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México D.F. 07300, MÉXICO
email: adriana.menchacamendez@gmail.com

Carlos A. Coello Coello
CINVESTAV-IPN,

Departamento de Computación
Av. IPN 2508. San Pedro Zacatenco
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Abstract—In this paper, we propose a new selection mech-
anism based on ε-dominance which is called “ε-selection”. An
interesting feature of this selection scheme is that it does not
require to set the value of ε ahead of time. Our ε-selection is in-
corporated into the GD-MOEA algorithm, giving rise to the so-
called “Generational Distance & ε-dominance Multi-Objective
Evolutionary Algorithm (GDE-MOEA)”. Our proposed GDE-
MOEA is validated using standard test functions taken from
the specialized literature, having three to six objective functions.
GDE-MOEA is compared with respect to the original GD-
MOEA, which is based on the generational distance indicator
and a technique based on Euclidean distances to improve the
diversity in the population. Additionally, our proposed approach
is compared with respect to MOEA/D using Penalty Boundary
Intersection (PBI), which is based on decomposition, and SMS-
EMOA-HYPE (a version of SMS-EMOA that uses a fitness
assignment scheme based on the use of an approximation of the
hypervolume indicator). Our preliminary results indicate that
our proposed GDE-MOEA is a good alternative to solve multi-
objective optimization problems having both low dimensionality
and high dimensionality in objective function space because it
obtains better results than GD-MOEA and MOEA/D in most
cases and it is competitive with respect to SMS-EMOA-HYPE
but at a much lower computational cost.

I. INTRODUCTION

In the real world, there are many optimization problems
which involve multiple objective functions. These objective
functions are usually in conflict with each other and they have
to be satisfied simultaneously. These types of problems are
called multi-objective optimization problems (MOPs). When
we solve MOPs, we want to find the best possible trade-offs
among the objectives, therefore, MOPs have several solutions
(the so-called Pareto optimal set whose image is called the
Pareto front). The use of evolutionary algorithms for solving
MOPs has become very popular and they are generically
called Multi-Objective Evolutionary Algorithms (MOEAs).
MOEAs have two main goals [1]: (i) to find solutions that
are, as close as possible, to the true Pareto front and, (ii) to
produce solutions that are spread along the Pareto front as
uniformly as possible. There are several indicators to assess
the quality of the approximation of the Pareto optimal set
generated by a MOEA, e.g., hypervolume, R2-indicator, ∆p-
indicator, ε-indicator, etc. [1]. However, very few indicators
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are “Pareto Compliant” 1.

MOEAs can be classified in two groups according to
their selection mechanism: (i) those that incorporate the
concept of Pareto optimality, and (ii) those that do not
use Pareto dominance to select individuals. Since Pareto-
based MOEAs have several limitations, mainly when solving
MOPs with many objective functions,2 MOEAs of type
(ii) have become relatively popular in recent years, e.g.,
MOEAs based on performance indicators. MOEAs based on
the hypervolume indicator (IH ) have been popular because
IH is the only unary indicator which is known to be “Pareto
compliant”. Additionally, Fleischer proved in [3] that, given
a finite search space and a reference point, maximizing
IH is equivalent to finding the Pareto optimal set. Some
examples of MOEAs based on IH are described in [4], [5],
[6], [7], [8]. Perhaps the best-known indicator-based MOEA
is SMS-EMOA [6]. An important disadvantage of this type of
MOEAs is that the problem of computing IH is #P-hard [9].
For this reason, they are impractical when we want to solve
MOPs having four or more objective functions.

In 2012, Brockhoff et al. [10] conducted a study about
the properties of the R2-indicator (IR2). After that, a number
of proposals of MOEAs based on IR2 were introduced [11],
[12], [13], [14]. These MOEAs can solve MOPs with many
objective functions at an affordable computational cost.
However, they need to generate a set of well-distributed
convex weights and this task becomes more difficult as we
increase the number of objective functions. The same applies
to MOEAs based on decomposition (which decompose the
MOP into a number of scalar optimization subproblems) like
the well-known MOEA/D [15]. Another popular indicator in
recent years is the ∆p-indicator (I∆pi

). It was introduced
by Schütze et al. [16] in 2012 and some MOEAs based
on it have already been proposed [17], [18], [19]. I∆pi

is composed of slight modifications of two well-known
indicators: generational distance (IGD) [20] and inverted
generational distance (IIGD) [21]. Therefore, it is necessary
to know the true Pareto front to calculate I∆pi

and perhaps

1An indicator I : Ω→ R is Pareto compliant if for all A,B ∈ Ω : A �
B ⇒ I(A) ≥ I(B), assuming that greater indicator values correspond to
higher quality.

2The number of nondominated solutions grows exponentially as we
increase the number of objective functions, and this rapidly dilutes the
selection pressure of a MOEA [2].



this is the most important disadvantage of MOEAs based
on I∆pi

: not being able to produce a good reference set
could cause that the algorithm cannot generate the complete
Pareto front, or that it generates poorly distributed solutions.
In extreme cases, the algorithm could not even converge to
the true Pareto front.

Recently, in [22], the authors proposed a MOEA based on
IGD which was called “GD-MOEA”. GD-MOEA uses the set
of nondominated solutions at each generation as a reference
set to calculate the fitness of the dominated individuals. They
argued that in this case it is not necessary to have a well-
distributed reference set because GD-MOEA uses IGD only
as a convergence strategy and it uses two other techniques
to maintain diversity in the population. According to the
experimental results presented, this MOEA could outperform
MOEA/D in several standard test problems and it was com-
petitive with respect to a version of SMS-EMOA that uses a
fitness assignment scheme based on the approximation of IH .
We found these results to be very interesting because they
imply that when many (even all) solutions are nondominated,
the diversity mechanism plays the most important role in the
search, i.e., in many-objective optimization problems, the
diversity mechanism can determine if the MOEA is able
to converge to the true Pareto front. For this reason, we
are interested in ε-dominance [23] as a strategy to maintain
diversity in the population. In 2005, Deb et al. proposed the
ε-MOEA. This MOEA uses an archive with a fixed size in
which the nondominated solutions are stored. The idea is that
the search space is divided in hypercubes of size equal to ε
and only one nondominated individual can reside in each
hypercube. ε-MOEA was able to outperform NSGA-II, C-
NSGA-II, PESA and SPEA2 and it is also computationally
efficient. The most important disadvantage of this MOEA is
related to setting the value of ε: for defining the right ε value,
it is necessary to known the true Pareto front as well as the
number of nondominated solutions that we want to store.

In this paper, we propose a technique based on ε-
dominance to maintain diversity in the population and we
use it instead of the technique based on Euclidean distances
adopted by GD-MOEA. An interesting aspect of our pro-
posed approach is that the value of ε is not an input to the
algorithm. We called the new algorithm “GDE-MOEA”. The
remainder of this paper is organized as follows. Section II
states the problem of our interest. Section III describes
the concept of ε-dominance. The original GD-MOEA is
explained in Section IV. Our ε-selection mechanism is pre-
sented in Section V. The complete GDE-MOEA is discussed
in Section VI. Our experimental validation and the results
obtained are shown in Section VII. Finally, we provide our
conclusions and some possible paths for future work in
Section VIII.

II. PROBLEM STATEMENT

We are interested in the general multiobjective optimiza-
tion problem (MOP), which is defined as follows: Find
~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T which optimizes

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (1)

such that ~x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region
of the problem. Assuming minimization problems, we have
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Fig. 1. ε-dominance. Vector ~b is the identification array of solution ~x
and it defines the area (ABCDA) which is ε-dominated by ~x. Using Pareto
dominance, ~x dominates any solution in the area EFCGE.

the following definitions.

Definition 1: We say that a vector ~u = [u1, . . . , un]T

dominates vector ~v = [v1, . . . , vn]T , denoted by ~u ≤p ~v, if
and only if fi(~u) ≤ fi(~v) for all i ∈ {1, ..., k} and there
exists an i ∈ {1, . . . , k} such that fi(~u) < fi(~v).

Definition 2: A point ~x∗ ∈ Ω is Pareto optimal if there
does not exist ~x ∈ Ω such that ~x ≤p ~x

∗.

Definition 3: A point ~x ∈ Ω is weakly Pareto optimal if
there does not exist another point ~y ∈ Ω such that fi(~y) <
fi(~x) for all i ∈ {1, ..., k}.

Definition 4: For a given MOP, ~f(~x), the Pareto optimal
set is defined as: P∗ = {~x ∈ Ω|¬∃~y ∈ Ω : ~f(~y) ≤p

~f(~x)}.

Definition 5: Let ~f(~x) be a given MOP and P∗ the
Pareto optimal set. Then, the Pareto Front is defined as:
PF∗ = {~f(~x) | ~x ∈ P∗}.

III. ε-DOMINANCE

To define ε-dominance between solutions, it is necessary
to calculate an identification array ~bi for each solution ~xi
as follows: ~bi = [b1, b2, · · · , bk] where bj = (b(fj(~xi) −
fmin
j )/εjc) ∗ εj . fmin

j is the minimum value of the j-
th objective and εj is the allowable tolerance in the j-th
objective. The identification arrays divide the whole objective
space into hypercubes, each having εj size in the j-th
objective. Figure 1 illustrates the concept of ε-dominance.
It is important to note that all points in a same hypercube
have the same identification array.

IV. GD-MOEA: A MOEA BASED ON THE
GENERATIONAL DISTANCE INDICATOR

GD-MOEA is a MOEA based on IGD which also uses
a technique based on Euclidean distances to improve the
diversity in the population. It works as follows: First, it
creates an initial population of size P . After that, it creates P
new individuals using the operators of NSGA-II (crossover
and mutation). It combines the population of parents and off-
spring to obtain a population of size 2P . Then, it selects the
P individuals that will take part of the following generation.



Finally, it repeats this process for a (pre-defined) number of
generations. Its selection process works as follows: Suppose
that P is the population which contains the parents and
offspring of the current generation; therefore, |P| = 2P .
Then, GD-MOEA wants to select P individuals from P .
First, it has to obtain the nondominated individuals in P
and it puts them in S . The remaining individuals (dominated
individuals) are placed in B.

If P > ‖S‖, it selects the remaining r individuals (where
r = P −‖S‖) from B as follows: It calculates the Euclidean
distance, di, from each dominated individual in B to its
nearest neighbor in S , and also, it is necessary to save its
neighboring nondominated individual. After that, it has to
sort B regarding di and it creates another set called “S ′ = ∅”.
Finally, for each ~xi ∈ B, it checks if its nearest neighbor in
S is equal to the nearest neighbor in S of some individual in
S ′. If the answer is no and ‖S ′‖ < r, then, it puts ~xi in S ′. If
all individuals in B are considered and ‖S ′‖ < r, it repeats
the last process but now it will allow that only one individual
in S ′ has the same neighbor that the individual that it wants
to select. It iterates until it obtains r individuals.

If P < ‖S‖, it chooses s individuals from S randomly.
These individuals are placed in S and it puts the remaining
nondominated individuals in a new set called “B”. For each
solution ~x ∈ B, it checks if it is similar (in objective
function space) to any selected individual in S.3 If it is
similar, the solution is not considered to be selected, else
GD-MOEA obtains its nearest neighbor from S, ~xnear, and
it chooses a random individual from S, ~xrandom such that
~xnear 6= ~xrandom, and then, these three solutions compete
to survive. First, ~x competes with ~xrandom. If the Euclidean
distance from ~x to its nearest neighbor in S is greater than the
Euclidean distance from ~xrandom to its nearest neighbor in S,
~x replaces ~xrandom. If ~x loses the competition, ~x competes
with its nearest neighbor to survive. If the Euclidean distance
from ~x to its nearest neighbor in S (without considering
~xnear) is greater than the Euclidean distance from ~xnear to
its nearest neighbor in S, then ~x replaces ~xnear.

V. OUR PROPOSAL: AN ε-SELECTION MECHANISM

As we know, when we want to solve many-objective
optimization problems the number of nondominated solutions
grows exponentially, and then, at early stages of the search
of a MOEA it is not possible to know which individuals
should be selected because most of them are nondominated.
In these cases, we think that the diversity techniques play
an important role in the search because if we can explore
the whole space, it is possible to find solutions which guide
us to the true Pareto front. Since ε-dominance divides the
whole space in a number of hypercubes, we can control that
only one nondominated solution resides in each hypercube:
if two solutions ~x1 and ~x2 have the same identification array
(~b1 = ~b2) then we prefer the nearest solution to the iden-
tification array. The main disadvantage when we work with
ε-dominance is to determine the value of εj for each objective
function (~ε = [ε1, · · · , εk]). To address this disadvantage, we

3GD-MOEA considers that one individual ~x is similar to another indi-
vidual ~y, if it is similar in any objective function: ~x.fi − ~y.fi < ε, where
ε is a small value.

propose the following: Suppose that we want to select S
individuals from a population of nondominated individuals
called ND. Then, we divide each objective function in two
equal parts:

εj = (fmax
j − fmin

j )/2 (2)

Where fmax
j and fmin

j are the maximun and minimum value
for the objective function j, considering all solutions in ND,
respectively. Then, we proceed to select the individuals (we
select a single nondominated individual for each hypercube
in the search space) and we put them in a set called S. After
that, if we have not selected the total number of individuals
(|S| < S) then we divide each objective function in three
equal parts:

εj = (fmax
j − fmin

j )/3 (3)

And, we still select the remaining individuals: We repeat
this process until selecting S nondominated individuals. It is
important to verify that individuals of different hypercubes
are not similar (we check similarity in the same way that
GD-MOEA). If we do not check similarity, we could obtain
only weakly Pareto optimal points or the convergence to the
true Pareto front could be slower.

VI. GDE-MOEA: A NEW MOEA BASED ON
GENERATIONAL DISTANCE INDICATOR AND ON

ε-DOMINANCE

In this paper, we propose a new MOEA based on GD-
MOEA but instead of using its technique based on Euclidean
distances to improve the diversity in the population, we pro-
pose to use the ε-selection mechanism proposed in the above
Section, i.e., we use IGD-selection as a convergence strategy
and we use the ε-selection mechanism to explore the whole
search space at early stages of the search and to improve
the distribution of solutions along the Pareto front at the
end of the search. The new MOEA is called “Generational
Distance & ε-dominance Multi-Objective Evolutionary Algo-
rithm (GDE-MOEA)”. Our GDE-MOEA works as follows:
First, it creates an initial population of size P . After that,
it creates P new individuals using the operators of NSGA-
II (crossover and mutation). It combines the population of
parents and offspring to obtain a population of size 2P . Then,
it selects the P individuals that will take part of the following
generation. The complete selection process that we propose
is shown in Algorithm 1. Finally, it repeats this process
for a (pre-defined) number of generations. It is important
to mention that our selection mechanism is applied on the
objective function space and that the population has to be
normalized.

VII. EXPERIMENTAL RESULTS

We validated our proposed GDE-MOEA by comparing
it with respect to GD-MOEA, MOEA/D and SMS-EMOA-
HYPE. In the case of SMS-EMOA-HYPE, we used the
source code of HyPE available in the public domain [24]
adopting 104 as our number of samples to assign fitness in
the original SMS-EMOA. This is because our main aim is to
validate the effect of our selection mechanism. Therefore, all
MOEAs used for the comparison must create the individuals
in the same way in order to allow a fair comparison. In the
case of MOEA/D, we generated the convex weights using



Algorithm 1: GDE-Selection
Input : P (population), s (number of individuals to choose

s < ‖P‖).
Output: S (selected individuals).

1 Put in S the nondominated individuals of P;
2 if s > ‖S‖ then

/*IGD-selection */
3 Put in B the dominated individuals of P;
4 Calculate the Euclidean distance di from each

individual ~xi ∈ B to its nearest neighbor in S and we
also save its closest nondominated neighbor;

5 Sort B with respect to d (ascending order);
6 S ′ ← ∅, r ← s− ‖S‖, contIndAux← 0, i← 1;
7 while ‖S ′‖ < r do
8 contInd← 0;
9 foreach ~s ∈ S ′ do

10 if ~s.neighbor = B.~xi.neighbor then
11 contInd← contInd+ 1;
12 end
13 end
14 if contInd ≤ contIndAux then
15 Put B.~xi in S ′;
16 end
17 repeat
18 i← i+ 1;
19 until B.~xi /∈ S ′;
20 if i = ‖B‖ then
21 i← 0, contIndAux← contIndAux+ 1;
22 end
23 end
24 S ← S ∪ S ′;
25 else

/*ε-selection */
26 if s < ‖S‖ then

/*Set the number of divisions */
27 n← 1;

/*Initialize the set of selected
individuals */

28 S ← ∅;
29 while |S| < S do
30 n← n+ 1;
31 Set the vector ~ε: εj ← (fmax

j − fmin
j )/n

(where j indicates the objective function);
32 Update the identification array for each

individual in ND and for each individual in S;
33 foreach ~xi ∈ ND and S < |S| do
34 if ~xi is not similar to any individual in S

then
35 flag ← 0;
36 foreach ~si ∈ S do
37 if ~si.~b = ~xi.~b then
38 if ~xi is nearest to ~b than ~si

then
39 ~xi replaces ~si;
40 flag ← 1;
41 end
42 end
43 end
44 if flag = 0 then
45 Put ~xi in S: S ← S ∪ ~xi;
46 end
47 end
48 end
49 end
50 end
51 end
52 return S;

the technique proposed in [25] and after that, we applied
clustering (k-means) to obtain a specific number of weights.4

For our experiments, we used seven problems taken from
the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [26]. We
used k = 5 for DTLZ1, DTLZ3 and DTLZ6 and k = 10 for
the remaining test problems. Also, we used seven problems
taken from the WFG toolkit [27], with k factor = 2 and
l factor = 10. For each test problem, we performed 30
independent runs. For all four algorithms, we adopted the
parameters suggested by the authors of NSGA-II: pc = 0.9
(crossover probability), pm = 1/n (mutation probability),
where n is the number of decision variables. We also used
ηc = 15 and ηm = 20, respectively. We performed a
maximum of 50,000 fitness function evaluations (in this case,
we used a population size of 100 individuals and we iterated
for 500 generations).

A. Performance Indicators

We adopted two indicators to validate our results: the
hypervolume indicator (IH ) and the two set coverage indica-
tor (ISC). Both of them are “Pareto compliant”. IH rewards
both convergence towards the Pareto front as well as the
maximum spread of the solutions obtained. And, ISC only
measures convergence. If Λ denotes the Lebesgue measure,
IH is defined as:

IH(A, ~yref ) = Λ

 ⋃
~y∈A

{~x | ~y ≺ ~x ≺ ~yref}

 (4)

where A is the approximation of the Pareto optimal set
and ~yref ∈ Rk denotes a reference point which should
be dominated by all possible points. To calculate IH , we
normalized the approximations of the Pareto optimal set,
generated by the MOEAs, and we used yref = [y1, · · · , yk]
such that yi = 1.1 as our reference point. The normalization
was performed considering all approximations generated
by the different MOEAs (i.e., we put, in one set, all the
nondominated solutions found and from this set we calculate
the maximum and minimum for each objective function).

Let A,B be two approximations of the Pareto optimal
set, ISC is defined as follows:

ISC(A,B) =
|~b ∈ B such that ∃~a ∈ A with ~a ≺ ~b|

|B|
If all points in A dominate or are equal to all points in B,
then by definition ISC = 1. ISC = 0 implies that no element
in B is dominated by any element of A. In general, both
ISC(A,B) and ISC(B,A) have to be considered.

B. Discussion of Results

Table I shows the results with respect to IH as well as
the results of the statistical analysis (using Wilcoxon’s rank
sum) that we made to validate our experiments. Tables I(a)
and I(d) show the comparison with respect to “GD-MOEA”

4The source code of the four algorithms (MOEA/D, SMS-EMOA-HYPE,
GD-MOEA and GDE-MOEA) can be provided by the first author upon
request. For MOEA/D, we used the source code available in the MOEA/D
webpage



and we can see that in the DTLZ test problems GD-MOEA
outperforms our GDE-MOEA in ten cases, GDE-MOEA
outperforms GD-MOEA in fourteen cases and they have
a similar behavior (we cannot reject the null hypothesis:
“medians are equal”) in four cases. In the WFG test prob-
lems, we can see that our GDE-MOEA outperforms GD-
MOEA in twenty-two cases and it is only outperformed
in six cases. Therefore, we can say that our GDE-MOEA
outperforms GD-MOEA in most cases. Also, if we look at
Tables II(a) and II(d), we can see that our GDE-MOEA is
faster than GD-MOEA in most cases. Only in four cases,
GD-MOEA required less time than our GDE-MOEA to
obtain the approximation of the Pareto front but in the fifty-
two remaining cases our GDE-MOEA is faster. In fact, if
we consider the worst time required by each algorithm, we
can say that our GDE-MOEA is 1.10 times faster than GD-
MOEA.

Tables I(b) and I(e) show the comparison with respect to
“MOEA/D”. In the DTLZ test problems, our GDE-MOEA
outperforms MOEA/D in eighteen cases, it is outperformed
in eight cases and they obtain similar results in two cases.
In the WFG test problems, our GDE-MOEA outperforms
MOEA/D in twenty-four cases and it is outperformed in
four cases. Therefore, we can say that our GDE-MOEA
outperforms MOEA/D in most cases. With respect to the
time required by each algorithm, we can see in Tables II(b)
and II(e) that MOEA/D is faster than our GDE-MOEA in
most problems (fourty-eight of fifty-six cases). However, it
is important to keep in mind that our GDE-MOEA outper-
forms MOEA/D in several cases with a significant difference
and MOEA/D is only 1.29 times faster than GDE-MOEA
(considering the worst case for each algorithm).

Tables I(c) and I(f) show the results with respect to
“SMS-EMOA-HYPE” and we can see that SMS-EMOA-
HYPE outperforms our GDE-MOEA in twenty-one DTLZ
test problems, they have a similar behavior in three cases and
our GDE-MOEA outperforms SMS-EMOA in four DTLZ
test problems. Regarding the WFG test problems, our GDE-
MOEA outperforms SMS-EMOA-HYPE in five cases, they
have a similar behavior in six cases and it is outperformed
in seventeen cases. However, if we look at the time required
by each algorithm, see Tables II(c) II(f), we can note that
our GDE-MOEA is faster than SMS-EMOA-HYPE in all
cases and the difference is significant: GDE-MOEA requires
at most 2.35 seconds to solve a MOP with six objective
functions while SMS-EMOA-HYPE needs up to 445.73 sec-
onds to solve a MOP with six objective functions, i.e., GDE-
MOEA is 189.67 times faster than SMS-EMOA-HYPE.

Finally, for a more detailed comparison between the
original version of GD-MOEA and our GDE-MOEA, we
decided to use ISC . Table III shows the results obtained by
the original GD-MOEA and our GDE-MOEA with respect
to ISC and we can corroborate that GDE-MOEA is better
than GD-MOEA in most cases (even if we only consider
convergence). Only in three cases both algorithms cannot
cover any solution found by the other algorithm. However,
in forty-four cases, GDE-MOEA covered a higher percentage
of solutions found by GD-MOEA than the percentage of
solutions found by GD-MOEA which managed to cover
only some of the solutions found by GDE-MOEA. And,

only in nine cases the percentage of solutions found by
GD-MOEA that cover some solution found by GDE-MOEA
is higher than the percentage of solutions found by GDE-
MOEA which covers some solution found by GD-MOEA.

An interesting thing that we must note is that our GDE-
MOEA has serious difficulties to solve the DTLZ1 test
problem. Although this test problem has a linear Pareto front
is well-known that when we solve this test problem many
weakly dominated solutions are generated during the search
process. This indicates that our technique still has room for
improvement.

~f
gd-moea
ISC

(A,B)

gde-moea
ISC

(B,A)
DTLZ1 (3) 0.014000 0.139333
DTLZ2 (3) 0.007667 0.271667
DTLZ3 (3) 0.106667 0.171333
DTLZ4 (3) 0.010667 0.290333
DTLZ5 (3) 0.130000 0.334667
DTLZ6 (3) 0.777667 0.524667
DTLZ7 (3) 0.144667 0.188667
DTLZ1 (4) 0.503000 0.120000
DTLZ2 (4) 0.004333 0.142000
DTLZ3 (4) 0.165667 0.359667
DTLZ4 (4) 0.003667 0.155667
DTLZ5 (4) 0.129333 0.390000
DTLZ6 (4) 0.077667 0.914667
DTLZ7 (4) 0.156333 0.177333
DTLZ1 (5) 0.993667 0.043000
DTLZ2 (5) 0.000000 0.062333
DTLZ3 (5) 0.537000 0.518333
DTLZ4 (5) 0.000000 0.075333
DTLZ5 (5) 0.128000 0.461000
DTLZ6 (5) 0.011333 0.987000
DTLZ7 (5) 0.059667 0.096333
DTLZ1 (6) 0.915667 0.711333
DTLZ2 (6) 0.000000 0.051333
DTLZ3 (6) 0.080667 0.943000
DTLZ4 (6) 0.000000 0.069333
DTLZ5 (6) 0.048333 0.604000
DTLZ6 (6) 0.001333 0.988333
DTLZ7 (6) 0.202333 0.101333

~f
gd-moea
ISC

(A,B)

gde-moea
ISC

(B,A)
WFG1 (3) 0.000000 0.003000
WFG2 (3) 0.429667 0.734667
WFG3 (3) 0.000667 0.378667
WFG4 (3) 0.000000 0.772000
WFG5 (3) 0.000000 0.204333
WFG6 (3) 0.000333 0.394333
WFG7 (3) 0.002667 0.358667
WFG1 (4) 0.000000 0.000333
WFG2 (4) 0.210333 0.798667
WFG3 (4) 0.002333 0.640333
WFG4 (4) 0.000333 0.381667
WFG5 (4) 0.000000 0.110333
WFG6 (4) 0.014000 0.303000
WFG7 (4) 0.004333 0.013667
WFG1 (5) 0.000000 0.000000
WFG2 (5) 0.142000 0.805333
WFG3 (5) 0.145667 0.487000
WFG4 (5) 0.000000 0.243000
WFG5 (5) 0.000000 0.056667
WFG6 (5) 0.311000 0.084667
WFG7 (5) 0.004000 0.000000
WFG1 (6) 0.000000 0.000000
WFG2 (6) 0.406333 0.599667
WFG3 (6) 0.128000 0.375333
WFG4 (6) 0.000000 0.105000
WFG5 (6) 0.000000 0.023333
WFG6 (6) 0.315333 0.064333
WFG7 (6) 0.000000 0.000000

TABLE III. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS
BY GD-MOEA AND OUR GDE-MOEA, USING THE TWO SET COVERAGE

INDICATOR (ISC ).A IS THE SET COMPOSED BY ALL SOLUTIONS FOUND BY
GD-MOEA CONSIDERING ALL 30 INDEPENDENT RUNS AND B IS THE SET

COMPOSED BY ALL SOLUTIONS FOUND BY GDE-MOEA CONSIDERING ALL 30
INDEPENDENT RUNS.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed a new selection mechanism based on
ε-dominance and we called it “ε-selection”. This mechanism
has two aims: the first is to achieve that a MOEA can explore
the whole search space at the beginning of the search process
and, the second is to improve the distribution of the solutions
along the approximation of the Pareto front towards the
end of the search. An interesting feature of our ε-selection
mechanism is that the user does not need to set the value
of ε. Although it seems that our strategy to set ε can affect
the efficiency of our GDE-MOEA because we need to iterate
until selecting the total number of individuals, in practice, we
could see that our GDE-MOEA was faster than GD-MOEA



~f
gd-moea
IH

gde-moea
IH

P (H)

DTLZ1 (3) 1.0842 (0.005) 1.0622 (0.017) 0.000 (1)
DTLZ2 (3) 0.7197 (0.006) 0.7527 (0.003) 0.000 (1)
DTLZ3 (3) 1.3278 (0.002) 1.3264 (0.005) 0.251 (0)
DTLZ4 (3) 0.8347 (0.008) 0.8650 (0.002) 0.000 (1)
DTLZ5 (3) 0.6638 (0.015) 0.6686 (0.003) 0.706 (0)
DTLZ6 (3) 1.1250 (0.011) 1.1292 (0.004) 0.206 (0)
DTLZ7 (3) 0.5078 (0.063) 0.5100 (0.064) 0.428 (0)
DTLZ1 (4) 1.2077 (0.199) 0.2282 (0.443) 0.000 (1)
DTLZ2 (4) 0.9087 (0.013) 0.7387 (0.077) 0.000 (1)
DTLZ3 (4) 1.4608 (0.006) 1.4626 (0.003) 0.035 (1)
DTLZ4 (4) 0.9027 (0.015) 0.8357 (0.049) 0.000 (1)
DTLZ5 (4) 1.1401 (0.018) 1.1761 (0.004) 0.000 (1)
DTLZ6 (4) 1.2517 (0.036) 1.3606 (0.007) 0.000 (1)
DTLZ7 (4) 0.5328 (0.038) 0.5612 (0.046) 0.000 (1)
DTLZ1 (5) 0.4102 (0.490) 0.0000 (0.000) 0.000 (1)
DTLZ2 (5) 1.0680 (0.027) 0.7464 (0.092) 0.000 (1)
DTLZ3 (5) 1.5942 (0.013) 1.6085 (0.001) 0.000 (1)
DTLZ4 (5) 1.0309 (0.017) 0.9261 (0.059) 0.000 (1)
DTLZ5 (5) 1.2534 (0.088) 1.3313 (0.021) 0.000 (1)
DTLZ6 (5) 1.1999 (0.067) 1.4741 (0.017) 0.000 (1)
DTLZ7 (5) 0.4457 (0.046) 0.4809 (0.022) 0.000 (1)
DTLZ1 (6) 0.0150 (0.049) 0.0000 (0.000) 0.041 (1)
DTLZ2 (6) 1.2215 (0.027) 0.8923 (0.117) 0.000 (1)
DTLZ3 (6) 1.7127 (0.049) 1.7685 (0.002) 0.000 (1)
DTLZ4 (6) 1.2839 (0.059) 1.1521 (0.144) 0.000 (1)
DTLZ5 (6) 0.9733 (0.115) 1.1284 (0.076) 0.000 (1)
DTLZ6 (6) 0.9630 (0.039) 1.5303 (0.078) 0.000 (1)
DTLZ7 (6) 0.5515 (0.061) 0.6250 (0.020) 0.000 (1)

moead-pbi
IH

gde-moea
IH

P (H)

1.0710 (0.003) 1.0622 (0.017) 0.228 (0)
0.7146 (0.000) 0.7527 (0.003) 0.000 (1)
1.3128 (0.001) 1.3264 (0.005) 0.000 (1)
0.8194 (0.000) 0.8650 (0.002) 0.000 (1)
0.6190 (0.004) 0.6686 (0.003) 0.000 (1)
1.0210 (0.011) 1.1292 (0.004) 0.000 (1)
0.4506 (0.027) 0.5100 (0.064) 0.000 (1)
1.1858 (0.005) 0.2282 (0.443) 0.000 (1)
0.8653 (0.001) 0.7387 (0.077) 0.000 (1)
1.4555 (0.001) 1.4626 (0.003) 0.000 (1)
0.8598 (0.001) 0.8357 (0.049) 0.000 (1)
1.0325 (0.026) 1.1761 (0.004) 0.000 (1)
1.2891 (0.006) 1.3606 (0.007) 0.000 (1)
0.3430 (0.007) 0.5612 (0.046) 0.000 (1)
1.2463 (0.011) 0.0000 (0.000) 0.000 (1)
0.9644 (0.004) 0.7464 (0.092) 0.000 (1)
1.5816 (0.008) 1.6085 (0.001) 0.000 (1)
0.9328 (0.003) 0.9261 (0.059) 0.011 (1)
1.1882 (0.022) 1.3313 (0.021) 0.000 (1)
1.4415 (0.012) 1.4741 (0.017) 0.000 (1)
0.0985 (0.067) 0.4809 (0.022) 0.000 (1)
1.3059 (0.013) 0.0000 (0.000) 0.000 (1)
1.0007 (0.011) 0.8923 (0.117) 0.000 (1)
1.7610 (0.005) 1.7685 (0.002) 0.000 (1)
1.0289 (0.007) 1.1521 (0.144) 0.000 (1)
0.9985 (0.018) 1.1284 (0.076) 0.000 (1)
1.5454 (0.017) 1.5303 (0.078) 0.233 (0)
0.0260 (0.006) 0.6250 (0.020) 0.000 (1)

sms-emoa-hype
IH

gde-moea
IH

P (H)

1.1011 (0.006) 1.0622 (0.017) 0.000 (1)
0.7482 (0.002) 0.7527 (0.003) 0.000 (1)
1.3298 (0.000) 1.3264 (0.005) 0.000 (1)
0.8642 (0.002) 0.8650 (0.002) 0.074 (0)
0.6784 (0.000) 0.6686 (0.003) 0.000 (1)
1.1237 (0.013) 1.1292 (0.004) 0.355 (0)
0.5419 (0.035) 0.5100 (0.064) 0.006 (1)
1.2586 (0.057) 0.2282 (0.443) 0.000 (1)
1.0144 (0.003) 0.7387 (0.077) 0.000 (1)
1.4636 (0.000) 1.4626 (0.003) 0.004 (1)
1.0153 (0.004) 0.8357 (0.049) 0.000 (1)
1.1826 (0.002) 1.1761 (0.004) 0.000 (1)
1.3577 (0.005) 1.3606 (0.007) 0.013 (1)
0.5309 (0.038) 0.5612 (0.046) 0.000 (1)
1.2371 (0.348) 0.0000 (0.000) 0.000 (1)
1.2793 (0.005) 0.7464 (0.092) 0.000 (1)
1.6087 (0.000) 1.6085 (0.001) 0.371 (0)
1.2567 (0.005) 0.9261 (0.059) 0.000 (1)
1.3891 (0.002) 1.3313 (0.021) 0.000 (1)
1.5292 (0.004) 1.4741 (0.017) 0.000 (1)
0.5017 (0.048) 0.4809 (0.022) 0.001 (1)
1.5008 (0.235) 0.0000 (0.000) 0.000 (1)
1.5706 (0.005) 0.8923 (0.117) 0.000 (1)
1.7710 (0.000) 1.7685 (0.002) 0.000 (1)
1.6172 (0.003) 1.1521 (0.144) 0.000 (1)
1.3218 (0.005) 1.1284 (0.076) 0.000 (1)
1.6757 (0.006) 1.5303 (0.078) 0.000 (1)
0.4905 (0.117) 0.6250 (0.020) 0.000 (1)

(a) (b) (c)
~f

gd-moea
IH

gde-moea
IH

P (H)

WFG1 (3) 0.8516 (0.037) 0.9095 (0.054) 0.000(1)
WFG2 (3) 0.5334 (0.124) 0.6643 (0.104) 0.000(1)
WFG3 (3) 0.5987 (0.008) 0.6101 (0.003) 0.000(1)
WFG4 (3) 0.6562 (0.008) 0.7454 (0.002) 0.000(1)
WFG5 (3) 0.5310 (0.004) 0.5362 (0.003) 0.000(1)
WFG6 (3) 0.5248 (0.008) 0.5447 (0.002) 0.000(1)
WFG7 (3) 0.6644 (0.012) 0.6989 (0.010) 0.000(1)
WFG1 (4) 0.6518 (0.115) 0.8576 (0.056) 0.000(1)
WFG2 (4) 0.1651 (0.189) 0.5304 (0.126) 0.000(1)
WFG3 (4) 0.4531 (0.025) 0.5692 (0.012) 0.000(1)
WFG4 (4) 0.8266 (0.015) 0.7492 (0.041) 0.000(1)
WFG5 (4) 0.5302 (0.006) 0.5585 (0.005) 0.000(1)
WFG6 (4) 0.3600 (0.044) 0.5087 (0.021) 0.000(1)
WFG7 (4) 0.8191 (0.019) 0.5904 (0.060) 0.000(1)
WFG1 (5) 0.4915 (0.039) 0.7824 (0.049) 0.000(1)
WFG2 (5) 0.1603 (0.146) 0.5505 (0.160) 0.000(1)
WFG3 (5) 0.2793 (0.066) 0.5263 (0.032) 0.000(1)
WFG4 (5) 0.8997 (0.030) 0.7646 (0.063) 0.000(1)
WFG5 (5) 0.4703 (0.019) 0.5415 (0.047) 0.000(1)
WFG6 (5) 0.2704 (0.053) 0.4385 (0.042) 0.000(1)
WFG7 (5) 0.8501 (0.022) 0.3793 (0.071) 0.000(1)
WFG1 (6) 0.5715 (0.043) 0.7742 (0.088) 0.000(1)
WFG2 (6) 0.1217 (0.145) 0.2751 (0.212) 0.001(1)
WFG3 (6) 0.1443 (0.055) 0.4780 (0.049) 0.000(1)
WFG4 (6) 0.9290 (0.035) 0.8766 (0.050) 0.000(1)
WFG5 (6) 0.3477 (0.047) 0.5064 (0.071) 0.000(1)
WFG6 (6) 0.2171 (0.053) 0.3569 (0.060) 0.000(1)
WFG7 (6) 0.8067 (0.036) 0.3271 (0.067) 0.000(1)

moead-pbi
IH

gde-moea
IH

P (H)

0.9172 (0.015) 0.9095 (0.054) 0.011 (1)
0.1610 (0.204) 0.6643 (0.104) 0.000 (1)
0.4993 (0.026) 0.6101 (0.003) 0.000 (1)
0.6031 (0.013) 0.7454 (0.002) 0.000 (1)
0.4732 (0.010) 0.5362 (0.003) 0.000 (1)
0.4545 (0.007) 0.5447 (0.002) 0.000 (1)
0.5025 (0.057) 0.6989 (0.010) 0.000 (1)
1.1003 (0.040) 0.8576 (0.056) 0.000 (1)
0.0041 (0.022) 0.5304 (0.126) 0.000 (1)
0.2888 (0.035) 0.5692 (0.012) 0.000 (1)
0.6749 (0.026) 0.7492 (0.041) 0.000 (1)
0.3724 (0.016) 0.5585 (0.005) 0.000 (1)
0.2902 (0.016) 0.5087 (0.021) 0.000 (1)
0.3354 (0.043) 0.5904 (0.060) 0.000 (1)
1.1742 (0.041) 0.7824 (0.049) 0.000 (1)
0.0173 (0.045) 0.5505 (0.160) 0.000 (1)
0.1587 (0.039) 0.5263 (0.032) 0.000 (1)
0.6687 (0.025) 0.7646 (0.063) 0.000 (1)
0.2432 (0.014) 0.5415 (0.047) 0.000 (1)
0.2492 (0.014) 0.4385 (0.042) 0.000 (1)
0.2560 (0.017) 0.3793 (0.071) 0.000 (1)
1.0998 (0.013) 0.7742 (0.088) 0.000 (1)
0.0067 (0.028) 0.2751 (0.212) 0.000 (1)
0.1348 (0.050) 0.4780 (0.049) 0.000 (1)
0.5984 (0.029) 0.8766 (0.050) 0.000 (1)
0.1633 (0.018) 0.5064 (0.071) 0.000 (1)
0.2354 (0.020) 0.3569 (0.060) 0.000 (1)
0.2108 (0.015) 0.3271 (0.067) 0.000 (1)

sms-emoa-hype
IH

gde-moea
IH

P (H)

0.9888 (0.049) 0.9095 (0.054) 0.000 (1)
0.6581 (0.053) 0.6643 (0.104) 0.153 (0)
0.6066 (0.007) 0.6101 (0.003) 0.014 (1)
0.7114 (0.005) 0.7454 (0.002) 0.000 (1)
0.5395 (0.003) 0.5362 (0.003) 0.000 (1)
0.5479 (0.004) 0.5447 (0.002) 0.000 (1)
0.5717 (0.029) 0.6989 (0.010) 0.000 (1)
1.1455 (0.028) 0.8576 (0.056) 0.000 (1)
0.5083 (0.213) 0.5304 (0.126) 0.830 (0)
0.5381 (0.016) 0.5692 (0.012) 0.000 (1)
0.9615 (0.008) 0.7492 (0.041) 0.000 (1)
0.5660 (0.005) 0.5585 (0.005) 0.000 (1)
0.5669 (0.010) 0.5087 (0.021) 0.000 (1)
0.4874 (0.037) 0.5904 (0.060) 0.000 (1)
1.2570 (0.031) 0.7824 (0.049) 0.000 (1)
0.5071 (0.240) 0.5505 (0.160) 0.652 (0)
0.5193 (0.029) 0.5263 (0.032) 0.332 (0)
1.1509 (0.019) 0.7646 (0.063) 0.000 (1)
0.5915 (0.011) 0.5415 (0.047) 0.000 (1)
0.5649 (0.016) 0.4385 (0.042) 0.000 (1)
0.3723 (0.023) 0.3793 (0.071) 0.841 (0)
1.3561 (0.031) 0.7742 (0.088) 0.000 (1)
0.4691 (0.260) 0.2751 (0.212) 0.002 (1)
0.5209 (0.033) 0.4780 (0.049) 0.000 (1)
1.2922 (0.025) 0.8766 (0.050) 0.000 (1)
0.6043 (0.015) 0.5064 (0.071) 0.000 (1)
0.5646 (0.027) 0.3569 (0.060) 0.000 (1)
0.3183 (0.017) 0.3271 (0.067) 0.970 (0)

(d) (e) (f)
TABLE I. RESULTS OBTAINED IN THE DTLZ AND WFG TEST PROBLEMS. WE COMPARE OUR GDE-MOEA WITH RESPECT TO GD-MOEA, MOEA/D AND

SMS-EMOA-HYPE, USING THE HYPERVOLUME INDICATOR (IH ). WE SHOW AVERAGE VALUES OVER 30 INDEPENDENT RUNS. THE VALUES IN PARENTHESES
CORRESPOND TO THE STANDARD DEVIATIONS. THE THIRD COLUMN OF EACH TABLE SHOWS THE RESULTS OF THE STATISTICAL ANALYSIS APPLIED TO OUR EXPERIMENTS
USING WILCOXONS RANK SUM. P IS THE PROBABILITY OF OBSERVING THE GIVEN RESULT (THE NULL HYPOTHESIS IS TRUE). SMALL VALUES OF P CAST DOUBT ON THE

VALIDITY OF THE NULL HYPOTHESIS. H = 0 INDICATES THAT THE NULL HYPOTHESIS (“MEDIANS ARE EQUAL”) CANNOT BE REJECTED AT THE 5% LEVEL. H = 1
INDICATES THAT THE NULL HYPOTHESIS CAN BE REJECTED AT THE 5% LEVEL.

and SMS-EMOA-HYPE. Therefore, we can say that we
address the main disadvantage of the selection mechanisms

based on ε-dominance. Our ε-selection mechanism has a
linear complexity with respect to the number of objective



~f
gd-moea

time
gde-moea

time
DTLZ1 (3) 0.7970 (0.033) 0.5000 (0.049)
DTLZ2 (3) 1.1680 (0.027) 0.5133 (0.009)
DTLZ3 (3) 0.6343 (0.026) 0.4830 (0.031)
DTLZ4 (3) 1.1877 (0.031) 0.5410 (0.007)
DTLZ5 (3) 1.0603 (0.054) 0.6017 (0.018)
DTLZ6 (3) 0.8973 (0.044) 0.4783 (0.016)
DTLZ7 (3) 0.9127 (0.052) 0.5320 (0.012)
DTLZ1 (4) 0.8627 (0.047) 0.7510 (0.050)
DTLZ2 (4) 1.1453 (0.041) 0.6033 (0.031)
DTLZ3 (4) 0.8247 (0.053) 0.5550 (0.037)
DTLZ4 (4) 1.1830 (0.054) 0.6507 (0.043)
DTLZ5 (4) 1.1030 (0.042) 0.6080 (0.017)
DTLZ6 (4) 1.4060 (0.109) 0.4997 (0.019)
DTLZ7 (4) 0.9217 (0.035) 0.6197 (0.038)
DTLZ1 (5) 0.9467 (0.047) 0.6330 (0.051)
DTLZ2 (5) 1.1317 (0.014) 0.7160 (0.066)
DTLZ3 (5) 1.0660 (0.087) 0.6430 (0.053)
DTLZ4 (5) 1.1523 (0.022) 0.7703 (0.043)
DTLZ5 (5) 1.1407 (0.055) 0.7240 (0.048)
DTLZ6 (5) 1.7253 (0.041) 0.6187 (0.030)
DTLZ7 (5) 1.0603 (0.097) 0.6920 (0.015)
DTLZ1 (6) 1.4997 (0.284) 0.7063 (0.021)
DTLZ2 (6) 1.1307 (0.065) 0.7850 (0.022)
DTLZ3 (6) 1.5993 (0.152) 0.7353 (0.061)
DTLZ4 (6) 1.2000 (0.030) 0.9027 (0.068)
DTLZ5 (6) 1.3610 (0.106) 0.7990 (0.089)
DTLZ6 (6) 1.7547 (0.213) 0.7507 (0.038)
DTLZ7 (6) 1.3053 (0.073) 0.7590 (0.012)

moead-pbi
time

gde-moea
time

0.4993 (0.016) 0.5000 (0.049)
0.5783 (0.010) 0.5133 (0.009)
0.5195 (0.012) 0.4830 (0.031)
0.6037 (0.008) 0.5410 (0.007)
0.5922 (0.007) 0.6017 (0.018)
0.5007 (0.018) 0.4783 (0.016)
0.5397 (0.008) 0.5320 (0.012)
0.5230 (0.008) 0.7510 (0.050)
0.6147 (0.012) 0.6033 (0.031)
0.5533 (0.020) 0.5550 (0.037)
0.6440 (0.011) 0.6507 (0.043)
0.6128 (0.009) 0.6080 (0.017)
0.5351 (0.010) 0.4997 (0.019)
0.5860 (0.008) 0.6197 (0.038)
0.5532 (0.005) 0.6330 (0.051)
0.6453 (0.010) 0.7160 (0.066)
0.5785 (0.012) 0.6430 (0.053)
0.6949 (0.004) 0.7703 (0.043)
0.6455 (0.004) 0.7240 (0.048)
0.5784 (0.008) 0.6187 (0.030)
0.6289 (0.004) 0.6920 (0.015)
0.5816 (0.011) 0.7063 (0.021)
0.6750 (0.003) 0.7850 (0.022)
0.6162 (0.017) 0.7353 (0.061)
0.7485 (0.003) 0.9027 (0.068)
0.6683 (0.011) 0.7990 (0.089)
0.6308 (0.006) 0.7507 (0.038)
0.6589 (0.012) 0.7590 (0.012)

sms-emoa-hype
time

gde-moea
time

47.0000 (2.620) 0.5000 (0.049)
106.1333 (4.105) 0.5133 (0.009)

135.9667 (21.629) 0.4830 (0.031)
107.1667 (3.822) 0.5410 (0.007)
64.3333 (5.430) 0.6017 (0.018)
59.0667 (9.747) 0.4783 (0.016)
98.4333 (9.106) 0.5320 (0.012)
59.6667 (3.280) 0.7510 (0.050)

156.0333 (6.555) 0.6033 (0.031)
165.9333 (18.995) 0.5550 (0.037)
157.2667 (9.602) 0.6507 (0.043)
143.1667 (4.796) 0.6080 (0.017)
129.1000 (7.648) 0.4997 (0.019)

185.6667 (16.067) 0.6197 (0.038)
79.1333 (5.632) 0.6330 (0.051)

188.3333 (8.231) 0.7160 (0.066)
177.1000 (24.347) 0.6430 (0.053)
190.5000 (6.845) 0.7703 (0.043)

229.3333 (14.328) 0.7240 (0.048)
225.3667 (11.056) 0.6187 (0.030)
296.9333 (23.678) 0.6920 (0.015)

98.9333 (6.904) 0.7063 (0.021)
233.3667 (11.182) 0.7850 (0.022)
185.3000 (22.371) 0.7353 (0.061)
234.6333 (10.581) 0.9027 (0.068)
336.9000 (18.293) 0.7990 (0.089)
340.4333 (16.669) 0.7507 (0.038)
377.9000 (42.232) 0.7590 (0.012)

(a) (b) (c)
~f

gd-moea
time

gde-moea
time

WFG1 (3) 1.5650 (0.044) 1.2473 (0.076)
WFG2 (3) 1.4520 (0.129) 1.1443 (0.109)
WFG3 (3) 1.4500 (0.088) 1.0930 (0.064)
WFG4 (3) 2.1980 (0.026) 1.0647 (0.054)
WFG5 (3) 2.0107 (0.018) 1.2197 (0.143)
WFG6 (3) 1.5693 (0.022) 1.0500 (0.041)
WFG7 (3) 2.4217 (0.019) 1.3157 (0.110)
WFG1 (4) 1.3950 (0.065) 1.3227 (0.040)
WFG2 (4) 1.6833 (0.279) 1.4180 (0.120)
WFG3 (4) 1.4767 (0.197) 1.1403 (0.054)
WFG4 (4) 2.3590 (0.019) 1.2107 (0.075)
WFG5 (4) 1.8057 (0.026) 1.2380 (0.143)
WFG6 (4) 1.2520 (0.015) 1.2023 (0.100)
WFG7 (4) 2.4613 (0.019) 1.4623 (0.133)
WFG1 (5) 1.7730 (0.156) 1.5307 (0.090)
WFG2 (5) 1.5060 (0.034) 1.5017 (0.141)
WFG3 (5) 1.7977 (0.117) 1.4197 (0.195)
WFG4 (5) 2.4873 (0.022) 1.3110 (0.053)
WFG5 (5) 1.4357 (0.020) 1.3887 (0.137)
WFG6 (5) 1.3510 (0.014) 1.5437 (0.140)
WFG7 (5) 2.5517 (0.058) 2.0677 (0.224)
WFG1 (6) 1.7980 (0.206) 1.8623 (0.189)
WFG2 (6) 1.9143 (0.197) 1.5703 (0.163)
WFG3 (6) 1.6420 (0.278) 1.7260 (0.140)
WFG4 (6) 2.5670 (0.032) 1.7070 (0.158)
WFG5 (6) 1.3950 (0.017) 1.7223 (0.226)
WFG6 (6) 1.4527 (0.027) 1.3977 (0.284)
WFG7 (6) 2.6047 (0.037) 2.3543 (0.211)

moead-pbi
time

gde-moea
time

1.1427 (0.019) 1.2473 (0.076)
0.9272 (0.024) 1.1443 (0.109)
0.9738 (0.018) 1.0930 (0.064)
0.9919 (0.007) 1.0647 (0.054)
0.9594 (0.007) 1.2197 (0.143)
0.9478 (0.010) 1.0500 (0.041)
1.1988 (0.026) 1.3157 (0.110)
1.1697 (0.017) 1.3227 (0.040)
0.9473 (0.021) 1.4180 (0.120)
1.0207 (0.011) 1.1403 (0.054)
1.0258 (0.009) 1.2107 (0.075)
0.9848 (0.009) 1.2380 (0.143)
0.9774 (0.007) 1.2023 (0.100)
1.2529 (0.014) 1.4623 (0.133)
1.2474 (0.015) 1.5307 (0.090)
1.0083 (0.020) 1.5017 (0.141)
1.0908 (0.010) 1.4197 (0.195)
1.1067 (0.005) 1.3110 (0.053)
1.0683 (0.006) 1.3887 (0.137)
1.0342 (0.024) 1.5437 (0.140)
1.4166 (0.021) 2.0677 (0.224)
1.3214 (0.012) 1.8623 (0.189)
1.0430 (0.021) 1.5703 (0.163)
1.1115 (0.011) 1.7260 (0.140)
1.1695 (0.009) 1.7070 (0.158)
1.1185 (0.009) 1.7223 (0.226)
1.0602 (0.024) 1.3977 (0.284)
1.8199 (0.145) 2.3543 (0.211)

sms-emoa-hype
time

gde-moea
time

147.0000 (3.670) 1.2473 (0.076)
98.4333 (6.786) 1.1443 (0.109)

148.7333 (3.941) 1.0930 (0.064)
107.5000 (4.233) 1.0647 (0.054)
153.0667 (8.246) 1.2197 (0.143)
168.9333 (8.330) 1.0500 (0.041)
151.5667 (6.530) 1.3157 (0.110)
233.7333 (8.434) 1.3227 (0.040)

170.6333 (11.232) 1.4180 (0.120)
247.1000 (7.939) 1.1403 (0.054)
157.8333 (6.455) 1.2107 (0.075)

206.7667 (19.689) 1.2380 (0.143)
216.9667 (17.647) 1.2023 (0.100)
252.1333 (8.429) 1.4623 (0.133)
335.0667 (7.607) 1.5307 (0.090)

269.5667 (20.717) 1.5017 (0.141)
378.1667 (6.362) 1.4197 (0.195)

220.6667 (13.553) 1.3110 (0.053)
276.2000 (31.841) 1.3887 (0.137)
274.2667 (47.308) 1.5437 (0.140)
358.9667 (10.005) 2.0677 (0.224)
383.8000 (42.576) 1.8623 (0.189)
377.4333 (29.319) 1.5703 (0.163)
445.7333 (46.018) 1.7260 (0.140)
316.2000 (12.098) 1.7070 (0.158)
246.7000 (6.435) 1.7223 (0.226)
259.2333 (5.024) 1.3977 (0.284)

408.2667 (40.609) 2.3543 (0.211)
(d) (e) (f)

TABLE II. TIME REQUIRED (IN SECONDS) BY GD-MOEA, MOEA/D, SMS-EMOA-HYPE AND OUR PROPOSED GDE-MOEA FOR THE TEST PROBLEMS ADOPTED.
ALL ALGORITHMS WERE COMPILED USING THE GNU C COMPILER AND THEY WERE EXECUTED ON A COMPUTER WITH A 2.66GHZ PROCESSOR AND 4GB IN RAM.

functions. Therefore, it is suitable for solving many-objective
optimization problems. We decided to incorporate our ε-
selection into the GD-MOEA algorithm giving rise to a new
MOEA called “Generational Distance & ε-dominance Multi-
Objective Evolutionary Algorithm (GDE-MOEA)”. Our pre-

liminary results indicate that our GDE-MOEA outperforms
both the original GD-MOEA and MOEA/D. Also, it is
competitive with respect to a version of SMS-EMOA that
uses a fitness assignment mechanism based on the approxi-
mation of the hypervolume (SMS-EMOA-HYPE) but GDE-



MOEA is 189.67 times faster than SMS-EMOA-HYPE. For
these reasons, we can say that our proposed GDE-MOEA
is a good option to solve MOPs having both low and high
dimensionality in objective function space, if we consider
both the quality in the approximation of the Pareto optimal
set and the running time required to obtain it.

As part of our future work, we want to improve the
technique used to avoid selecting weakly dominated solu-
tions. This is because in some cases GDE-MOEA chooses
a weakly dominated solution instead of a nondominated
solution. For example, we noted that our GDE-MOEA had
serious difficulties to solve the DTLZ1 test problem and it
is well-known that when we solve this test problem many
weakly dominated solutions are generated during the search
process. Also, we want to extend our experimental study, e.g.,
we want to use MOPs with more than 6 objective functions
and other standard test functions.
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