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Abstract- This paper introduces the notion of using co-
evolution to adapt the penalty factors of a fitness func-
tion incorporated in a genetic algorithm for numerical
optimization. The proposed approach produces solutions
even better than those previously reported in the liter-
ature for other (GA-based and mathematical program-
ming) techniques that have been particularly fine-tuned
using a normally lengthy trial and error process to solve a
certain problem or set of problems. The present technique
is also easy to implement and suitable for parallelization,
which is a necessary further step to improve its current
performance.

1 Introduction

The importance of genetic algorithms (GAs) as a power-
ful tool for engineering optimization has been widely shown
in the last few years through a vast amount of applications
([1, 2]). However, even when GAs have been successful in
many practical applications, the quality of the solutions that
they produce rely not only on the stochastic nature of the tech-
nique, but also on the way in which the objective function is
converted to a “fitness function” that can “guide” the GA to
the desired region of the search space.

One of the key problems for using GAs in practical appli-
cations is how to design the fitness function. A comparative
estimate of how good is a solution turns out to be enough
in most cases (e.g., the largest value has to be closer to the
global maximum if we are trying to maximize the objective
function), but if we are dealing with constrained problems,
we have to find a way of estimating also how close is an in-
feasible solution from the feasible region. This is not an easy
task, since most real-world problems have complex linear and
non-linear constraints, and several approaches have been pro-
posed in the past to handle them [3, 4, 5, 6]. From those, the
penalty function seems to be yet the most popular technique
for engineering problems, but the intrinsic difficulties tode-
fine good penalty values makes even harder the optimization
process using a GA [7]. In this paper, a technique based on
the concept of co-evolution is used to create two populations
that interact with each other in such a way that one popu-
lation evolves the penalty factors to be used by the fitness
function of the main population, which is responsible for op-
timizing the objective function. The approach has been tested
with several single-objective optimization problems withlin-
ear and non-linear inequality constraints and its results are
compared with those produced by other (GA-based and math-
ematical programming) approaches reported in the literature.

2 Use of Self-Adaptive Penalties

Michalewicz et al. [4, 5] have recognized the importance
of using adaptive penalties in evolutionary optimization,and
considered this approach as a very promising direction of re-
search on evolutionary optimization. The technique proposed
in this paper aims to implement this idea using the concept
of co-evolution, under which two (or more) populations are
evolved either concurrently or interactively, and such popula-
tions exchange information in the process. Paredis [8] has
used co-evolution for constraint satisfaction (combinatorial
optimization) problems, but not for numerical optimization.
In his approach, a population of potential solutions co-evolves
with a population of constraints: fitter solutions satisfy more
constraints, whereas fitter constraints are violated by more
solutions.

The approach introduced in this paper uses a conventional
penalty function [1, 7] rather than trying to handle constraints
in an entirely different way (see for example [6, 5]). The
reason is that penalty functions are still the most popular ap-
proach to handle constraints in practical applications [5,6],
whereas the newer approaches have normally been used only
to deal with very specific (and generally unrealistic) prob-
lems.

The problem that we want to solve is:

Optimize f(X) (1)

Subject to :
g

i

(X) � 0 i = 1; : : : ; p (2)

Only inequality constraints are considered in this paper,
since penalty functions are not very suitable to handle equal-
ity constraints as hard constraints, and there are other ap-
proaches which are more suitable to handle them [9].

In previous applications, a penalty function that included
information about both the number of constraints violated and
the degree of violation of each, has been found very effective
by a number of researchers [10, 6] to guide the genetic algo-
rithm to (at least near) optimal solutions. The expression used
to compute the fitness value of an individual for the purposes
of this paper is (assuming maximization):

fitness

i

= f

i

(X)� (coef �w

1

+ viol �w

2

) (3)

wheref
i

(X) is the value of the objective function for the
given set of variable values encoded in the chromosomei;
w

1

andw
2

are 2 penalty factors (considered as integers in
this paper);coef is the sum of all the amounts by which the



constraints are violated:

coef =

p

X

i=1

g

i

(X) 8g

i

(X) > 0 (4)

viol is an integer factor, initialized to zero and incremented
by one for each constraint of the problem that is violated,
regardless of the amount of violation (i.e., we only count the
number of constraints violated but not the magnitude in which
each constraint is violated).

According to this approach, the penalty is actually split
into two values (coef andviol), so that the GA has enough
information not only about how many constraints were vio-
lated, but also about the amounts in which such constraints
were violated. This follows Richardson’s suggestion [7]
about using penalties that are guided by the distance to feasi-
bility.

We will assume that we have 2 different populationsP1

andP2 with corresponding sizesM1 andM2. The second
of these populations (P2) encodes the set of weight combi-
nations (w

1

andw
2

) that will be used to compute the fitness
value of the individuals inP1 (i.e.,P2 contains the penalty
factors that will be used in the fitness function). The idea isto
use one population to evolve solutions (as in a conventional
genetic algorithm), and another to evolve the penalty factors
w

1

andw
2

. A graphical representation of this approach may
be seen in Figure 1. Notice that for each individualA

j

in
P2 there is an instance ofP1. However, the populationP1
is reused for each new elementA

j

processed fromP2. Each
individualA

j

(1 � j �M2) in P2 is decoded and the weight
combination produced (i.e., the penalty factors) is used to
evolveP1 during a certain number (Gmax1) of generations.
The fitness of each individualB

k

(1 � k � M1) is com-
puted using equation (3), keeping the penalty factors constant
for every individual in the instance ofP1 corresponding to
the individualA

j

being processed. After evolving eachP1
corresponding to everyA

j

in P2 (there is only one instance
of P1 for each individual inP2), we compute the best aver-
age fitness produced using:

average fitness

j

=

M1

X

i=1

�

fitness

i

count feasible

�

+

count feasible 8X 2 F (5)

In equation (5), we add the fitnesses of all feasible solutions
in P1, and obtain an average of them (the integer variable
count feasible is a counter that indicates how many feasi-
ble solutions were found in the population). Notice that al-
though the summation ranges over all the individuals inP1,
only feasible solutions are considered. The reason for thisis
that if we do not exclude infeasible solutions from this com-
putation, the selection mechanism of the GA may bias the
population towards regions of the search space where there
are solutions with a very low weight combination (w

1

and
w

2

). Such solutions may have good fitness values, and still
be infeasible. The reason for that is that low values ofw

1

R
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R
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Figure 2: Center and end section of the pressure vessel used
for the first example.

andw
2

may produce penalties that are not big enough to out-
weight the value of the objective function. Notice also the
use ofcount feasible to avoid stagnation at certain regions
in which only very few individuals will have a good fitness or
will be even feasible. By adding this quantity to the average
fitness of the feasible individuals in the population, we will
be encouraging the GA to move towards regions in which lie
not only feasible solutions with good fitness values, but there
are also a lot of them. In practice, it may be necessary to ap-
ply a scaling factor to the average of the fitness before adding
count feasible, to avoid that the GA gets trapped in local
optima, and we do in fact use a scaling factor in the experi-
ments reported here. However, such scaling factor is not very
difficult to compute because we are assuming populations of
constant size (such size must be defined before running the
GA), and the range of the fitness values can be easily ob-
tained at each generation, because we know the maximum
and minimum fitness values in the population at each gener-
ation. Equation (5) may, of course, limit the applicabilityof
the proposed approach to situations in which there is at least
one single fully feasible solution in the first generation, but
notice that since there are several combinations of weights
considered for each instance ofP1, we can afford having this
situation and still be able to find a solution to the problem
at hand. In fact, in our experiments, we had sometimes this
situation (i.e., no feasible solution for an instance ofP1 was
available) and the GA was still able to move towards the op-
timum.

The process indicated above is repeated until all individ-
uals inP2 have a fitness value (the bestaverage fitness
of their correspondingP1). Then,P2 is evolved one gen-
eration using conventional genetic operators (i.e., crossover
and mutation) and the newP2 produced is used to start the
same process all over again. It is important to notice that the
interaction betweenP1 andP2 introduces diversity in both
populations, which keeps the GA from easily converging to a
local optimum.
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Figure 1: Graphical representation of the GA-based approach to handle constraints proposed in this paper.

3 Examples

Several examples taken from the optimization literature will
be used to show the way in which the proposed approach
works. These examples have linear and nonlinear constraints,
and have been previously solved using a variety of other
techniques (both GA-based and traditional mathematical pro-
gramming methods), which is useful to determine the quality
of the solutions produced by the proposed approach.

3.1 Example 1 : Design of a Pressure Vessel

A cylindrical vessel is capped at both ends by hemispherical
heads as shown in Figure 2. The objective is to minimize
the total cost, including the cost of the material, forming and
welding. There are four design variables:T

s

(thickness of
the shell),T

h

(thickness of the head),R (inner radius) andL
(length of the cylindrical section of the vessel, not including
the head).T

s

andT
h

are integer multiples of 0.0625 inch,
which are the available thicknesses of rolled steel plates,and
R andL are continuous. Using the same notation given by
Kannan and Kramer [11], the problem can be stated as fol-
lows:

Minimize :

F (X) = 0:6224x

1

x

3

x

4

+ 1:7781x

2

x

2

3

+

+3:1661x

2

1

x

4

+ 19:84x

2

1

x

3

(6)

Subject to :

g

1

(X) = �x

1

+ 0:0193x

3

� 0 (7)

g

2

(X) = �x

2

+ 0:00954x

3

� 0 (8)

g

3

(X) = ��x

2

3

x

4

�

4

3

�x

3

3

+ 1; 296; 000 � 0 (9)

g

4

(X) = x

4

� 240 � 0 (10)

3.2 Example 2 : Welded Beam Design

A welded beam is designed for minimum cost subject to con-
straints on shear stress (� ), bending stress in the beam (�),

b
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Figure 3: The welded beam used for the second example.

buckling load on the bar (P
c

), end deflection of the beam (�),
and side constraints [12]. There are four design variables as
shown in Figure 3 [12]:h (x

1

), l (x
2

), t (x
3

) andb (x
4

).
The problem can be stated as follows:
Minimize:

F (X) = 1:10471x

2

1

x

2

+

+0:04811x

3

x

4

(14:0 + x

2

) (11)

Subject to :
g

1

(X) = �(X)� �

max

� 0 (12)

g

2

(X) = �(X)� �

max

� 0 (13)

g

3

(X) = x

1

� x

4

� 0 (14)

g

4

(X) = 0:10471x

2

1

+

+0:04811x

3

x

4

(14:0 + x

2

)� 5:0 � 0 (15)

g

5

(X) = 0:125� x

1

� 0 (16)

g

6

(X) = �(X)� �

max

� 0 (17)

g

7

(X) = P � P

c

(X) � 0 (18)

where

�(X) =

r

(�

0

)

2

+ 2�

0

�

00

x

2

2R

+ (�

00

)

2 (19)
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Figure 4: Tension/compression string used for the third ex-
ample.
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R =

s

x

2

2

4

+

�

x

1

+ x

3

2

�

2

(21)

J = 2

(

p

2x

1

x

2

"

x

2

2

12

+

�

x

1

+ x

3

2

�

2

#)

(22)

�(X) =

6PL

x

4

x

2

3

; �(X) =

4PL

3

Ex

3

3

x

4

(23)

P

c

(X) =

4:013E

q

x

2

3

x

6

4

36

L

2

 

1�

x

3

2L

r

E

4G

!

(24)

P = 6000 lb; L = 14 in; �

max

= 0:25 in

E = 30� 10

6

psi; G = 12� 10

6

psi

�

max

= 13; 600 psi; �

max

= 30; 000 psi

3.3 Example 3 : Minimization of the Weight of a Ten-
sion/Compression String

This problem was described by Arora [13] and Belegundu
[14], and it consists of minimizing the weight of a ten-
sion/compression spring (see Figure 4) subject to constraints
on minimum deflection, shear stress, surge frequency, limits
on outside diameter and on design variables. The design vari-
ables are the mean coil diameterD, the wire diameterd and
the number of active coilsN .

Formally, the problem can be expressed as:

Minimize (N + 2)Dd

2 (25)

Subject to

g

1

(X) = 1�

D

3

N

71785d

4

� 0 (26)

g

2

(X) =

4D

2

� dD

12566(Dd

3

� d

4

)

+

1

5108d

2

� 1 � 0 (27)

g

3

(X) = 1�

140:45d

D

2

N

� 0 (28)

g

4

(X) =

D + d

1:5

� 1 � 0 (29)

Parameter Value
Popsize

1

60
Popsize

2

30
Gmax

1

25
Gmax

2

20

Table 1: Parameters of the GA used to solve all the examples.

3.4 Example 4 : Himmelblau’s Nonlinear Optimization
Problem

This problem was originally proposed by Himmelblau [15],
and it was chosen to try the approach proposed here because
it has been used before as a benchmark for several other GA-
based techniques that use penalties [16]. In this problem,
there are five design variables (x

1

; x

2

; x

3

; x

4

; x

5

), 6 nonlin-
ear inequality constraints and ten boundary conditions. The
problem can be stated as follows:

Minimize f(X) = 5:3578547x

2

3

+

+0:8356891x

1

x

5

+ 37:293239x

1

� 40792:141 (30)

Subject to:

g

1

(X) = 85:334407+ 0:0056858x

2

x

5

+

0:00026x

1

x

4

� 0:0022053x

3

x

5

(31)

g

2

(X) = 80:51249+ 0:0071317x

2

x

5

+

0:0029955x

1

x

2

+ 0:0021813x

2

3

(32)

g

3

(X) = 9:300961+ 0:0047026x

3

x

5

+

0:0012547x

1

x

3

+ 0:0019085x

3

x

4

(33)

0 � g

1

(X) � 92 (34)

90 � g

2

(X) � 110 (35)

20 � g

3

(X) � 25 (36)

78 � x

1

� 102 (37)

33 � x

2

� 45 (38)

27 � x

3

� 45 (39)

27 � x

4

� 45 (40)

27 � x

5

� 45 (41)

4 Comparison of Results

To make a fair comparison, all the following examples were
solved using the same set of parameters shown in Table 1.
We used a GA with fixed-point representation [17, 10], ac-
cording to which a chromosome is a string of the form
hd

1

; d

2

; : : : ; d

m

i, whered
1

; d

2

; : : : ; d

m

are digits (numbers
between zero and nine). In previous work, the author has



shown that this representation compares favorably to its bi-
nary counterpart in numerical optimization problems [18, 17,
10]. We also used uniform crossover with a crossover prob-
ability of 0.8 and non-uniform mutation [9] with an initial
mutation rate of 0.1 to allow a high exploratory behavior of
the GA at earlier generations, and focus more the search into
certain regions as the GA reached its last generations.

4.1 Example 1

This problem was solved before by Deb [19] using GeneAS
(Genetic Adaptive Search), by Kannan and Kramer using an
augmented Lagrangian Multiplier approach [11], by Fu et al.
[20] using Integer-Discrete-Continuous Nonlinear Program-
ming, and by Cao and Wu [21] using Evolutionary Program-
ming. Their results were compared against those produced
by the approach proposed in this paper, and are shown in Ta-
ble 2. The solution shown for the technique proposed here
is the best produced after 11 runs, and using the following
ranges for the design variables and the weights:1 � x

1

� 99,
1 � x

2

� 99, 10:0000 � x

3

� 200:0000, 10:0000 �

x

4

� 200:0000, 1 � w

1

� 999, and1 � w

2

� 999.
The values forx

1

andx
2

were considered as integer multi-
ples of 0.0625, the weightsw

1

andw
2

were considered as
integers, and the values ofx

3

andx
4

were considered with
a 4-decimals precision. The mean from the 11 runs per-
formed wasf(X) = 6293:84323196, with a standard devia-
tion of 7.41328537. The worst solution found wasf(X) =

6308:14965192, which is better than any of the solutions pre-
viously reported in the literature. The solution at the median
wasf(X) = 6290:01873568 (corresponding tox

1

= 0:8125,
x

2

= 0:4372, x
3

= 40:3302 andx
4

= 200:0000), which
is still about 2% better than the best solution previously re-
ported.

4.2 Example 2

This problem was solved before by Deb [22] using a sim-
ple genetic algorithm with binary representation, and a tra-
ditional penalty function as suggested by Goldberg [1], and
by Ragsdell and Phillips [23] using geometric programming.
Ragsdell and Phillips also compared their results with those
produced by the methods contained in a software package
called “Opti-Sep” [24], which includes the following nu-
merical optimization techniques: ADRANS (Gall’s adap-
tive random search with a penalty function), APPROX (Grif-
fith and Stewart’s successive linear approximation), DAVID
(Davidon-Fletcher-Powell with a penalty function), MEM-
GRD (Miele’s memory gradient with a penalty function),
SEEK1 & SEEK2 (Hooke and Jeeves with 2 different penalty
functions), SIMPLX (Simplex method with a penalty func-
tion) and RANDOM (Richardson’s random method). Their
results were compared against those produced by the ap-
proach proposed in this paper, and are shown in Table 3.
In the case of Siddall’s techniques [24], only the best so-
lution produced by the techniques contained in “Opti-Sep”

is displayed. The solution shown for the technique pro-
posed here is the best produced after 11 runs, and using the
following ranges for the design variables and the weights:
0:1000 � x

1

� 2:0000, 0:1000 � x

2

� 10:0000, 0:1000 �
x

3

� 10:0000, 0:1000 � x

4

� 2:0000, 1 � w

1

� 999,
and 1 � w

2

� 999. The values forx
1

to x

4

were con-
sidered with a 4-decimals precision, and the weightsw

1

andw
2

were considered as integers. The mean from the
11 runs performed wasf(X) = 1:77197269, with a stan-
dard deviation of 0.01122281. The worst solution found was
f(X) = 1:7858346524, which is better than any of the so-
lutions produced by any of the other techniques depicted in
Table 3. The solution at the median wasf(X) = 1:77358615

(corresponding tox
1

= 0:1996, x
2

= 3:6428, x
3

= 9:0507

andx
4

= 0:2100), which is about 27% better than the best
solution previously reported.

4.3 Example 3

This problem was solved before by Belegundu [14] using
eight numerical optimization techniques (CONMIN, OPT-
DYN, LINMR, GRP-UI, SUMT, M-3, M4, and M-5). Only
the best feasible result reported by him is shown in Table 4.
Additionally, Arora [13] also solved this problem using a nu-
merical optimization technique called Constraint Correction
at constant Cost (CCC). In the experiments reported here,
the GA handled all constraints are hard, so that the solu-
tions produced were considered valid only if all of them were
fully satisfied. Nevertheless, the proposed approach was able
to find a better (feasible) solution than Arora’s technique
(whose solution slightly violates one constraint), as can be
seen in Table 4. The solution shown for the technique pro-
posed here is the best produced after 11 runs, and using the
following ranges for the design variables and the weights:
0:050000 � x

1

� 2:000000, 0:250000 � x

2

� 1:300000,
2:000000 � x

3

� 15:000000, 1 � w

1

� 999, and
1 � w

2

� 999. The values forx
1

to x

4

were consid-
ered with a 6-decimals precision, and the weightsw

1

and
w

2

were considered as integers. The mean from the 11
runs performed wasf(X) = 0:01276920, with a standard
deviation of3:939 � 10

�5. The worst solution found was
f(X) = 0:0128220825, which is better than Belegundu’s re-
sult. The solution at the median wasf(X) = 0:0127557615

(corresponding tox
1

= 0:051461, x
2

= 0:351022, and
x

3

= 11:721943), which is better than the best feasible so-
lution previously reported.

4.4 Example 4

This problem was originally proposed by Himmelblau [15]
and solved using the Generalized Reduced Gradient method
(GRG). Gen and Cheng [16] solved this problem using a ge-
netic algorithm based on both local and global reference. The
result shown in Table 5 is the best found with their approach.
Homaifar, Qi, and Lai [25] solved this problem using a ge-
netic algorithm with a population size of 400, and their re-



Design Best solution found
Variables This paper GeneAS [19] Kannan [11] Fu [20] Cao [21]
x

1

(T

s

) 0.8125 0.9375 1.125 1.125 1.000
x

2

(T

h

) 0.4375 0.5000 0.625 0.625 0.625
x

3

(R) 40.3239 48.3290 58.291 48.3807 51.1958
x

4

(L) 200.0000 112.6790 43.690 111.7449 90.7821
g

1

(X) -0.034324 -0.004750 0.000016 -0.191252 -0.011921
g

2

(X) -0.052847 -0.038941 -0.068904 -0.163448 -0.136592
g

3

(X) -27.105845 -3652.876838 -21.220104 -72.970137 -13584.583968
g

4

(X) -40.00000 -127.321000 -196.310000 -128.25510 -149.2179
f(X) 6288:7445 6410:3811 7198:0428 8049:3411 7108:6160

Table 2: Comparison of the results for the first example (optimization of a pressure vessel).

Design Best solution found
Variables This paper Deb [22] Siddall [24] Ragsdell [23]
x

1

(h) 0.2088 0.2489 0.2444 0.2455
x

2

(l) 3.4205 6.1730 6.2189 6.1960
x

3

(t) 8.9975 8.1789 8.2915 8.2730
x

4

(b) 0.2100 -0.2533 0.2444 0.2455
g

1

(X) -0.337812 -5758.603777 -5743.502027 -5743.826517
g

2

(X) -353.902604 -255.576901 -4.015209 -4.715097
g

3

(X) -0.00120 -0.004400 0.000000 0.000000
g

4

(X) -3.411865 -2.982866 -3.022561 -3.020289
g

5

(X) -0.08380 -0.123900 -0.119400 -0.120500
g

6

(X) -0.235649 -0.234160 -0.234243 -0.234208
g

7

(X) -363.232384 -4465.270928 -3490.469418 -3604.275002
f(X) 1:74830941 2:43311600 2:38154338 2:38593732

Table 3: Comparison of the results for the second example (optimal design of a welded beam).

Design Best solution found
Variables This paper Arora [13] Belegundu [14]
x

1

(d) 0.051480 0.053396 0.050000
x

2

(D) 0.351661 0.399180 0.315900
x

3

(N) 11.632201 9.185400 14.25000
g

1

(X) -0.002080 0.000019 -0.000014
g

2

(X) -0.000110 -0.000018 -0.003782
g

3

(X) -4.026318 -4.123832 -3.938302
g

4

(X) -4.026318 -0.698283 -0.756067
f(X) 0:0127047834 0:0127302737 0:0128334375

Table 4: Comparison of the results for the third example (minimization of the weight of a tension/compression spring).



sults were previously the best reported in the literature (see
Table 5). The solution shown for the technique proposed here
is the best produced after 11 runs, and using the following
ranges for the design variables and the weights:78:0000 �

x

1

� 102:0000, 33:0000 � x

2

� 45:0000, 27:0000 �

x

3

� 45:0000, 27:0000 � x

4

� 45:0000, 27:0000 � x

5

�

45:0000, 1 � w

1

� 999, and1 � w

2

� 999. The values for
x

1

tox
5

were considered with a 4-decimals precision, and the
weightsw

1

andw
2

were considered as integers. The mean
from the 11 runs performed wasf(X) = �30984:24070309,
with a standard deviation of73:63353661.The worst solution
found wasf(X) = �30792:4077377525, which is better
than the best solution previously reported in the literature.
The solution at the median wasf(X) = �31017:21369099

(corresponding tox
1

= 78:010, x
2

= 33:030, x
3

= 27:119,
x

4

= 45:000, andx
5

= 44:872).

5 Discussion

Despite the fact that the proposed approach requires more
function evaluations than running a GA on a single popula-
tion, it could be argued that in practice the proposed approach
turns out to be more efficient because it does not require the
traditional fine-tuning of a simple GA which is normally per-
formed by trial and error and normally takes a considerable
amount of time.

The set of parameters proposed at the beginning of this
paper were derived based on a series of experiments. Ini-
tially, it was found that in most cases a fairly small popula-
tion size forP2 (� 40 chromosomes) would suffice to find
reasonable solutions (unless within a 5% vicinity of the best
solution known), but the size ofP1 was much more depen-
dent on the nature of the problem, although in all the cases
reported in this paper it was sufficient to use relatively small
sizes (between 30 and 60 chromosomes), although the largest
value was chosen to allow for a fair comparison with other
techniques. Similarly, the effect that the maximum number
of generations produced in the results seemed to be more sig-
nificant forP1 than forP2. This is not very surprising, since
P1 is really the population responsible for performing the op-
timization. It is interesting to mention that in the experiments
performed, it was found that the increment of the maximum
number of generations forP1 would normally improve the
quality of the solution, but there was always a threshold after
which an increment did not affect the results in a significant
manner. On the other hand, the increment of the maximum
number of generations forP2 was normally not very benefi-
cial, and that was the reason why it was normally preferred to
use smaller values forGmax2 than forGmax1.

6 Conclusions and Future Work

This paper has proposed a GA-based technique that uses
co-evolution to adjust automatically the weight factors ofa
penalty function to find the optimum of a constrained opti-

mization problem. Due to the intrinsic limitations of penalty
functions to handle equality constraints, only inequalitycon-
straints were considered in this work, although alternative hy-
brid approaches [4] may be used in combination with the pro-
posed technique in order to deal with equality constraints,too.
The new technique worked well in several test problems that
had been previously solved using GA-based and mathemat-
ical programming techniques, producing in all cases results
better than those previously reported in the literature. How-
ever, performance issues remain to be solved since the total
number of fitness function evaluations in all the experiments
reported in this paper can be considered high (900; 000), and
it is desirable to develop a parallel version of this algorithm
in the future. Also, we expect to compare this approach to
other evolutionary-based constraint-handling techniques and
to experiment with a simpler approach in which a hillclimber
modifies the weights of the penalty function instead of using
another GA for that task.
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