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Abstract—In recent years, the use of decomposition-based
multi-objective evolutionary algorithms has been very successful
in solving both multi- and many-objective optimization problems.
In these algorithms, the adopted Scalarizing Functions (SFs) play
a crucial role in their performance. Methods such as the Modified
Weighted Chebyshev (MCHE), Penalty Boundary Intersection
(PBI) and Augmented Achievement Scalarizing Function (AASF)
have been found to be very effective for achieving both conver-
gence to the true Pareto front and a uniform distribution of
solutions along it. However, the choice of an appropriate model
parameter is required for these SFs. Some studies have analyzed
the impact of these parameter values on the performance of
the best-known decomposition multi-objective evolutionary algo-
rithm (MOEA/D). In this paper, we propose a strategy based
on collaborative populations combining different SFs and model
parameter values via an adaptive operator selection based on
the multi-armed bandit technique. Our preliminary results give
rise to some interesting observations regarding the way in which
different SFs are combined and adapted during the evolutionary
process of MOEA/D.


I. INTRODUCTION


A Multi-objective Optimization Problem (MOP) has two
or more (often conflicting) objective functions which must
be optimized at the same time. Mathematically, it can be
described as follows:


minimize f(x) =
[
f1(x), f2(x), . . . , fm(x)


]T
(1)


subject to x ∈ Ω


where Ω is the feasible space of solutions and
x = [x1, x2, . . . , xn]


T ∈ Ω, is the vector of decision
variables, fi : Rn → R , i ∈ {1, . . . ,m} are the objective
functions.
Let us assume that we have two vectors u,v ∈ Rm. Then,
we say that u dominates v (denoted by u ≺ v) if ui ≤ vi
for every i ∈ {1, ...,m}, and uj 6= vj for at least one index
j ∈ {1, ...,m}. We say that a vector of decision variables
x∗ ∈ Ω is Pareto optimum if there does not exist another
x ∈ Ω such that f(x) ≺ f(x∗). The Pareto Optimal Set is
defined by: PS∗ = {x ∈ Ω|@y ∈ Ω : y ≺ x}. The vectors
x∗ corresponding to the solutions included in PS∗ are called
nondominated set. The Pareto Optimal Front is defined by:
PF∗ = {f(x) ∈ Rm|x ∈ PS∗}.


Multi-Objective Evolutionary Algorithms (MOEAs) have
been able to solve complex MOPs properly. The first genera-
tion of MOEAs were algorithms that used Pareto dominance
in their selection mechanism such as NSGA-II [1] and SPEA
[2]. However, these MOEAs do not work properly in many-
objective optimization (i.e., with problems having more than
three objectives). The two most common approaches to deal
with many-objective problems are: (1) indicator-based MOEAs
and (2) decomposition-based MOEAs. The former refers to
the use of methods to assess the quality of the approxima-
tion generated by the MOEA using a performance indicator.
The best-known indicator-based MOEA is SMS-EMOA [2]
which is based on the hypervolume indicator and is, there-
fore, computationally expensive in many-objective problems.
Decomposition-based MOEAs have several advantages such
as scalability to many-objective problems (MaOPs) [3], [4],
a high search ability for combinatorial optimization [5], [6],
[7], and a high compatibility with local search methods [8],
[9], [10]. In this category, MOEA/D [11] is a computation-
ally efficient algorithm that decomposes a MOP into a set
of single-objective subproblems and applies its evolutionary
operators on neighboring solutions. Several proposals [12],
[13], [14], [15], [16] have been designed to enhance the
original MOEA/D. In [12], the simulated binary crossover was
replaced by the differential evolution operator. MOEAD/M2M
[13] introduced a method to improve diversity through the ge-
neration of subpopulations. MOEA/DD [14] combined Pareto
dominance with decomposition-based algorithms to maintain
diversity.


One of the most important components of MOEA/D is the
choice of the Scalarizing Function (SF) since such function is
known to play an important role in its performance. Moreover,
some SFs require the definition of a parameter value to which
they may be very sensitive. For example, the Penalty Boundary
Intersection (PBI) function defines a parameter to balance
convergence and uniformity along the true Pareto front. Some
studies [5], [17], [6] have provided a sensitivity analysis of
PBI, indicating that the choice of an appropriate parameter
value depends on specific features such as the Pareto front
geometry [18], [19], or the number of objective functions [11].
In Section II, we will detail additional observations of the PBI







method and other SFs.
The two most common possibilities for dealing with the


selection of parameters settings are (1) parameter tuning
and (2) parameter control techniques. The first one refers
to establishing a priori the parameters values and use them
in all the iterations of an MOEA. In contrast, the second
case includes adaptive mechanisms that modify the parameters
values according to the information gathered during the search
process. Here, we explore the second option to select the best
model parameters of the SFs under study.


Ishibuchi et al. [20], [21] presented some mechanisms to
use several SFs simultaneously in MOEA/D as an option to
maintain diversity and to solve many-objective problems.


Diverse MOEA/D improvements have employed a bandit-
based Adaptive Operator Selection (AOS) mechanism which
is an upper confidence model that selects the most suitable
operator from a pool of options according to some determinist
rule based on multi-armed bandit algorithms. Bandit-based
AOS establish two tasks: 1) to determine a reward for each
operator via its record of fitness improvement rates, and
2) to select an operator for being used according to the current
reward value.


The aim of this paper is to adopt a bandit-armed strategy,
only used in evolutionary operators, to select an appropriate SF
during the evolutionary search process of MOEA/D. Our pro-
posed approach uses collaborative subpopulations to establish
the best model parameter for each MOP. We also investigate
the scalability of our proposed approach up to 10 objectives,
using several benchmark problems.


The remainder of this paper is organized as follows. In
Section II, we provide the mathematical definition of the SFs
adopted. Section III presents the previous related work. In
Section IV, we describe our proposal and we provide a study
of the effect of combining different SFs via collaborative
subpopulations and an adaptive selection strategy. Finally,
Section V presents our conclusions and some possible paths
for future work.


II. WEIGHTED AND UNCONSTRAINED SCALARIZING
FUNCTIONS


Weighted and unconstrained Scalarizing Functions (SFs)
are methods that transform a Multi-objective Optimization
Problem (MOP) into several single-objective subproblems.
Let Λ = {λ1, . . . ,λN} be a set of N uniformly distributed
weight vectors, where each λj = (λj1, . . . , λ


j
m)T must satisfy∑m


i=1 λ
j
i = 1 and λji ≥ 0 for all i ∈ {1, . . . ,m}. Each


component value in the weight vectors represents the relative
importance assigned to each objective function. Then, the
decomposition method associates each objective function with
a weight coefficient to minimizes a SF (as a single-objective
problem). This can be stated as:


minimize g(x|λj) (2)
subject to x ∈ Ω


Function g(x|λj) minimizes the distance between a
candidate solution and the reference point via a target
direction (weight vector) in objective space. Next, we briefly
describe some SFs and their additional model parameter.


The Weighted Norm (WN) [22] or weighted Lp− metric
function is stated as follows:


min
x∈Ω


gwn(x|λj) =
( m∑
i=1


λji (f
′
i(x)p


)1/p
, (3)


where p ∈ [1,∞), f ′i(x) = fi(x) − z ∗i , and
z∗i = arg min{fi(x)|x ∈ Ω} also known as the ideal vector
which is not available a priori in a MOP. Thus, z ∗i is updated
during the execution of a decomposition-based MOEA, via
the best values for each objective function from a set of non-
dominated solutions. If p = 1 the formulation is known as
the Weighted Sum (WS) function [23]. It is well known that
WS is not able to solve problems with nonconvex Pareto front
shapes.


Some studies have shown that the WN function is very
sensitive to the model parameter p. In [24], different ways
to adapt dynamically the parameter p were presented. The
p−value was set in the range of 1 to 4, and it was changed
during the search process. In [25], a selection strategy was
introduced to determine the p−value based on the curvature
estimation of local regions of the Pareto front.


The Chebyshev or Tchebycheff (CHE) function [26] is a
derivative formulation of WN when p =∞, and is given by:


min
x∈Ω


gche(x|λj) = max
1≤i≤m


{
λji
∣∣f ′i(x)


∣∣} . (4)


The CHE function does not require additional parameters and
was widely used in different improved versions of MOEA/D
[11] such as [12], [27], [28], [29], [30], [31].


The Augmented Chebyshev (ACHE) function [32] is a
modified CHE version defined by equation (5), where an extra
parameter (α) is considered to avoid the generation of weak
Pareto optimal solutions1.


min
x∈Ω


gache(x|λj) = max
1≤i≤m


{
λji
∣∣f ′i(x)


∣∣}+ α


m∑
i=1


f ′i(x) . (5)


In [32], the α parameter adopted small values defined in
the range from 0.001 to 0.01. However, in [21], a large
value of α provided a better performance within the MOEA/D
framework.


Another variant of CHE is the so-called Modified Cheby-
shev (MCHE) function [33], and is formulated as:


min
x∈Ω


gmche(x|λj) = max
1≤i≤m


λji (∣∣f ′i(x)
∣∣+ α


m∑
i=1


f ′i(x)
) ,


(6)
where the α parameter should be set to small positive values.
The differences between ACHE and MCHE were discussed in
[34, p. 101].


1Let us assume x,y ∈ S. We say that x is weakly Pareto optimal if there
is no y such that ∀i ∈ {1, . . . ,m}, fi(y) < fi(x).







The Achievement Scalarizing Function (ASF) [35] is a
modified version of CHE that uses the inverse of the weight
vectors. It is stated as:


min
x∈Ω


gasf (x|λj) = max
1≤i≤m


{∣∣f ′i(x)
∣∣


λji


}
. (7)


Contrary to the CHE function, the ASF function generates
optimal solutions in the same target directions (see [3]).


Additionally, we study two versions of ASF defined as:
Augmented ASF (AASF) [34] and Modified ASF (MASF)
given by equations (8) and (9).


min
x∈Ω


gaasf (x|λj) = max
1≤i≤m


{∣∣f ′i(x)
∣∣


λji


}
+ α


m∑
i=1


f ′i(x) . (8)


min
x∈Ω


gmasf (x|λj) = max
1≤i≤m


{∣∣f ′i(x)
∣∣+ α


∑m
i=1 f


′
i(x)


λji


}
.


(9)
The Penalty Boundary Intersection (PBI) method was


introduced in the original MOEA/D [11]. Its formulation is
defined by the following equation:


min
x∈Ω


gpbi(x|λj) = d1 + θd2 (10)


where d1 :=


∣∣∣∣∣f ′(x) •
λj∥∥λj∥∥


∣∣∣∣∣ and d2 :=


∥∥∥∥∥f ′(x)− d1
λj∥∥λj∥∥


∥∥∥∥∥ .
where d1 represents the distance between the reference point
and an optimal solution to measure convergence. Similarly,
d2 defines the perpendicular distance between the reference
vector and an optimal point to measure uniformity. θ is a
penalty parameter that handles the balance between d1 and
d2. In different works, PBI has been considered one of the
most suitable scalarizing functions for its ability to generate
uniformly distributed Pareto optimal points. However, some
studies [5], [17], [6] have shown a high sensitivity of this θ-
penalty parameter.


Figure 1 illustrates an example of model parameter sensi-
tivity for the MOEA/D framework using the AASF, ACHE,
PBI and WN functions. Here, DTLZ1 with seven objectives
is solved. In this case, we performed 30 independent runs
and compute the normalized hypervolume for different model
parameter values (WN with p = {1, 2, 3, 5, 10, 100}, PBI
with θ = {0.1, 0.5, 1, 2, 5, 10, 50}, AASF and ACHE with
α = {0.0, 0.0001, 0.001, 0.1, 0.5}). We can observe that
ACHE reaches the maximum hypervolume value in most of
the α values tested, but WN had the worst performance and
high variance. PBI reached good hypervolume values with
θ = {0.1, 0.5, 5.0, 10.0, 50.0} and AASF reached good hy-
pervolume values with α = {0.1, 0.5}. [36] showed evidence
about the influence of the Pareto front shape and the number
of objective functions on the selection of the most suitable
model parameter value in SF.


Fig. 1: The hypervolume reached by the use of different SFs
in MOEA/D.
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III. PREVIOUS RELATED WORK


This section presents a review of the related works that
use either multiple Scalarizing Functions (SFs) in their search
process or some bandit-based Adaptive Operator Selection
(AOS) mechanism coupled to MOEA/D.


Ishibuchi et al. [20] presented an early work that combined
the WS and CHE functions in MOEA/D. At each genera-
tion, a selection strategy monitors if k or more solutions in
the neighborhood of an individual have the same objective
vector. If that’s the case, then CHE is adopted; otherwise,
WS is adopted. In [21], two alternatives were proposed to
combine the WS and CHE functions. Given a set of uniformly
distributed weight vectors, two subpopulations focused on a
particular SF. The second alternative is to assign, alternately,
one SF to each vector. Recently, Hernández and Coello
[37] proposed a hyper-heuristic where each individual in the
population minimizes a different SF assigned by a heuristic
selection mechanism based on the quality indicator called s-
energy with the purpose of maintaining a uniform distribution
of solutions. Here, seven different SFs were employed.


Multi-armed bandit algorithms have been a promising tech-
nique for improving the performance of MOEA/D. Li et al.
[38] proposed an adaptive mechanism to select a mutation
operator from Differential Evolution (DE) versions based on
the multi-armed bandit. In this type of adaptive strategy, there
are two processes: one is to assign a reward to a strategy based
on its recent performance in the search process. The second is
the choice of the best strategy based on these current reward
values. For instance, in [39], an adaptive mechanism was
proposed to select two components of MOEA/D: a candidate
operator to generate offspring and a variation of the neigh-
borhood size for each subproblem. A bandit-based AOS is
an upper confidence model that selects a strategy according to
some determinist rule based on multi-armed bandit algorithms.







In this paper, we focus on the use of the multi-armed bandit
algorithms to select (instead of the evolutionary operator) the
most suitable SF in different stages of the evolutionary search
process of MOEA/D-DRA.


IV. OUR PROPOSED APPROACH


In this section, we define some guidelines to combine
more than one SF simultaneously, using an adaptive strategy
selection and collaborative subpopulations. As indicated be-
fore, the mechanism adopted is a bandit-based AOS algorithm
coupled to MOEA/D-DRA [40]. We analyze the effect that our
proposed approach has on the performance of MOEA/D-DRA
when solving MOPs with up to 10 objectives and complicated
Pareto shapes.


A. Pool of Strategies


As mentioned in Section II, the CHE and ASF methods
find optimal solutions in opposite target directions. Based on
this and our prior experience, only the SFs with similar target
directions will be combined simultaneously. Otherwise, the
algorithm can not generate well-distributed solutions along
the Pareto front. We propose the next pool of strategies for
combining multiple SFs:
• S1 = {ACHE,MCHE,WN},
• S2 = {AASF,MASF, PBI},


The model parameters were suggested based on the values
proposed by different authors.
• α = {0.0, 0.0001, 0.001, 0.01, 0.5},
• p = {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 100.0},
• θ = {0.1, 1.0, 2.0, 5.0, 10.0, 50.0}


These values consider three special cases: α = 0 to include
the ASF method, p = 1 for the WS function and p = 100
which is similar to the CHE function. Thus, |S1| = 17 and
|S2| = 16 is the number of different configurations of SFs.


B. Collaborative populations


We pre-defined a set of uniformly distributed weight vectors
using the simplex lattice design technique [41], to maintain
a good diversity in MOEA/D-DRA. These weight vectors
are divided into k subsets used by a subpopulation which
optimizes one of the types of SF selected from a pool of
options (S1 or S2). Each weight vector is assigned alternately
to each subpopulation in the same manner as was mentioned
in [21] (single grid implementation technique).


Our proposed approach uses an AOS method for deciding
which SF should be employed at a time point in MOEA/D-
DRA to solve different MOPs.


C. Adaptive strategy selection


The performance of a decomposition-based algorithm
strongly depends on the selection of its SF. Some types of
SF are more beneficial for a particular Pareto front shape or a
certain number of objectives. We employ a Multi-Arm Bandit
(MAB) technique to select the most appropriate SF for each
subproblem in a decomposition-based MOEA. MAB considers
two main aspects: to assign a credit value to each operator and


to select one operator based on its historical performance. In
our case, we used the term “operator” to refer to a SF and
its model parameter. We adopted MOEA/D-DRA coupled to
AOS based on the fitness improvement rates (FIR) [38], which
is computed by each subproblem i at time t, as defined by
equation (11).


FIRi,t =
g(xi|λj , z∗)− g(y|λj , z∗)


g(xi|λj , z∗)
, (11)


where xi is the current solution and y is its generated offspring
solution after applying the genetic operators. Function g is a
specific SF selected from a pool of strategies. The aim of the
FIR technique is to deal with the largest ranges of raw fitness
values at different stages of the evolutionary search process
[38]. We used a sliding window with a fixed size W and a
first-in, first-out (FIFO) queue structure in order to store the
FIR values of the recently used SF and its model parameter.


The reward value assigned to each strategy i is given by:


FRRi,t =
Decayi∑k
j=1Decayj


(12)


where Decayi = Dranki ×Ri, D ∈ [0, 1] is a decaying factor
to increase the probability of selecting the best strategies,
ranki is the rank assigned to each strategy (in descending
order) and Ri (or reward) is the sum of all FIR values for
each strategy i in the current sliding window.


We select the best SF using equation (13).


Si = arg max


 Rk,t∑k
i=1Ri


+ C ×


√
2×


ln(
∑m


j=1 ηj)


ηi


 (13)


where C is a weight factor to control the trade-off between
exploration and exploration. ηi is the number of times that the
strategy i was used.


D. Collaborative and adaptive strategies coupled to
MOEA/D-DRA


MOEA/D with Dynamical Resource Allocation (MOEA/D-
DRA) [40] is an improved version of MOEA/D [11], which
was the winning algorithm in the CEC 2009 MOEA contest.
MOEA/D-DRA incorporates a mechanism to compute the
relative decrease of the objectives for each subproblem in
order to assign computational effort according to the obtained
benefits.


Next, we describe how to couple the adaptive strategy
selection to MOEA/D-DRA. The first step is an initialization
process. Then, we split the weight vectors into each subpopu-
lation in order to assign a type of SF. Next, we use the adaptive
strategy selection and associate one scalarizing function to
each subpopulation in order to assign a different type of SF to
each of them. At each generation, we monitor the FIR value
for each subproblem of each subpopulation. Next, a dynamical
resource allocation mechanism used in the original MOEA/D-
DRA is applied. After that, a generation of new solutions
via Differential Evolution and Polynomial-based mutation is
employed. Finally, we update the reward subpopulation based







on the FIR and Algorithm 2, while Algorithm 3 illustrates in
more detail the steps described before.


Algorithm 1: Our proposed bandit-based operator selec-
tion mechanism


Input: A pool of scalarizing functions
Output: The new selected strategy
if There are scalarizing functions that have not been
selected then


Si = one scalarizing function, which is selected
randomly from the pool of strategies.


else
Si =


arg max
{


Rewardk,t∑k
i=1 Rewardi


+ C ×
√


2× ln(
∑m


j=1 ηj)


ηi


}


Algorithm 2: Credit assignment algorithm.


Input: D: decay factor
Output: The reward values for each strategy
Initialize each Rewardi = 0
Initialize ni = 0
for i← 1 to slidingWindow.length do


S = slidingWindow.GetIndexOp(i)
FIR = slidingWindow.GetFIR(i)
Rewards = Rewards + FIR
ns++


Rank Rewardi in descending order and set ranki to be
the rank value of strategy Si
for i← 1 to |S| do


FRRi,t = Decayi∑k
j=1 Decayj


E. Experimental settings


We divide our experiments in two parts. The first is focused
on variations of the Pareto front geometry and the number
of objectives using some MOPs defined in the Deb-Thiele-
Laumanns-Zitzler (DTLZ) test suite [42]: DTLZ1 for linear,
DTLZ3 for non-convex, DTLZ5 for degenerate and DTLZ7 for
mixed Pareto front geometries. Additionally, we transformed
DTLZ3 to have a convex shape. To test the scalability of our
proposal, each problem was tested with {2, 3, 5, 7 and 10}
objectives. For the second set of experiments, we adopted
complicated MOPs presented in the CEC 2009 contest. For a
fair comparison, we used the same MOEA/D-DRA parameters
in all the MOP instances. The neighborhood size T was set
to 20% of the population size (p size). The crossover and
mutation parameters were set as: F = 0.5, Cr = 1. For
the DTLZ test problems, H = {99, 14, 6, 4, 3} used by the
simplex lattice design method. The population size was set to:
pops = {100, 120, 210, 210, 220} for m = {2, 3, 5, 7, 10}. The
number of objective function evaluations was set to 40,000 for
m = 2 and m = 3 and it was 50,000 for all the other cases.
In the case of the UF test functions (i.e., those from the CEC


Algorithm 3: MOEA/D-DRA-MSF
Input: A stopping criterion
ns: number of subpopulations
pop size: population size
{λ1, . . . , λN}: A well-distributed set of weight vectors
pool: A pre-defined pool of strategies
Output: Pareto front estimation
Step 1. Initialization
Ep ← ∅
Compute the Euclidean distance between any two weighted vectors and then work
out the T closest weighted vectors to each weighted vector.
Generate an initial set of subpopulations Pi = {x1, . . . xN/ns}.
Evaluate indidividuals in the initial subpopulations.
Set the ideal point z∗i = arg min{fi(x)}.
while the stopping criterion is not satisfied do


Step 2. Adaptive Strategy selection.
Select ns scalarizing functions g and model parameters p from the pool of
strategies, using Algorithm 1
Associate one scalarizing function to each subpopulation, according to the
partition strategy.
for each subpopulation do


Set gen = 0 and πi = 1 for all i = 1, . . . , N .
Selection of subproblems for searching: the indexes of the subproblems
whose objectives correspond to the MOP’s individual objectives fi are
selected to form the initial I . By using a 10-tournament selection
strategy based on πi, select other [ N5 ]m indexes and add them to I .
for each i ∈ I , do do


Step 3. Selection of Mating/Update Range:
Uniformly randomly generate a number rand in the range (0, 1).
Then set


P =


{
B(i) if rand < δ,


{1, . . . N} otherwise
Step 4 Reproduction: Set r1 = i and randomly select two
indexes r2 and r3 from P , and then generate a solution y from
xr1, xr2 and xr3 by a Differential Evolution (DE) operator,
and then perform mutation on y.
Step 5. Update.
Update z∗:
Update subproblem i, u(f : w, z∗, p)
Update Neighboring Solutions
for j ∈ B(i) do


if g(y′|wj , z) ≤ g(x|wj , z) then
compute FIR based on equation (11)
set xj = y′


Step 6. Update Reward registry.
Compute reward using Algorithm 2
gen = gen+ 1.
If gen is a multiple of 50, then compute ∆i, the relative
decrease of the objective for each subproblem i during the last
50 generations, update


πi =


{
1 if ∆i > 0.001,


(0.95 + 0.05) ∗ ∆i
0.001π


i otherwise


P ← non-dominated solutions from the population
return P


2009 contest), we adopted a population size of 600 for m = 2
and of 1000 for m = 3. The number of function evaluations
was set to 300,000.


The parameters for the adaptive strategy selection were set
as suggested in [38]. We used the decay factor D = 1.0
and a factor to control the exploitation and the exploration of
C = 5.0 and W = 0.5× p size.


We performed 30 independent runs for each MOEA
and problem instance. For comparing our results,
we adopted the hypervolume indicator (HV) [2] to
assess both convergence and maximum spread. We
established the following reference points: (1, 1, . . . 1)


T


for DTLZ1, (7, 7, . . . 7)
T for DTLZ3 and DTLZ3 convex,


(4, 4, . . . 4)
T for DTLZ5, (21, 21, . . . 21)


T for DTLZ7.







(2.0, . . . , 2.0)
T for all the CEC 2009 test problems (UF1-10).


F. Discussion of results


In this subsection, we compare our proposed approach
using multiple SFs (considering the two pools of strategies
previously discussed) with respect to the original MOEA/D-
DRA adopting only one SF (in our experiments, we used CHE,
ASF, WN (p = 2) and PBI (θ = 5) ). Table I presents the
hypervolume indicator for each DTLZ test problem. The best
values are highlighted with a darker gray tone and the second
best with a lighter tone. We applied the nonparametric statistic,
Wilcoxon rank sum test with a 95% of confidence level to
corroborate that the best result found is statistically significant
respect to the others. The symbol (↑) means that the best
case (algorithmic configuration per problem) outperformed
another algorithm in a significantly better way. The symbol
(↓) indicates that the difference between the best option and
another algorithm is not significant.


We analyzed the results according to each proposed strategy
(i.e., S1 and S2). In the same way, AASF, MAASF and
PBI outperformed MOEA/D-DRA with ASF. One interesting
observation is that the main improvements were obtained in
the many-objective problems. For two objectives, the results
were very similar among themselves. However, with 3 or more
objectives there were some significant differences, especially
in the seven- and ten-objective MOPs. We can notice that
the standard deviation values increase when the MOP has
multimodality such as in dtlz1, dtlz3 and dtlz3 convex. In
general, the strategy S1 is better than S2 in the DTLZ test
problems adopted.


In a second experiment, we compare our proposal with
respect to state-of-the-art MOEAs such as the original ver-
sion of MOEA/D-DRA [40], and with respect to MOEA/D-
DRA-MAB [38] which used the same multi-armed ban-
dit algorithm but applied to a pool of Differential Evo-
lution operators. Moreover, we also compared results with
respect to ADEMO/D [31] which includes a learning pe-
riod strategy to select from a pool of DE operators.
The source code for these algorithms was obtained from
https://coda-group.github.io/publications.html.


For assessing performance, we computed the IGD+ [43]
and HV indicators (see Table II), then we apply Wilcoxon
test in the same manner as previous experiments. In almost
all cases, MOEA/D-DRA with multiple SFs outperformed the
other approaches with respect to which it was compared, but
the most evident improvement was observed in UF5, UF6 and
UF10 in both indicators (HV and IGD+).


V. CONCLUSIONS AND FUTURE WORK


In this paper, we have presented a comparative study to
determine some guidelines to combine, in a simultaneous way,
several scalarizing functions. One of our most important con-
tributions is that we have identified that the pool of scalarizing
functions should establish the same target directions in order
to generate well-distributed (i.e., uniform) solutions along the
Pareto front.


Two interesting observations were the following:
1) The assignment of the weight vectors to each subpopu-


lation produces a good distributions of solutions, and
2) properly setting the parameters of the SF per sub-


population, based on the AOS rule, provides a good
convergence to the Pareto optimal front.


Also, we noticed that the appropriate parameters settings
depend directly on the number of objectives and on the
Pareto front geometry. We claim that the bandit-based AOS
adopted in our proposed approach is a good option to detect
appropriate parameters settings in SFs, while requiring a lower
computational effort than the use of static parameter tuning
strategies (offline tuning methods).


As part of our future work, we plan to explore other adaptive
strategies and to compare them. We plan to study the effect of
other AOS parameters values and types of SFs in our proposal.
We are also interested in studying the relation between the
weight vectors and the corresponding scalarizing functions.
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TABLE I: Statistical results for strategies S1 and S2. We show the mean and the standard deviations (in parentheses)


m MOP CHE WN(p = 2) MOEA/D-DRA-MSF1 ASF PBI(θ = 5) MOEA/D-DRA-MSF2


2


dtlz1 ↑8.7122e-01(7.1742e-04) 8.7296e-01(3.4337e-01) ↑8.7034e-01(1.3440e-01) ↓8.7140e-01(5.2209e-04) ↑8.7189e-01(4.6566e-04) ↓8.7114e-01(5.4564e-02)


dtlz3 4.8138e+01(1.3129e-02) ↑4.2977e+01(1.2991e+00) ↑4.8125e+01(1.1017e+02) ↑4.8134e+01(1.4122e-02) ↑4.3496e+01(1.4836e+00) ↓4.8131e+01(1.4154e-02)


dtlz3* ↑4.8585e+01(1.4334e-02) ↑4.8008e+01(2.3724e+02) ↑3.9507e+01(1.6363e+00) 4.8622e+01(9.7710e-03) ↑4.8076e+01(1.1369e-01) ↓4.8570e+01(1.9431e-02)


dtlz5 ↑1.5209e+01(5.3291e-15) ↑1.5000e+01(0.0000e+00) 1.5210e+01(3.7268e-04) ↑1.4107e+01(2.7241e-05) ↑1.3207e+01(1.3291e-11) ↑1.5210e+01(2.0331e-03)


dtlz7 ↑3.6431e+02(1.2806e+01) ↑3.6581e+02(1.2689e+01) 3.6591e+02(1.2713e+00) ↑3.6591e+02(8.7256e+00) ↑3.6587e+02(9.5238e+00) ↑3.6589e+02(8.7220e+00)


3


dtlz1 4.9629e-01(1.1656e-02) ↑3.3465e-01(1.3951e+01) ↑3.3000e-03(9.3354e-02) ↓4.9626e-01(7.1114e-02) ↑3.2531e-03(1.2794e-01) ↓4.3143e-03(1.0891e-01)


dtlz3 ↑5.1501e+01(5.5516e+01) ↑1.9355e-01(1.7713e+03) 1.4713e+02(9.5746e+02) ↑1.4584e+02(4.2952e+01) ↑9.4666e+00(1.9882e+02) ↑9.5988e+01(5.4480e+01)


3* ↑1.7266e+00(3.7764e+02) 9.0919e+01(1.4094e+03) ↓9.0237e+01(3.2449e+02) ↑8.5693e+01(3.6189e+02) ↑1.3596e+01(1.1116e+02) ↑3.3232e+01(8.4332e+01)


dtlz5 4.3524e+01(3.3929e-02) ↑4.3373e+01(8.3057e-01) ↑4.3517e+01(1.9373e-02) ↑4.3224e+01(1.3812e-02) ↑4.2307e+01(4.4186e+00) ↑4.0095e+01(1.7415e+00)


dtlz7 ↑6.7217e+03(1.9440e+02) ↑6.4022e+03(2.9728e+02) ↑6.7218e+03(2.4975e+02) ↑6.7977e+03(1.9758e+02) ↑6.8171e+03(2.2749e+02) 6.8291e+03(1.6706e+02)


5


dtlz1 ↑4.9929e-01(1.5924e-01) ↑2.5117e-01(6.1529e+02) ↑4.9972e-01(1.7369e-01) 8.5079e-01(7.3003e-02) ↑2.9759e-01(2.3140e-01) ↑8.1317e-01(9.2416e-02)


dtlz3 ↑5.8410e+03(3.1219e+03) ↑5.6629e+03(1.9979e+05) ↑4.4650e+03(3.2435e+03) 1.3322e+04(1.2718e+03) ↑2.3804e+03(4.8386e+04) ↑1.1450e+04(2.0792e+03)


3* ↑1.2414e+04(5.1761e+04) 1.6408e+04(4.0656e+10) ↑8.0325e+03(2.0862e+03) ↑6.8641e+03(2.5797e+03) ↓1.1697e+04(1.7868e+03) ↑1.2897e+04(1.2760e+03)


dtlz5 ↑4.0830e+02(1.4979e+02) ↓6.0898e+02(2.3057e+01) ↑6.1298e+02(5.5498e+01) ↑2.8630e+02(8.1132e+01) 6.1298e+02(1.8570e+01) ↑6.2335e+02(1.1285e+02)


dtlz7 ↑2.3765e+06(1.6408e+05) ↑2.4342e+06(2.1796e+05) 2.5201e+06(1.3996e+05) ↑2.3798e+06(1.6727e+05) ↑2.3684e+06(1.5960e+05) ↑2.3782e+06(1.3541e+05)
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dtlz1 ↑3.8993e-01(8.9484e-02) 1.3453e+00(2.8435e+01) ↑4.9979e-01(1.3579e-01) ↑6.9847e-01(5.0892e-02) ↑7.3862e-01(4.2553e-02) ↓1.2867e-00(8.1133e-02)


dtlz3 ↑1.2494e+05(1.6655e+05) ↑1.1803e+05(7.6051e+06) 5.8770e+05(6.9250e+04) ↑4.7643e+05(7.2851e+04) ↑7.7523e+04(1.8189e+06) ↑5.3980e+05(6.6100e+04)


3* ↑4.2864e+05(9.2783e+05) ↑6.6023e+05(3.6630e+04) 1.1480e+06(2.3005e+09) ↑4.5671e+05(9.6351e+04) ↑2.4514e+05(1.1749e+05) ↑4.5453e+05(9.9030e+04)


dtlz5 ↑2.3702e+03(4.3165e+03) ↑3.6759e+03(2.3452e+03) ↑9.2144e+03(9.7608e+02) ↑4.2746e+03(1.0812e+03) ↑4.2830e+03(1.1001e+03) 9.5339e+03(1.4573e+03)


dtlz7 ↑7.6908e+08(7.9234e+07) ↑7.6876e+08(1.3667e+08) ↑9.0892e+08(5.8621e+07) ↑7.7546e+08(9.7418e+07) 9.1073e+08(6.6888e+07) ↓8.4123e+08(7.5738e+07)
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dtlz1 ↑3.7893e-01(9.4529e-02) ↓5.0146e-01(8.2056e-02) 3.0936e+00(9.6209e+01) ↑3.5268e-01(9.9343e-02) ↑7.2013e-01(3.1656e-02) ↑6.5351e-01(5.9505e-02)


dtlz3 ↑5.7924e+07(5.0050e+07) ↑8.1510e+04(2.3712e+09) 1.6133e+08(2.8166e+07) ↑2.7653e+07(5.1446e+07) ↑8.1303e+07(1.8458e+08) ↑8.2516e+07(4.4397e+07)


3* ↑4.7820e+07(1.6563e+08) 1.0000e+09(2.3990e+12) ↑2.1945e+08(1.5715e+07) ↑1.6077e+08(8.0149e+07) ↑1.0528e+08(4.3691e+07) ↑2.3384e+08(4.9907e+07)


dtlz5 ↑1.3934e+05(2.8259e+05) ↓2.3465e+05(1.4312e+05) ↓3.7277e+05(1.0007e+05) ↑3.9270e+05(4.3071e+04) 5.6638e+05(6.6277e+04) ↑5.5157e+05(2.7411e+04)


dtlz7 1.0000e+09(6.9947e+11) 1.0000e+09(6.0816e+12) 1.0000e+09(1.1297e+12) 1.0000e+09(9.3084e+11) 1.0000e+09(7.3536e+11) 1.0000e+09(6.8013e+11)


TABLE II: Statistical results for strategies S1 and S2. We show the mean and the standard deviations (in parentheses)


MOP MOEA/D-DRA MOEA/D-DRA-MAB ADEMO/D MOEA/D-DRA-MSF1 MOEA/D-DRA-MSF2
Hypervolume indicator


UF1 ↑3.5847(0.0587) ↓3.4397(0.0895) ↑3.5791(0.0373) 3.6611(0.0015) ↑3.6335(0.0204)
UF2 ↑3.6026(0.0344) ↑3.5965(0.0193) ↑3.6325(0.0137) 3.6532(0.0112) ↓3.6396(0.0346)
UF3 ↑3.4353(0.1568) ↑3.2093(0.1340) 3.4164(0.1265) 3.6551(0.0259) ↑3.3769(0.0696)
UF4 ↑3.1783(0.0135) ↑3.1978(0.0107) ↓3.2337(0.0126) ↑3.2566(0.0101) 3.2878(0.0030)
UF5 ↑0.7428(0.8705) ↑1.7446(0.2659) ↑1.8762(0.2609) ↑2.7135(0.3376) 3.0424(0.1003)
UF6 ↑2.5232(0.2259) ↑2.6236(0.2125) ↑2.7444(0.1814) ↑2.8315(0.4389) 3.1201(0.1323)
UF7 ↑3.4408(0.0391) ↑3.2580(0.3566) ↑3.3883(0.2606) 3.4870(0.0316) ↑3.4850(0.0194)
UF8 ↑6.9568(0.3853) ↑6.9779(0.3591) ↓7.3229(0.0242) 7.4003(0.0226) ↑7.3145(0.0017)
UF9 ↑6.9542(0.3346) ↑7.2106(0.2974) ↓7.2993(0.2163) ↓7.3362(0.2213) 7.6577(0.0348)
UF10 ↑0.7238(1.0449) ↑4.4226(0.7018) ↑4.7172(0.9373) ↑4.0287(0.6905) 6.1128(0.1576)


IGD+ indicator
UF1 ↑0.0389(0.0291) ↑0.0392(0.0126) ↑0.0142(0.0033) 0.0013(0.0001) ↑0.0063(0.0023)
UF2 ↑0.0271(0.0131) ↑0.0077(0.0011) ↑0.0035(0.0006) 0.0034(0.0012) ↑0.0040(0.0028)
UF3 ↑0.1476(0.0986) ↑0.0712(0.0240) ↑0.0531(0.0256) 0.0037(0.0051) ↑0.0500(0.0092)
UF4 ↑0.0559(0.0045) ↑0.0449(0.0015) ↑0.0333(0.0014) ↑0.0271(0.0019) 0.0172(0.0003)
UF5 ↑1.2284(0.4610) ↑0.5648(0.1253) ↑0.5132(0.1058) ↓0.2564(0.1017) 0.2167(0.0385)
UF6 ↑0.4302(0.1407) ↑0.1466(0.0741) 0.1211(0.0413) ↑0.1686(0.1105) ↑0.1428(0.0717)
UF7 ↑0.0217(0.0152) ↑0.0603(0.0836) ↑0.0293(0.0638) 0.0019(0.0018) ↑0.0044(0.0011)
UF8 ↑0.0693(0.0258) ↓0.0690(0.0213) ↑0.0348(0.0098) 0.0115(0.0108) ↑0.0526(0.0004)
UF9 ↑0.2455(0.0462) ↑0.2217(0.0637) ↑0.2098(0.0494) ↑0.2123(0.0487) 0.1372(0.0048)
UF10 ↑1.7270(0.7275) ↑0.2542(0.0528) ↓0.2394(0.0724) ↑0.2571(0.0757) 0.1544(0.0288)
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