI’lal ArC_hIVEZ
points inTset, build the predictive surrogate model by The maximum number of solutions in the training gt; is
using different RBF networks. Calculate the weights for defined by the parametey,. The updating ofl,.; is carried
each RBF network according to its training errorfipe:, - g -
cee Section NIA out by defining a well-distributed seil; of N, weight

5 EVALUATE P: Evaluate the populatiod® using the vectors. Therefore, the besV; diffe_re_nt solutions from
surrogate model. T = {Ts U S}, such that they minimize the subproblems

6 FIND AN APPROXIMATIONTO PF': By .uAsing MOEA/D, defined by each weight vect(w;? eW, (i =1,...,Ny),
the surrogate model and the populatigh obtain are used to updaté,.,. If, after updating the training set,
= Wi X, where P is an approximation o any solutions; € S was not selected to be included in

7 SELECT POINTS FOR UPDATINGTset: By Using the Tset, then,_ it is adde(_j by r?plaCi_ng the ClOS_eSt S_0|Uti0n (in
selection scheme, select a set of solutions fiBmto be the objective space) iff;. With this, all solutions inS are
evaluated and included in the training §&t.;. Update A included inT,.; and the model can be improved even if it
using the selected solutions. For each evaluated solution, has been previously misinformed.

Setneyal = Neval + 1. If Neyal < Emaa then
stopping_criteria = TRUE. For a detailed description The external archiveA contains the nodominated
(L)prtngZtsg see Section ﬂ;g{-ﬂe the populatior® solutions found during the search. For eagh<c S, the

8 . . . .
according to the updating scheme, see Section IlI-C. eXter.nal arChlye IS updated by rempvmg fro‘f’“ a”. the

9 end solutions dominated by;, and thens; is stored inA if no

10 return A; solutions inA dominates;.

11 end

they model. Therefore, the function predictigh for an

arbitraryx € Q is defined by:

F(%) = A1 - par(X) + A2 - parr (X) + Az - @1 (x)

®)

where A = (A1, M2, A3)T is a weight vector, i.e); > 0

C. Updating the Population

Once the external archive is updated, the populafids
also updated for the next iteration of MOEA/D. Considering
the external archivel as the set of nondominated solutions
found by MOEA/D-RBF, the populatio® of N solutions
is updated according to the following description.

Let m and o be the average and standard deviation

andY"?_ | \; = 1. The weight vectorA is then calculated of the solutions contained ial. Then, new bounds in the

as \; = 4.t = 1,2,3, wherea; is the number of search space are defined according to:

solutions inT,.; with the lowest prediction error for the

i" RBF network (Gaussian, multi-quadratic and inverse Loouna = m—o
Ubound = m-+o

multi-quadratic, respectively).

B.

that Wi, ..

Selecting Points to Evaluate

Let W be the well-distributed set of weight vectors
used by MOEA/D. LetP* be the approximation taPF N
obtained by MOEA/D. LetiW, be a well-distributed set of
weight vectors, such that¥;| < |W|. For eachw; € W,

a neighborhood3;(w?) = {wy, ..
.,wn, € W are theN, = | -] closest weight

N

.,wy, } is defined, such

where Lyouna and Upoung are the vectors which define
the lower and upper bounds of the new search space,
respectively.

Once the new bounds have been defined, a(atf

— |A| solutions is generated by means of the Latin
hypercube sampling method [13] in the new search space.
The populationP is then redefined by the union ¢} and

A, thatisP = {Q U A}.

In this section, we have briefly explained the components

vectors from to w?. Once the neighborhoodB, (w?)
have been defined, a set of solutions is selected to be irtludef MOEA/D-RBF. However, in order for a more detailed
in the training sefl;.;, according to the next description. description of MOEA/D-RBF, see [23].



Algorithm 2: General framework of MOEA/D- Algorithm 3: Use of Local Search

RBF+LS |nput :
Input: a stopping criterion;
W = {w,,...,wn}: A well-distributed set of weight vectors. Tset: The training set used by MOEA/D-RBF+LS.
N¢: The number of points in the initial training set. Wis = {wi,...,wn}: A well-distributed set of weight vectors for
Ermaz: The maximum number of evaluations allowed in the local search.

MOEA/D-RBE+LS S¢: the similarity threshold for the local search;
Output: E;s: the maximum number of evaluations for the local search.
Output:

A: An approximation to thePF'. o
Tset: the updated training séfset.

1 begin .
2 Step 1.INITIALIZATION : Generate a set 1 begin _ _
Tset = {x1,...,xn,} of N points such thak; € 2 Step 1.DEFINING THE POPULATION P;,: Using the weight set
(i =1,...Ny), by using an experimental design method. W,s and the training seTs., define the populatio;; from
Evaluate theF-functions values of these points. Sétas the which the local search is performed, see Section IV-B1;
set of nondominated solutions found Te:. Setneyq; = Ne. 3 Step 2DEFINING THE SEARCH DIRECTION AND THE INITIAL
Generate a populatio®® = {x1,...,xy} of N individuals SoLuTIoN: Define the search direction and the initial solutions
such thatx; € Q (i = 1,... N), by using an experimental from which the local search starts, according to SectiofB2v-
design methodstopping_criterion = FALSE. 4 Step 3. CHECKING SIMILARITY : Obtain the similarity ;)
3 while (stopping_criteri;n == FALSE) do betweenp;,; and the previous initial solutionp(,,,) for the
a Step 2. MODEL BUILDING: See section III-A. local search, see Section IV-B3;
5 Step 3.EVALUATE P: Evaluate the populatio®® using 5 if there are enough resourcesd S¢ < Sls the_n S
the surrogate model. 6 Step 4.BUILDING THE SIMPLEX: Build the initial simplex
6 Step 4.FIND AN APPROXIMATION TO PF: By using for the nonlinear simplex search, see Section |V-B4;
) ’ o 7 Step 5. DEFORMING THE SIMPLEX: Perform any
gﬂb?jr’?/tﬁétge Tg;iﬁ’;}g [g'?:i ;nd the populatibn movement (reflection, contraction or expansion) for
. Step 5 SELEpcpT POINTS FOR UPD.ATINGT - See obtaining prew according to Nelder and Mead’s method,
‘t). B set: see Section IV-B5;
section fil-B. . . 8 Step 6. UPDATING THE POPULATION AND THE
8 Step 6.UPDATE POPULATIONP: See_: section i-C. EXTERNAL ARCHIVE: Update the populatio”;; and the
o Stegsrn' LtohCeAtLr;Ei/;RCSF&Applgelogggzsg SI{TI;)I(:;] dsearch external archiveA using the new solutiop,.., according
ABII 'thg 3 9 set) to the rules presented in Section IV-B6.
10 end gonthm 5. 9 Step 7.STOPPINGCRITERION: If the stopping criterion is
I returmn A: satisfied then stop the local search and g&tep 7.
d ’ Otherwise, go tdStep 4 see Section IV-B7.
12 en 10 end
11 Step 8.UPDATING THE TRAINING SET: Update the training
setTse+ according to the updating scheme, see Section IV-B8.
12 end

IV. THE PROPOSEDMOEA/D-RBFWITH A LOCAL
SEARCH MECHANISM

A G I F k . . s
eneral Framewor NSS. In this way, the NSS is employed for minimizing a sub-

Our proposed MOEA/D-RBF with Local Searchproblem defined by a weight vector using the PBI approach.
(MOEA/D-RBF+LS) decomposes the problem (1) inton the following, we present in detail the components of our
N single-objective optimization problems. MOEA/D- local search engine outlined in Algorithms 2 and 3.

RBF uses a well-distributed set oV weight vectors o ] o

W = {wi,...,wy} to define a set of single-objective 1) Defining the PopulatiorP,,: At the beginning, a new

optimization subproblems by using the PBI approach. EadpppulationP, of INV;, individuals is defined in (_)rd_er to direct

subproblem is solved by MOEA/D, which is assisted b);he Iopal search. LelV andTS_et. be a WeII-dlstr|buted set

RBF networks. After each iteration of MOEA/D, the localOf weight vectors and the training set, respectively, is

search procedure is applied. Algorithm 2 shows the gener@fted by choosing different solutions € T, such that

framework of our proposed MOEA/D-RBF+LS. In thethey minimize:

following sections, we describe in detail the proposed lloca ¢ N Is

search mechanism adopted by our approach. g(x*|wi,z"), for eachw;” € Wi,

B. Local Search Mechanism The cardinality of WW,.; should be much less that the
- cardinality of the weight set’’ (which directs the search

As indicated before, the local search adopted by MOEA/D-RBF+LS), i.e.,|Wi,| << |W/|. With that, a
MOEA/D-RBF+LS is based on the Nelder and Mead algogma|| portion of search directions are considered by the
rithm [15] (also known as Nonlinear Simplex Search (NSS))oca| search engine, in order to obtain well-spread sahstio
The search done by thg NSS is basedlon geometric operat|%r|[§.ng the Pareto Front.
on a set of points, which define andimensional polygon
called “simplex”, where: is the number of decision variables  2) Defining the Search Direction and the Initial Solution:
of the problem. The effectiveness of NSS as a local seardthe proposed local search mechanism, approximates
mechanism in MOEAs has been shown by several authosglutions to the maximun bulge (sometimes called knee) of
see for example [11], [22], [26]. Here, we take the advantagbe Pareto front. Therefore, the local search is focused on
of the decomposition approach to direct the search of thminimizing the subproblem that approximates the solutions



lying on the knee of the Pareto front. Thus, the search where(m) and(o) are the average and the standard
direction is defined by the weighting vector: deviation of the solutions contained i#, respec-
T tively. Lyoung @nd Upyyng are the lower and upper
ws = (1/k,...,1/k) bounds of the new search space, respectively.

where is the number of objective functions. Considering the fii.  |A[ = (n+1): In this case, the simplex is built by
use of the PBI approach, the penalty vaflis set tod = 10. ?hooillng in a random way; + 1 solutions taken
rom A.

Let A be the set of nondominated solutions found during ) ) )
the search of MOEA/D-RBF+LS. Lew, be the weighting 5) Deforming the Simplextet w, be the weight vector
vector that defines the search direction for the nonlinedat defines the search direction for the NSS. Letbe
simplex search. The solutiop,,; which starts the search the simplex defined by the above description. The simplex

is defined by: search will be focused on minimizing the subproblem
o . defined by the weighting vectow,. At each iteration of
Pini =X € A, such that minimizesy(x|w, z*) the simplex search, the + 1 vertices of the simplexA are

orted according to their value for the subproblem thatdstr
minimize (the best value is the first element). In this way,
movement into the simplex is performed for generating the
3) Checking Similarity:The NSS explores the neighbor-new solutionp,,..,. The movements are calculated according
hood of the solutiorp;,; € A. Since the simplex search isto the equations provided by Nelder and Mead [15]. Each
applied after each iteration of the MOEA/D, most of the timemovement is controlled by three scalar parameteftection
the initial solutionp;,,; does not change its position from one(p), expansion() andcontraction (v).
generation to another. For this reason, the proposed local
search mechanism stores a recasd, () of the last position
from which the nonlinear simplex search starts. At the begi
ning of the execution of MOEA/D-RBF+LS, the initial posi-
tion record is set as empty, that is;,,; = . Once the sim-
plex search is performed, the initial solution is storedha t
historical record, i.e.p},; = pini. In this way, for the next

Solutionp;,,; represents not only the initial search point, bu
also the simplex head from which the simplex will be built.{f

The NSS was conceived for unbounded problems. When
r?jealing with bounded variables, the created solutions ean b
ocated outside the allowable bounds after some movements
of the NSS. In order to deal with this, we bias the new
solution if any component op,,.., lies outside the bounds
according to:

call of the local search, a previous comparison of simifarit . Ly it pd, <LY)
is performed. That is, the local search will be applied, ifian p¥) = ul it p, >UY) (4)
only if, ||pini — Pin;|| > Sis, WhereS;, represents the simi- pggﬁw . otherwise.

larity threshold. Both the updating of the historical retand ) )
the similarity operator are performed for each initial $inin Where%und andU,’ . are the lower and upper bounds
Pini Which minimizes the subproblem defined by,. As of the j*

parameter op,...,, respectively.
in [23], we adopted a similarity thresholg}, = 0.001. 6) Updating the Population and the External Archive:

4) Building the Simplex: Let A be the set of The information provided by the local search mechanism
nondominated solutions found during the search d# introduced into the populatioft;,. Since we are dealing
MOEA/D-RBF+LS. Then, the simplexA is built in three with MOPs, the new solution generated by any movement

different ways, depending of the cardinality df of the simplex search could be better than more than one
_ _ solution in the current population. Thus, we adopt the
i. |A] = 1:Seto = (0.01,...,0.01)" and the simplex following mechanism in which more than one solution from
is defined as: the population could be replaced.
A={a,As,...,Ani1} Let prew be the solution generated by any movement of

h d th - . the NSS. LetB(w,) and Wi, be the neighborhood of the
wherea € A C Q and the remaining, Vertices 1 |osest weighting vectors tev,, and the well-distributed

A; € @ (i = 1,...,n) are generated by using as(?t of all weighting vectors, respectively. We define:
low-discrepancy sequence. In our study, we adopte

the Hammersley sequence [7] to generate a well- Q= { B(ws) it r <9

distributed sampling of solutions in a determined ] W Oth.erW'se ] o
search space. The search space is defined by: Wherer is a random number having a uniform distribution.
In this work, we use) = 0.5.

a—o

ato The populationP;; is updated by replacing at mo&,
éplutions fromP;; such that,g(ppew|Wi, 2) < g(x;|w;, 2),
wherew; € Q andx; € P, such thatx; minimizes the
subproblem defined by;. In our study, we seR?;; = 15

Lbound

bound

In this way, the vertices are generated by means
the Hammersley sequence using as boubgs,.q

andUbound. h . b f luti |
i. 1<|A|< (n+1): The simplex is defined by using @ the maximum number of solutions to replace.
all solutions in4 and the remaining= (n+1)—|A| The external archiveA contains the nodominated

solutions are generated by using the Hammerslegolutions found during the search of MOEA/D-RBF+LS. For
sequence. However, the bounds are defined as: each new solutiomp,...,, the external archive is updated by
m— o removing fromA all the solutions dominated by,...,, and

L ouT . . . . . .
pound m+o then,p,.. is stored inA if no solutions inA dominatep,,c.,.

Ubound



TABLE I. PARAMETER RANGES FOR MODIFIEDPARSECAIRFOIL

7) Stopping Criterion: The local search procedure is REPRESENTATION

limited to a maximum number of fitness function evaluations

defined byFE;;. In this way, the proposed local search has [ Design Variable [ Lower Bound [ Upper Bound |
the following stopping criteria: Tleup 0.0085 0.0126
Tlelo 0.0020 0.0040
. . . 7.0000 10.0000
1) Ifthe nonlinear simplex search overcomes the max- G 10.0000 14.0000
imum number of evaluationsF{;) or there are Zie -0.0060 -0.0030
not enough resources for continuing the search of a2 0008 00000
: wp . .
MOEA/D+LS, the local search is stopped. Zoup 0.1100 0.1300
2) The search could be inefficient if the simplex has Z;(zup -8-29888 -8-27288
. ' : o _ .
been deformed so that it has collapsed into a region 7. 00230 00150
in which there are no local minima. According to Zwzlo 0.0500 0.2000

Lagarias et al. [12] the simplex search finds a better
solution in at mosh+1 iterations (at least in convex
functions with low dimensionality). Therefore, if
the simplex search does not find a better value for )  Minimize: Cp/Cy, .
the subproblem defined by, in n + 1 iterations, S:t.Cp =0.63, Re =2.04-10%, M = 0.12
we stop the search. Otherwise, we perform another jjy  minimize: CD/Ci/2
movement into the simplex by going @tep 3 of st.Cp = 1.05, Re = 1.29 - 108, M = 0.08
Algorithm 3.
where Cp, /Cy, and Cpp, /C¥/? correspond to the inverse of
8) Updating the Training SetThe knowledge obtained the glider’s gliding ratio and sink rate, respectively. Bot
by the local search is introduced to MOEA/D-RBF+LSare important performance measures for this aerodynamic
by updating the training sef.;. The maximum number optimization problem.C, and C; are the drag and lift
of solutions in the training sefl.; is defined by the coefficients, respectively.
parameter N;. The updating ofT,. is carried out by o o o )
defining a well-distributed set ofN, weight vectors  The aim is to maximize the gliding ratiaCt /Cp) for
W, = {w',...,wh }. Therefore, the bestV, different objective (), whlle_m|r]|m|z!ng the sink rate in objectiva]). _
solutions fromT — {Tset U A}, such that they minimize the Each of these objectives is evaluated at different presdrib
subproblems defined by each weight vectar € TV, are flight conditions, given in terms of Mach and Reynolds
used to updatd’.,. With this, the nondominated solutions "umbers. The aim of solving this MOP is to find a better
found by the local search are includediif.; and the model 2irfoil shape, which improves a reference design.

can be improved even if it has been previously misinformed. 2) Geometry Parameterizatiorin the present case study,
the PARSEC airfoil representation [18] was adopted. Fig. 1
V. TESTPROBLEMS illustrates the 11 basic parameters used for this reprasent
tion: r;. leading edge radiusy,,, / X;, location of maximum
A. Standard Test Problems thickness for upper/lower surfaces7,,/Z;,, maximum

In order to assess the performance of our proposé@ickness for upper/lower surface8,..y/Zza10 CUrvature
MOEA/D-RBF+LS, we compare its results with respect tdor upper/lower surfaces, at maximum thickness locations,
those obtained by MOEA/D-RBF [24]. We adopted five tesétc trailing edge coordinatedZ,. trailing edge thickness,
problems whose Pareto fronts have different charactesistic trailing edge direction, angd. trailing edge wedge angle.

including convexity, concavity, disconnections and multi For the o

. A A X . . present case study, the modified PARSEC
”%%d_l?l'%"?-rhe bl—??Jecéll\sgrStesthsuAte obenzIer—DekE)l—Tlme_ geometry representation adopted allows us to define
( ) [27] (except for » Which is a binary problem) ISindependently the leading edge radius, both for upper and

adopted. We used 30 decision variables for problems frofg o 5 rfaces. Thus, a total of 12 variables are used. Their
ZDT1 to ZTD3, while ZDT4 and ZDT6 were tested usingy| o aple ranges are defined in Table I. The PARSEC airfoil

10 decision variables, as suggested in [27]. geometry representation uses a linear combination of shape
functions for defining the upper and lower surfaces. These
B. Airfoil Shape Optimization: A case study linear combinations are given by:

The case study presented here, consists of the multi- 6 - 6 o
objective optimization of an airfoil shape problem adapted Zupper = ZanxT, Ziower = Z N )
from [19] (denoted as MOPRW). This problem corresponds n=1 n=1
to the airfoil shape optimization of a standard-class gjide

aiming to obtain an optimum performance for a sailplane. | In the above equations, the coefficients, and b, are

this study, the trade-off among two aerodynamic objectiveictermined as functions of the 12 described geometric
arameters, by solving two systems of linear equations, one

is evaluated using our proposed approach, and its reselts 9 :
g prop bp or each surface. It is important to note that the geometric

compared with respect to those obtained by MOEA/D-RBF.
p p y parametETSTleup/Tlelo, Xup/Xloy Zup/Zlm Zzzup/Zzzlm

1) Problem StatementTwo conflicting objective func- Z,., AZ,., a4, and 8. are the actual design variables in
tions are defined in terms of a sailplane average weight atlte optimization process, and that the coefficiets b,
operating conditions [19]. They are defined as: serve as intermediate variables for interpolating theodsf



coordinates, which are used by the CFD solver (we usambntraction, respectively. The maximum number of soligion

the Xfoil CFD code [3]) for its discretization process. to be replaced was set &, = 15 and the maximum number
of fitness function evaluations was set Ep, = 2(n + 1).
VI. COMPARISON OFRESULTS Finally, the similarity threshold was set 18, = 0.01. The
execution of the algorithms was carried out on a computer
A. Performance Assessment with a 2.66GHz processor and 4GB in RAM.

To assess the performance of our proposed MOEA/D-
RBF+LS and MOEA/D-RBF on the test problems adopteq
the Hypervolume (Iy) indicator was employed [28].
This performance measure is Pareto compliant [29], an
quantifies both approximation and maximum spread q
nondominated solutions along the Pareto front. A high I, for each MOP, is shown in Table Il. For an easier

value, indicates that the approximatidf is close toPF interpretation, the best results are presentedoidface for
and has a good spread towards the extreme portions of t@&ch test problem adopted

Pareto front. The interested reader is referred to [28] for a
more detailed description of this performance measure.

As indicated before, the algorithms were evaluated using
he I'y performance measure. The results obtained are sum-
arized in Table Il. This table display both theerage and

e standard deviatiow] of the Iy indicator for each MOP,
spectively. The reference vector used for computing

C. Discussion of Results

B. Experimental Setup 1) ZDT Test ProblemsTable Il shows the results ob-

As indicated before, the proposed approach is Compar&ﬂ-ned for theIH indicator when the algorithms were tested
with respect to the original MOEA/D-RBF. For each MOPON the ZDT test problems. From this table it is possible to
30 independent runs were performed with each algorithree that MOEA/D-RBF+LS obtained a better approximation
Each algorithm was restricted to 1,000 fitness functiof? PF than the one achieved by MOEA/D-RBF in most

evaluations. For the airfoil design problem, the search wa¥ the test problems adopted. The exception was ZDT1
restricted to 5,000 fitness function evaluations. where MOEA/D-RBF was better than MOEA/D-RBF+LS.

o However, MOEA/D-RBF was not significantly better than
The parameters used for MOEA/D, which is empl_oyed bY1OEA/D-RBF+LS. The performance of MOEA/D-RBF+LS
MOEA/D-RBF and MOEA/D-RBF+LS, were set as in [24]. snd MOEA/D-RBF was very similar for ZDT1 and ZDT2.
This is because there is empirical evidence that indicatg$,e differences were more significant for ZDT3, ZDT4
that these are the most appropriate parameters for solvigy zDT6. These last problems have special features that
the ZDT test suite, see [24]. The weight vectors for th@eteriorate the good performance of surrogate models. ZDT3
algorithms were generated as in [24], i.e., the settings @f 5 problem whose PF consists of several noncontiguous
N andW = {wi,...,wy} is controlled by a parameter conyex parts. ZDT4 is multi-modal problem, which causes
H. More preciselyw,,...,wy are all the weight vectors (jficulties to model the search space in a suitable way. ZDT6
in which each individual weight takes a value from: has two difficulties caused by the nonuniformity of the sharc
0 1 H space: first, the Pareto optimal solutions are nonuniformly
{ﬁ’ T ﬁ} distributed along the PF; second, the density of the saiatio
is lowest near the PF and gets higher as we move away from
Therefore, the number of such vectors Wi is given by the PF. These features evidently present a major obstacle to
N = Cj .}, wherek is the number of objective functions the surrogate model employed by MOEA/D-RBF. However,
(for the test problems adoptéd= 2). For MOEA/D-RBF the use of local search for these problems, improved the
and MOEA/D-RBF+LS, the selV’ was defined with =  performance of MOEA/RBF. In fact, MOEA/D-RBF+LS
299, i.e., 300 weight vectors. The sé¥/; was generated with obtained better approximations to the PF for these MOPs,
H = 10n — 1. Therefore,N; = 10n weight vectors (which and in some cases, such as in ZDT4 and ZDT6, it was
define the cardinality of the training set), whereis the significantly better.
number of decision variables of the MOP. The Béf uses L , , )
H =9, ie., N, = 10 weight vectors. Note that these values 2) Airfoil Design Problem: For this particular problem,

of parameters are the ones used by MOEA/D-RBF in [23]_the featureg of the PF are unknown. According to the results
presented in Table Il, we can see that MOEA/D-RBF+LS

For the local search, the sét;; was generated using obtained betted;; values than those reached by MOEA/D-

H = 99, thereforeN;; = 100. The NSS was performed using RBF. This means that our proposed MOEA/D-RBF+LS

p=1,x=2andy = 1/2, for the reflection, expansion and obtained a better approximation and spread of solutiommalo
the PF than MOEA/D-RBF.

According to the results reported in [23], the orig-
inal MOEA/D employed, on average, 5,050 seconds to
achieve convergence with 5,000 fitness function evalugtion
MOEA/D-RBF and MOEA/D-RBF+LS employed, on aver-
age, between 1,900 and 2,000 seconds to achieve a value in
the Iy indicator similar to the one reported by MOEA/D, re-
spectively. Therefore, we argue that our proposed MOEA/D-

RBF is a good choice for dealing with computationally
Fig. 1. PARSEC airfoil parameterization. expensive MOPs.



TABLE II. RESULTS OF THEl 7 METRIC FORMOEA/D-RBF+LS
AND MOEA/D-RBF [7]
MOEA/D-RBF+LS | MOEAD-RBF
MOP average average Reference vector [8]
(o) (o)
0.868107 0.870008 p
ZbT1 (0.002837) (0.000371) (1.1,1.1) B
0536389 0.536265 p
ZDT2 (0.004921) (0.000593) (1.1,1.1)
0.876380 0.837894 p 10
ZDT3 (0.102611) (0.179280) (1.1,1.1) (10
12.441923 5.730229 p
ZDT4 (30.715277) (30.906695) (30.0,30.0)
96.209610 95.313012 p
ZbT6 (0.761493) (1.271933) (10, 10) [11]
oPRw | 26818676607 2.4937866-07 (0.007610,
(6.417924e-09) (6.483342¢-09) 0.005236)7
[12]
VII. CONCLUSIONS ANDFUTURE WORK

The effectiveness of MOEA/D-RBF was tested in [23][13]
where it was compared with respect to the original MOEA/D
and a current state-of-the-art MOEA assisted by surrogate
models (the MOEA/D-EGO [25]). Here, we have introduce 4
an extension of MOEA/D-RBF which includes a local search%s
mechanism in order to improve the convergence to the Paréts
front, when a low number of fitness function evaluations i
used. The proposed MOEA/D-RBF+LS was able to improv
the convergence of MOEA/D-RBF, when the search was lim-
ited to a low number of fitness function evaluations. We alsgz)
validated our proposed approach with a real-world computa-
tionally expensive MOP: an airfoil design problem. The ob-
tained results have shown that MOEA/D-RBF+LS is a viable
choice to deal with MOPs having different features, and thié8l
applicability to real-world applications could speed um<o
vergence to the PF in comparison to conventional MOEAsrlg]

6]

As part of our future work, we plan to use our approach in
problems having three or more objectives, which represent a
challenge to MOEAs assisted by surrogate models. Also, \xgo]
intend to explore the use of other mathematical programming
techniques in the local search mechanism. Finally, we are
also interested in testing our approach with more real-avorl
problems having a higher number of decision variables, ariel]
this is, indeed, part of our ongoing research.

[22]
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