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Abstract—This paper proposes a new hypervolume-based
multi-objective particle swarm optimizer (called MOPSOhv)
that uses an external archive to store the global nondomi-
nated solutions found during the evolutionary process. The
proposed algorithm makes use of the hypervolume contribution
of archived solutions for selecting global and personal leaders
for each particle in the main swarm, and also as a mechanism
for pruning the external archive when it is updated with new
nondominated solutions. In order to increase the diversity when
particles are updated in their positions, a mutation operator is
used. The performance of the proposed algorithm is evaluated
adopting standard test problems and indicators reported in
the specialized literature, comparing its results with respect to
those obtained by state-of-the-art multi-objective evolutionary
algorithms. Our preliminary results indicate that our proposal
is competitive with respect to state-of-the-art multi-objective
evolutionary algorithms, being particularly suitable for solving
many-objective optimization problems (i.e., problems having
more than 3 objectives).

I. INTRODUCTION

There are many industrial and engineering problems whose
solution requires to simultaneously optimize several ob-
jectives which are in conflict with each other, i.e., the
improvement of one objective implies the deterioration of
another in the problem. These are the so-called Multi-
Objective Problems (MOPs). Multi-Objective Evolutionary
Algorithms (MOEAs) have been very successful in solving
MOPs, mainly due to the following features [1]: They do
not require any specific knowledge about the problem, they
can be used as effective and robust global optimizers, they
are easy to understand and implement both in sequential
and parallel platforms and also, they can be hybridized with
mathematical programming techniques and even with other
metaheuristics. Additionally, MOEAs are less susceptible to
the shape and continuity of the Pareto front than mathema-
tical programming methods [2].

The use of MOEAs is particularly suitable for solving
MOPs since they work simultaneously with a set of potential
solutions (i.e., the swarm). This feature allows them to find
several solutions of the Pareto optimal set in a single run.
Many MOEAs have been developed to solve MOPs such as:
PAES [3], MOEA/D [4], SPEA [5], SPEA2 [6], NSGA-II [7]
and SMS-EMOA [8], just to name a few.

Particle Swarm Optimization (PSO) is a metaheuristic
inspired by the choreography of a bird flock which aims
to find food [9]. PSO can be seen as a distributed behavioral

algorithm that performs (in its more general version) a mul-
tidimensional search. The implementation of the algorithm
adopts a population of particles which are initialized with
random solutions (random positions in the design space),
and whose behavior is affected by either the best local (i.e.,
within a certain neighborhood) or the best global individual.
Over the generations, particles adapt their beliefs to the most
successful solutions found in their environment. Each particle
has a position and velocity vector that controls its movement,
and is updated according to the following general rules:

~vt+1
i ← ω~vti + ϕ1r1

(
~pBest

t

i − ~xki
)
+ ϕ2r2

(
~gBest

t
− ~xki

)
(1)

~vi ∈ [~vmin, ~vmax]

~xt+1
i ← ~xti + ~vt+1

i ; xi ∈ [xmini , xmaxi ] (2)

where ω is the velocity inertia factor, ϕ1 and ϕ2 are the
cognitive and social factors respectively, r1 and r2 are ran-
dom numbers, pBest and gBest represent the personal and
global leaders. These positions will influence the particle’s
velocity (~v) and position update. For extending PSO to deal
with MOPs, the main issues are the following:
(1) how to select particles (to be used as leaders) in order

to give preference to nondominated solutions over those
that are dominated?,

(2) how to retain the nondominated solutions found during
the search process in order to report solutions that are
nondominated with respect to all the past populations
and not only with respect to the current one?, and

(3) how to maintain diversity in the swarm in order to avoid
convergence to a single solution?

Normally, mechanisms very similar to those adopted
with MOEAs (namely, Pareto-based selection and exter-
nal archives) have been adopted in multi-objective particle
swarm optimizers (MOPSOs). However, the addition of other
mechanisms (e.g., a mutation operator) is also relatively
common in MOPSOs.

Some relevant MOPSOs are the following: In [10] is
presented the use of a PSO with a weighted aggregation
technique and a fully connected topology as the neigh-
borhood for each particle in the swarm. In [11], PSO is
provided with a dynamic neighborhood strategy, particle



memory updating, and the process corresponds to a one-
dimension optimization, i.e., one objective is optimized at
a time. Other MOPSOs make use of several sub-populations
or subswarms, to increase the covering of the Pareto front
approximation [12], adopt a decomposition method [13],
or solve the MOP using a parallel platform [14]. In other
approaches, the use of a leader selection scheme based on
Pareto dominance is adopted [15]. In some other research
works, traditional MOEAs’ mechanisms for keeping diversity
such as the crowding operator [16], [17], and niching [18]
are adopted. Parallel implementations of MOPSOs have also
been proposed using Grid Computing [14], the Master-Slave
model [19], and GPUs [17]. For a more thorough review of
different MOPSOs see [20]

It is important to emphasize that most of the previously
indicated approaches, incorporate a dynamic scheme, which
updates the velocity inertia factor (ω), make use of an exter-
nal archive and introduce a turbulence factor for increasing
the diversity of solutions.1 In this work, we propose the
use of the hypervolume contribution of archived solutions
for selecting each particle’s global and personal leaders,
and also as a mechanism for updating the external archive
when inserting new non-dominated solutions into it. These
mechanisms, acting together, had not yet been explored in the
context of MOPSO’s design to the authors’ best knowledge.
In reference [21] a hypervolume contribution is proposed for
guide selection only, while in [22] is used for pruning archive
solutions in the context of an ε-MOPSO. Also, and in order
to increase the diversity of solutions when updating their
positions, a mutation operator is adopted in our proposed
approach.

The remainder of this paper is organized as follows.
Section II presents some basic concepts of multi-objective
optimization. The proposed algorithm, called MOPSOhv, is
described in Section III. Section IV, defines the experimental
design used for validating our proposal. Section V reports the
validation of our proposed approach adopting standard per-
formance measures reported in the specialized literature. In
this section, we perform a small scalability study to analyze
the behavior of our proposed MOPSO when solving many-
objective optimization problems (i.e., MOPs with more than
3 objectives). Finally, Section VI provides our conclusions
and some possible paths for future research.

II. BASIC CONCEPTS

When solving MOPs, the aim is to find a set of decision
variable vectors which represents the best possible trade-
offs among all the objetives. The most commonly adopted
approach for solving MOPs is to compare solutions (i.e.,
decision variables) by using the Pareto dominance relation.
Some concepts regarding Pareto dominance are briefly de-
scribed next.

Definition 1. Dominance: Given two decision variable vec-
tors ~x, ~y ∈ Rn and a function F : Rn → Rk, ~x dominates

1This is helpful in terms of preventing premature convergence in the
presence of local Pareto fronts in MOPs.

~y (~x � ~y) if and only if ∀i ∈ {1, . . . , k}, fi(~x) ≤ fi(~y) and
∃j ∈ {1, . . . , k}fj(~x) < fj(~y), otherwise ~x � ~y

Within Pareto dominance, we can distinguish between
strong dominance and weak dominance.

Definition 2. Strong dominance: A solution ~x strongly dom-
inates ~y if ~x is strictly better than ~y in all objectives.

Definition 3. Weak dominance: A solution ~x weakly domi-
natess ~y if ~x is better than ~y in at least one objective and is
as good as ~y is all other objectives.

Neither type of Pareto dominance induces a total order in
Rk since some solutions may be incomparable. Therefore,
MOPs normally do not have a single solution but a set of
incomparable solutions which is called the Pareto optimal
set.

Definition 4. Pareto optimal set: In a MOP, the Pareto
optimal set P is defined as:

P =
{
~x ∈ Rk| ∀~y ∈ Rk~y � ~x

}
Definition 5. Pareto front: Given a MOP and its Pareto
optimal set P , the Pareto front is defined as:

PF = {~u = (f1 (~x) , . . . , fk (~x)) |~x ∈ P}

The Pareto front of a MOP is bounded by the ideal and
nadir objective vectors.

Definition 6. Ideal and nadir vectors: Given a MOP and its
Pareto optimal set P , the ideal objective vector is defined
as:

fideal =
(
inf
~x∈P f1 (~x) , . . . ,

inf
~x∈P fk (~x)

)
If the ideal objective vector represents an existing solution,

then the solution of the MOP is unique.
Analogously, the Nadir objective vector is defined as:

fnadir =
(sup
~x∈P f1 (~x) , . . . ,

sup
~x∈P fk (~x)

)
III. OUR PROPOSED APPROACH

In our proposed approach, which is called Multi-Objective
Particle Swarm Optimizer based on hypervolume (MOP-
SOhv), the hypervolume contribution of archived solutions
(At) is incorporated first, to select the individuals that will
be considered as the global and personal leaders for each
particle in the swarm, and then, as a mechanism for inserting
new non-dominated solutions in the external archive, i.e.,
particles with the highest hypervolume contribution are kept
in the archive At, while particles with the least contribution
are deleted. We also adopt a mutation operator in order to
maintain diversity in the swarm when the position of the
particles is updated. This condition is meant to prevent the
swarm from prematurely converging to a single solution or
to a local Pareto front.

A. The Algorithm

Algorithm 1 presents the pseudocode for our proposed
approach.



Algorithm 1: MOPSOhv
1 N , Swarm size ;
2 Gmax, maximum number of generations ;
3 PMUT mutation probability;
4 ω velocity inertia factor;
5 ϕ1 cognitive factor;
6 ϕ2 social factor;
7 t← 0 ;
8 Random Initialize ~x0i and ~v0i , i = 1, 2, . . . , N in swarm ;
9 Evaluate fj(~x0i ) , j = 1, 2, . . . , k ; i = 1, 2, . . . , N ;

10 A0 ← InitializeExternalArchive() ;
11 while t < Gmax do
12 HvContribution(At) ;
13 SortDecreasingHv(At) ;
14 for i = 1 to N do
15 gBestti ← RandomSelect(At, TOP ) ;
16 pBestti ← RandomSelect(At, BOT ) ;
17 ~vt+1

i ← UpdateV el(vti , ω, ϕ1, ϕ2, gBestti, pBest
t
i) ;

18 ~xt+1
i ← UpdatePos(xti, v

t+1
i ) ;

19 BoundParticle() ;
20 if t < (Gmax · PMUT ) then
21 MutateParticle(xt+1

i ) ;
22 end if ;
23 Evaluate fj(~xt+1

i ) , j = 1, 2, . . . , k ;
24 end for ;
25 for i = 1 to N do
26 At+1 ← UpdateExternalArchiveHv(At, xt+1

i ) ;
27 end for ;
28 t← t+ 1 ;
29 end while
30 return Nondominanted solutions in external archive AGmax ;

The N particles that constitute the swarm are randomly
initialized in their positions and velocities and are eval-
uated in the k objective functions defined in the prob-
lem. From the initial swarm, the nondominated solutions
are copied and inserted into the initial external archive
A0 (procedure InitializeExternalArchive()). The main
loop of our proposed approach consists of the following
steps: The hypervolume contribution for each particle con-
tained in the external archive is first determined (procedure
HvContribution(At)). Then, these particles are sorted in
decreasing order with respect to their hypervolume con-
tribution (procedure SortDecreasingHv(At)). Once the
external archive is sorted, the global (gBestti) and personal
(pBestti) leaders are selected for each particle in the swarm.
The global leader is chosen from the top portion particles
(i.e., from the top 2%) of the sorted external archive At,
while the personal leader is chosen from the bottom portion
particles (i.e., the bottom 98%). With these leaders, each
particle in the swarm is updated in its velocity (procedure
UpdateV el()) and position (procedure UpdatePos()). The
new particle’s position must be bounded with respect to
the design space (procedure BoundParticle()). For this,
if particle xt+1

i goes beyond a boundary in any decision
variable, then it is reinserted into the design space by making
the decision variable to take the value of its corresponding
lower or upper boundary value and its velocity is multiplied
by -1 so that it searches in the opposite direction. The
final step in updating each particle is to apply a mutation
operator, which depends on a certain mutation probability

PMUT and the time in the evolutionary process (t). Once
all the particles have been updated in position and velocity,
they are evaluated in the objective functions defined in
the problem, and the new nondominated solutions in the
swarm are selected for updating the external archive At+1

(procedure UpdateExternalArchive()). In this final step,
it might happen that new solutions dominate existing archive
solutions, in which case the latter are deleted. However,
it might also happen that new solutions are nondominated
with respect to the entire external archive, and inserting a
new solution will overfill the predefined size of it. In this
later case, new nondominated solutions are inserted into
the external archive, which is then pruned to its maximum
allowable size, by deleting the particles which contribute less
to the hypervolume.

B. Hypervolume Contribution

For our proposed MOPSOhv, it is required to compute the
hypervolume contribution for each particle in the swarm. We
present next the definition of the hypervolume:

Definition 7. Hypervolume (Hv): Given a Pareto approx-
imation set PFknown, and a reference point in objective
space zref , the hypervolume estimates the non-overlaping
volume of all the hypercubes formed by the reference point
and every vector in the Pareto set approximation. This is
mathematically defined as:

HV = {∪ivoli|veci ∈ PFknown} (3)

veci is a nondominated vector from the Pareto set approx-
imation, and voli is the volume for the hypercube formed by
the reference point and the nondominated vector veci.

In the context of MOPs, the hypervolume measure is used
to assess both convergence and maximum spread of the
solutions for the approximation of the Pareto front obtained
with any MOEA. High values of this measure indicate that
the solutions are closer to the true Pareto front and that they
cover a wider extension of it.

The hypervolume contribution for a nondominanted solu-
tion in the approximated Pareto front can be estimated based
on its closest neighbors in each objective dimension [23].
Figure 1 shows an example of the hypervolume contribution
for a set of solutions in two dimensions. In this figure, the
dominated shaded area adjacent to each solution is defined
as the solution’s hypervolume contribution.

A naive way to compute the hypervolume contribution
for each solution, is to first compute the hypervolume of
the whole Pareto set approximation, and then compute the
correspondig hypervolume without the solution which the
contribution is computed for. It is important to note that
the extreme solutions are assigned an ∞-value contribu-
tion; otherwise, they are discarded in the selection process.
The hypervolume contribution calculation has a very high
computational cost with an increasing number of objectives
and with a high number of particles in the swarm. In this
regard, different alternative approaches have been proposed



Fig. 1. Example of Hypervolume contributions.

to overcome this drawback. In our proposal we adopted the
algorithm for estimating the hypervolume contribution using
Monte Carlo simulations incorporated in HypE [24].

C. Reference point construction

The estimation of the hypervolume contribution needs a
reference point zref in objective space. Obvious options for
this point are the ideal and nadir vectors for a maximization
and minimization MOP, respectively. Since, in general we
do not know a priori these points for any given MOP,
it is common to approximate them, based on the current
approximation that we have of the Pareto front.

The approximation for the ideal vector is the minimum of
each objective:

(zref )ideal =
(
min
~x∈PFknown

f1 (~x) , . . . ,
min
~x∈PFknown

fk (~x)
)

where PFknown contains all the known nondominated
solutions to the MOP. The approximation for the nadir vector
is the maximum of each objective, and is obtained by taking
into account only the nondominated solutions in the current
Pareto front approximation:

(zref )nadir =
(
max
~x∈PFknown

f1 (~x) , . . . ,
max
~x∈PFknown

fk (~x)
)

During the evolutionary process, either the ideal or the
nadir reference points must be updated, whenever the Pareto
front approximation changes.

D. Selection of leaders

The selection of the global leader (gBest) for each particle
in the swarm’s primary population is considered to be a
crucial step in the design of any MOPSO, since it has
effects both in the convergence performance as well as
on the good spreading of nondominated solutions in the
Pareto front approximation for the algorithm. As indicated
before, in MOPSOhv, a bounded external archive stores the
nondominated solutions found in previous iterations. We

Fig. 2. Sorted repository based on decreasing hypervolume contribution
values.

note that any of these solutions can be used as the global
leader (gBest) for the particles in the swarm. However,
in our case, we wanted to ensure that the particles in the
primary population move towards the highest quality regions
of the search space. Thus, the global leader in MOPSOhv
is selected from the nondominated solutions having the
highest hypervolume contributions values. An ilustration of
this process is shown in Figure 2,

Another important aspect when designing a MOPSO is the
selection of personal leaders (pBest) for each particle in the
swarm. In MOPSOhv, the design motivation is to promote
better interaction for each particle by using the bottom part
of the sorted external archive repository, i.e., the selection
for the personal leader aims to promote the movement of
particles towards different regions with respect to the best
global solution.

E. Mutation operator

In our MOPSOhv, a mutation operator is included. This
operator was introduced due to its exploratory capability.
In our approach, the mutation operator acts by performing
more mutations at the early stages of the search process,
and we rapidly reduce its use over time. This sort of
mutation operator has been found to be very effective in
other MOPSOs [15], [16].

IV. PERFORMANCE ASSESSMENT

Our proposed MOPSOhv was validated using 12 test
problems from the Zitzler-Deb Thiele (ZDT) [25] and the
Deb-Thiele-Laumanns-Zitzler (DTLZ) [26] test suites. These
MOPs were adopted with the settings shown in Table I.

TABLE I
TEST PROBLEM SETTINGS.

Problem # variables # objetives
ZDT1-3 30 2
ZDT4,6 10 2
DTLZ1 13 3
DTLZ2-6 12 3
DTLZ7 22 3



We compared our approach with respect to NSGA-II [7]
(which is a Pareto-based MOEA), SMS-EMOA [8] (which is
a hypervolume-based MOEA) and MOPSOcd [16] (which is
a Pareto-based MOPSO representative of the state-of-the-art
in the area).

A. Parameters Settings

We performed 20 independent runs for each algorithm with
the parameters shown in Table II. The four MOEAS adopted
a population size of 100 individuals, an archive size with 100
solutions and were run for 1200 generations.

TABLE II
PARAMETERS USED FOR EACH MOEA.

MOPSOcd MOPSOhv NSGA-II SMS-EMOA
ω = 0.4 ω = 0.4 Pc = 0.9 —
pm = 0.5 pm = 0.5 Pm = 1

~x Pm = 1
~x

ϕ1 = 1 ϕ1 = 1 nc = 20 nc = 20
ϕ2 = 1 ϕ1 = 1 nc = 20 nc = 20

The algorithm MOPSOcd selects the global leader from
the top 10% sorted archive and replaces one of the non-
dominated solutions in the bottom 10% of the archive. Our
proposed MOPSOhv selects the global leader from the top
2% portion of the archive, and the local leader from the
remaining 98% sorted archive. Particle replacement in the
archive deletes the least hypervolume contributing particle
when the maximum allowable size of the archive is exceeded.
The outcome sets for the diferent MOEAs were compared
using the following performance measures: spread [7] (Is),
inverse generational distance IGD [27] (IGD), and hyper-
volume [28] (Ihv) The reference points adopted for the
hypervolume indicator are shown in Table III for each of
the MOPs solved.

TABLE III
REFERENCE POINTS USED FOR COMPUTING THE HYPERVOLUME.

Problem Reference point (zref )
ZDT1-3 6 (1.1, 1.1)
ZDT4 (0.9, 1.1)
DTLZ1,2,4-6 (1.1, 1.1, 1.1)
DTLZ3 (5.0, 5.0, 5.0)
DTLZ7 (1.1, 1.1, 7.0)

V. ANALYSIS OF RESULTS

In this section, we present the comparison of the results
obtained by the different MOEAs previously indicated in
the selected MOPs. A summary of our results is shown in
Tables IV, V and VI for the different performance indicators
adopted. In these tables, the mean and standard deviation are
reported for each performance measure and for each MOP.

Regarding spread (Is), lower values indicate better perfor-
mance for a given MOEA. From Table IV, it can be observed
that SMS-EMOA is the best performer, obtaining the best
value in eleven of the twelve MOPs adopted in our study.
Our proposed approach ranks second in six MOPs, it ranks
third in four MOPs, and it ranks fourth in only two MOPs.

From these results and with respect to the spread of solutions,
we can conclude that our proposed approach is competitive
with respect to SMS-EMOA and is better than NSGA-II and
MOPSOcd.

With respect to the inverted generational distance (IGD),
lower values also indicate better performance for a given
MOEA. From Table V, we can observe that NSGA-II ranks
first in seven MOPs, SMS-EMOA in three MOPs, and MOP-
SOcd in two MOPs. Our proposed approach ranks third in
seven MOPs. Since the IGD indicator measures convergence
for a given MOEA, we can conclude that our approach is not
better than the others in terms of convergence, but the values
that it reached are reasonably good. So, we claim that it is
competitive in terms of convergence.

Finally, with respect to the hypervolume indicator (Ihv),
higher values indicate better performance for a given MOEA.
From Table VI, it can be observed that SMS-EMOA ranks
first in nine of twelve MOPs. Our proposed approach ranks
second in four MOPs, third in three MOPs, and fourth in
four MOPs. These results somehow reinforce our previous
claims, since hypervolume assesses both convergence and
spread. The resuls obtained by our approach indicate that it
is competitive with respect to the other MOEAs adopted for
our comparative study.

It is important to note that in our approach, the hyper-
volume is estimated, and not calculated in an exact manner
as done by SMS-EMOA. Because of this, it was expected
that our proposed approach would have a lower performance
than SMS-EMOA. These hypervolume estimations, however,
produce important savings in terms of computational time,
as will be seen next.

TABLE IV
COMPARISON OF THE RESULTS OBTAINED FOR Is BY NSGA-II, SMS-EMOA,
MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND DTLZ TEST

PROBLEMS.

Problem
MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean
(σ) (σ) (σ) (σ)

ZDT1 0.003524 0.006962 0.007020 0.002320
(0.000305) (0.000362) (0.000447) (0.000270)

ZDT2 0.004679 0.007014 0.006956 0.004063
(0.000217) (0.0005170) (0.000610) (0.000543)

ZDT3 0.006248 0.007656 0.007875 0.002209
(0.000328) (0.000425) (0.000565) (0.000165)

ZDT4 0.004679 0.007014 0.008052 0.002492
(0.000217) (0.000517) (0.000616) (0.000240)

ZDT6 0.001975 0.115691 0.007055 0.000603
(0.000324) (0.053160) (0.000437) (0.000181)

DTLZ1 0.081790 0.974734 0.019360 0.006947
(0.045829) (0.295577) (0.002384) (0.001461)

DTLZ2 0.056173 0.052077 0.055460 0.042716
(0.012780) (0.005154) (0.005003) (0.001942)

DTLZ3 1.759328 2.143857 0.056032 0.043889
(1.322038) (0.915538) (0.004531) (0.009394)

DTLZ4 0.047999 0.056542 0.051862 0.042030
(0.021016) (0.002922) (0.013087) (0.001928)

DTLZ5 0.016552 0.008436 0.009727 0.008763
(0.005419) (0.000610) (0.000757) (0.000463)

DTLZ6 0.158278 0.343938 0.020970 0.013185
(0.026187) (0.052728) (0.004354) (0.002414)

DTLZ7 0.085100 0.114527 0.068548 0.057420
(0.025882) (0.112693) (0.009758) (0.005603)



TABLE V
COMPARISON OF THE RESULTS OBTAINED FOR IIGD INDICATOR BY NSGA-II,
SMS-EMOA, MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND

DTLZ TEST PROBLEMS.

Problem
MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean
(σ) (σ) (σ) (σ)

ZDT1 0.017014 0.017173 0.017011 0.017009
(0.000003) (0.000036) (0.000003) (0.000001)

ZDT2 0.027391 0.027497 0.027387 0.027386
(0.000001) (0.000015) (0.000001) (0.000000)

ZDT3 0.011198 0.011492 0.011166 0.019892
(0.000012) (0.000064) (0.000016) (0.000001)

ZDT4 0.027391 0.027497 0.017011 0.017011
(0.000001) (0.000015) (0.000002) (0.000004)

ZDT6 0.027434 0.000281 0.026356 0.027395
(0.000046) (0.000000) (0.003115) (0.000002)

DTLZ1 0.013359 0.269641 0.001261 0.006088
(0.011381) (0.080597) (0.001148) (0.001259)

DTLZ2 0.000806 0.000383 0.000380 0.005000
(0.000611) (0.000022) (0.000018) (0.000000)

DTLZ3 0.594644 0.630432 0.001235 0.016425
(0.302257) (0.323953) (0.000083) (0.003406)

DTLZ4 0.006694 0.001208 0.001875 0.015606
(0.002366) (0.000037) (0.003071) (0.000000)

DTLZ5 0.000439 0.000054 0.000069 0.009901
(0.000390) (0.000002) (0.000005) (0.000000)

DTLZ6 0.009931 0.036889 0.000648 0.010786
(0.002293) (0.012547) (0.000236) (0.000231)

DTLZ7 0.002800 0.001558 0.001123 0.015064
(0.001392) (0.000205) (0.000957) (0.002691)

TABLE VI
COMPARISON OF THE RESULTS OBTAINED FOR Ihv BY NSGA-II, SMS-EMOA,

MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND DTLZ TEST

PROBLEMS.

Problem
MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean
(σ) (σ) (σ) (σ)

ZDT1 0.871849 0.864645 0.870461 0.872129
(0.000095) (0.001562) (0.000206) (0.000006)

ZDT2 0.538568 0.532098 0.537424 0.538872
(0.000058) (0.000882) (0.000148) (0.000015)

ZDT3 0.952907 0.941991 0.953912 0.522464
(0.000452) (0.002510) (0.000145) (0.000001)

ZDT4 0.328971 0.324090 0.653614 0.654940
(0.000052) (0.000668) (0.000237) (0.000165)

ZDT6 0.512122 0.383107 0.519667 0.503956
(0.002083) (0.076527) (0.117011) (0.000093)

DTLZ1 0.838140 N/A 1.270538 1.295857
(0.351522) (N/A) (0.016839) (0.039586)

DTLZ2 0.626972 0.669615 0.697212 0.758091
(0.046583) (0.019100) (0.007736) (0.000047)

DTLZ3 N/A N/A 123.673815 124.221079
(N/A) (N/A) (0.295556) (0.878873)

DTLZ4 0.548703 0.688920 0.674632 0.758069
(0.117426) (0.010033) (0.127135) (0.000050)

DTLZ5 0.428426 0.438852 0.437990 0.439374
(0.010028) (0.000056) (0.000223) (0.000011)

DTLZ6 0.000391 N/A 0.361529 0.340557
(0.000277) (N/A) (0.028920) (0.024323)

DTLZ7 2.608814 2.648845 2.974631 5.456793
(0.123164) (0.072522) (0.091615) (0.168653)

We illustrate this reduction in performance by showing
two graphical approximations for the Pareto fronts in solving
DTLZ2, DTLZ4, and DTLZ7. In Figure 3, correspondig to
DTLZ2, we can observe that SMS-EMOA attains a good
convergence and distribution of solutions along the Pareto
front. Our approach has a better convergence as compared
to MOPSOcd, and is able to cover a wider area of the
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Fig. 3. Graphical results for DTLZ2.

Pareto front as compared to NSGA-II. In Figure 4, we also
observe that SMS-EMOA is able to attain good convergence
and a good distribution of solutions along the Pareto front
approximation. For this MOP, our approach performed worst
in terms of the spread of solutions as compared to MOPSOcd
and NSGA-II. However, our proposed approach has a better
convergence ability, but solutions are clustered toward the
boundaries of the true Pareto front. A similar behavior is
observed in other MOPs such as DTLZ7 (see Figure 5).
This reduced performance in solving some MOPs deserves
a further investigation, and will be part of our future work.

It is well-known that the exact computation of the hy-
pervolume contribution used in SMS-EMOA hinders its use
in many-objective optimization problems (i.e., in problems
having more than 3 objectives), due to its unaffordable com-
putational cost in those cases. In this regard, our approach,
which uses a Monte Carlo estimation of the hypervolume
contribution could be a viable choice for dealing with such
many-objective problems. In order to assess this, we present
next a small scalability test.

A. Many-objetive Optimization: A Case Study

In order to evaluate the ability of our proposed approach to
deal with many-objective optimization problems, we scaled
the DTLZ2 test problem from 2 to 10 objectives. As before,
we compared the performance of our proposed approach
with respect to NSGA-II, SMS-EMOA and MOPSOcd. The
parameters used in this case are the same values reported in
Section IV-A.

The outcome sets for the algorithms were compared using
the hypervolume (Ihv) indicator, using ~1.1 as the reference
vector (zref ). Additionally, the running time for different
MOEAs compared is reported. We can see in Table VII
and in Figure 6 how, as expected for Pareto-based MOEAs,
NSGA-II and MOPSOcd have both a quick performance
degradation (with respect to the hypervolume) as we increase
the number of objectives. This does not occur with SMS-
EMOA nor with our proposed MOPSOhv. SMS-EMOA at-
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Fig. 4. Graphical results for DTLZ4.
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Fig. 5. Graphical results for DTLZ7.

tains better solutions than our proposal, but at a much higher
computational cost, see Figure 7. In these experiments, the
use of SMS-EMOA was limited to four objectives, due to
the exponential increase in its computational cost. From
these results, we can see how our proposed MOPSOhv is
a viable alternative for solving many-objective optimization
problems, since its computational cost remains affordable
even when dealing with ten objectives. In fact, our approach
was able to improve the quality of the solutions obtained as
the number of objectives was increased.

VI. CONCLUSIONS AND FUTURE WORK

Since the leaders selection strategy strongly influence the
performance of multi-objective particle swarm optimizers,
we have proposed here a mechanism based on the hypervol-
ume contribution of the archived particles for this sake. Also,
and due to the high computational cost involved in evaluat-
ing exact hypervolume contributions we approximated them
using Monte Carlo simulations. From the experiments per-

TABLE VII
COMPARISON OF THE RESULTS OBTAINED FOR Ihv BY NSGA-II, SMS-EMOA,
MOPSOCD AND OUR PROPOSED MOPSOHV FOR DTLZ2 USING FROM 2 TO 10

OBJECTIVES. THE AVERAGE EXECUTION TIMES ARE ALSO REPORTED.

Objectives

MOPSOhv MOPSOcd NSGA-II SMS-EMOA
mean mean mean mean
(σ) (σ) (σ) (σ)

avg time (s) avg time (s) avg time (s) avg time (s)

2
0.420962 0.420372 0.419588 0.421023

(0.000031) (0.000037) (0.000323) (0.00003)
150.6620 87.2790 1.4545 75.2620

3
0.644946 0.667862 0.697689 0.758071

(0.030303) (0.024190) (0.009213) (0.000056)
241.3620 106.2830 1.6804 1066.4680

4
0.649871 0.000000 0.834518 1.044734

(0.046065) (0.000000) (0.019843) (0.000030)
239.3730 145.4090 1.8407 11149.0560

5
0.686608 0.000000 0.806271 N/A

(0.091850) (0.000000) (0.075088) (N/A)
280.1500 170.2110 2.0637 N/A

6
0.768027 0.000000 0.195606 N/A

(0.106912) (0.000000) (0.133364) (N/A)
327.2390 247.5470 2.2874 N/A

7
0.897171 0.000000 0.146724 N/A

(0.059289) (0.000000) (0.119704) (N/A)
529.7890 288.0450 2.5823 N/A

8
0.923948 0.000000 0.185958 N/A

(0.098939) (0.000000) (0.088435) (N/A)
582.9530 325.6510 2.8558 N/A

9
0.894945 0.000000 0.212041 N/A

(0.098291) (0.000000) (0.124973) (N/A)
653.3080 395.4500 3.0805 N/A

10
1.080952 0.000000 0.224003 N/A

(0.085351) (0.000000) (0.127577) (N/A)
382.7230 335.1710 3.2584 N/A
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formed, it can be seen that our proposed approach produces
competitive results in low dimensionality and it outperforms
state-of-the-art MOEAs in high dimensionality while keeping
a low computational cost. Thus, we suggest its use mainly
for solving many-objective optimization problems.

As part of our future work, we plan to test different
schemes and topologies for the global and local leader
selection schemes of our approach. We would also like to use
different density estimators in the deletion process adopted in
the external archive update mechanism. Finally, we are also
interested in analyzing the reasons for which our approach
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has problems to converge in some test problems.
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