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A TUTORIAL ON MULTI-OBJECTIVE
OPTIMIZATION USING METAHEURISTICS

Carlos A. Coello Coello

Abstract. This paper provides an overview of the use of metaheuristics for solving multi-
objective optimization problems. The metaheuristics discussed include multi-objective
evolutionary algorithms (going from the early approches to the most recent research
trends in that area), multi-objective particle swarm optimizers, multi-objective artificial
immune systems, multi-objective ant colony systems and multi-objective scatter search.
In the final part of the paper, we provide a review of sample applications of multi-objective
metaheuristics, and a discussion of some of the topics in which more research is required.
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§1. Introduction

A wide variety of problems in engineering and other disciplines have two or more objectives
which we wish to minimize simultaneously. Such objectives are normally in conflict with
each other (at least partially) and tend to be expressed in different units. These problems are
called multi-objective and their solution requires a different notion of optimality that aims for
the best possible trade-offs among the objectives (i.e., solutions for which no objective can be
improved without worsening another one). For dealing with these problems, it is common to
rely on the so-called Pareto optimality [92]. This definition gives rise to several compromise
solutions, called the Pareto optimal set. The objective function values corresponding to the
elements of the Pareto optimal set constitute the so-called Pareto front.

The algorithms for solving multi-objective optimization problems which are currently
available in the mathematical programming literature [87] have a number of limitations, in-
cluding the facts that some of them have a fairly limited applicability and that others need,
in many cases, of problem specific information (e.g., derivatives). Additionally, some of
those methods can be easily trapped in local Pareto optimal solutions when dealing with
complex search spaces. This has motivated the use of alternative approaches, from which
metaheuristics have gained an increasing popularity in the last few years. The main reasons
for this popularity are their ease of use and their effectiveness to deal with a wide variety of
problems, requiring little or no problem-specific information. Within the many types of meta-
heuristics currently available, evolutionary algorithms are, with no doubt, the most popular
choice [19].1

1The author maintains the EMOO repository, which currently contains over 4800 bibliographic references on this
topic. The EMOO repository is available at: http://delta.cs.cinvestav.mx/˜ccoello/EMOO/
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The remainder of this paper is organized as follows. In Section 2, we provide some basic
concepts necessary to understand the rest of the paper. Section 3 is devoted to multi-objective
evolutionary algorithms which are, the most popular multi-objective metaheuristic (MOMH)
in current use. In Section 4, we talk about four more MOMHs that are relatively popular in the
specialized literature. Section 5 summarizes some of the main applications of MOMHs. Two
research topics that deserve further exploration are briefly discussed in Section 6. Finally, our
conclusions are provided in Section 7.

§2. Basic Concepts

We are interested in solving problems of the type2:

minimize ~f(~x) := [f1(~x), f2(~x), . . . , fk(~x)] (1)

subject to:
gi(~x) ≤ 0 i = 1, 2, . . . ,m (2)

hi(~x) = 0 i = 1, 2, . . . , p (3)

where ~x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR, i = 1, ..., k
are the objective functions and gi, hj : IRn → IR, i = 1, ...,m, j = 1, ..., p are the constraint
functions of the problem.

To describe the concept of optimality in which we are interested, we will introduce next
a few definitions.

Definition 1. Given two vectors ~x, ~y ∈ IRk, we say that ~x ≤ ~y if xi ≤ yi for i = 1, ..., k, and
that ~x dominates ~y (denoted by ~x ≺ ~y) if ~x ≤ ~y and ~x 6= ~y.

Definition 2. We say that a vector of decision variables ~x ∈ X ⊂ IRn is nondominated with
respect to X , if there does not exist another ~x′ ∈ X such that ~f(~x′) ≺ ~f(~x).

Definition 3. We say that a vector of decision variables ~x∗ ∈ F ⊂ IRn (F is the feasible
region) is Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {~x ∈ F|~x is Pareto-optimal}

Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {~f(~x) ∈ IRk|~x ∈ P∗}

Therefore, our aim is to obtain the Pareto optimal set from F of all the decision variable
vectors that satisfy (2) and (3). It is worth indicating, however, that in practice, to obtain all

2Without loss of generality, we will assume only minimization problems.
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the elements of the Pareto optimal set is normally undesirable and could also be impossible.
Thus, our main goal when using a MOMH is to generate a good approximation of the Pareto
optimal set (i.e., containing solutions that, when mapped in objective function space, are as
close as possible from the true Pareto front of the problem) and having a good distribution
(i.e., also in objective function space).

§3. Multi-Objective Evolutionary Algorithms

Since evolutionary algorithms are, by far, the most popular metaheuristic that has been used
for solving multi-objective optimization problems, we will devote this entire section to them.

3.1. The Early Days
Evolutionary algorithm (EA) is a generic term used to denote several metaheuristics inspired
on the “survival of the fittest” principle from Darwin’s evolutionary theory. Their origins can
be traced back to the 1960s [68, 100, 49], and have been found to be quite effective in solving
a wide variety of complex search, classification and optimization problems [41].

EAs are particularly suitable for solving multi-objective optimization problems because
of their capability to operate on a set of solutions (the population) at each iteration, which
allows them to generate several trade-off solutions in a single run. They have also become
popular because of their ease of use and generality (i.e., EAs are less susceptible to the shape
and continuity of the Pareto front of a problem than mathematical programming techniques)
[19].

It is worth indicating than traditional EAs require some modifications in order to deal
with multi-objective optimization problems. The main two are the following:

1. All the nondominated solutions should be considered equally good by the selection
mechanism. This means that a different notion of fitness is required for dealing with
multi-objective optimization problems. The most popular mechanism to deal with this
problem is called Pareto ranking and was introduced by Goldberg [59]. This approach
assigns a rank to each solution based on its Pareto dominance, such that nondominated
solutions are all sampled at the same rate.

2. EAs tend to converge to a single solution if run long enough, because of stochastic noise
[59]. Therefore, a mechanism to maintain diversity is required. This component is
known as the density estimator. Fitness sharing [60] was the earliest density estimator,
but many others have been proposed over time, including clusters [122], entropy [47],
adaptive grids [80] and crowding [31], among others.

The first actual implementation of a multi-objective evolutionary algorithm (MOEA) was
David Schaffer’s Vector Evaluation Genetic Algorithm (VEGA), which was introduced in the
mid-1980s, mainly aimed for solving problems in machine learning [99].

In the period that goes from the second half of the 1980s to the first half of the 1990s, a
few relatively simple and naive MOEAs were introduced. Most of them relied on aggregat-
ing functions (mostly linear) [104], lexicographic ordering [51], and target-vector approaches
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[113]. Most of these MOEAs did not modify their selection mechanism or any other compo-
nent, except for the definition of the fitness function. Most of these MOEAs would soon be
forgotten.

As indicated before, Pareto ranking was proposed in Goldberg’s famous book on genetic
algorithms [59]. However, he only provided an informal description of this new selection
mechanism but no actual implementation. This gave rise to several MOEAs based on Gold-
berg’s proposal. The three most representative of the early days of MOEAs are:

1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm was proposed by
Srinivas and Deb [103] and was the first MOEA to be published in a specialized journal
(Evolutionary Computation). The NSGA is based on several layers of classification of
the individuals as suggested by Goldberg. Before selection takes place, the population
is ranked on the basis of nondominance: all nondominated individuals are classified
into one category (with a dummy fitness value, which is proportional to the population
size, to provide an equal reproductive potential for these individuals). To maintain the
diversity of the population, these classified individuals are shared with their dummy
fitness values. Then this group of classified individuals is ignored and another layer
of nondominated individuals is considered. The process continues until all individuals
in the population are classified. Since individuals in the first front have the maximum
fitness value, they always get more copies than the rest of the population. Fitness
sharing is used to distribute the population along the Pareto front of the problem.

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al. [69]. It uses
a tournament selection scheme based on Pareto dominance. The basic idea of the
algorithm is the following: Two individuals are randomly chosen and compared against
a subset from the entire population (typically, around 10% of the population). If one of
them is dominated (by the individuals randomly chosen from the population) and the
other is not, then the nondominated individual wins. When both competitors are either
dominated or nondominated (i.e., there is a tie), the result of the tournament is decided
through fitness sharing [60]. In [45], a revised version of this algorithm, called NPGA
2 was proposed. This algorithm relies on a traditional Pareto ranking approach (similar
to Fonseca and Fleming’s MOGA [50]), but it keeps its tournament selection scheme.
Ties are solved through fitness sharing as in its predecessor. However, the niche count
of the NPGA 2 is computed using individuals from the next partially filled generation
using a technique called “continuously updated fitness sharing” [91].

3. Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca and Fleming
[50]. Here, the rank of a certain individual corresponds to the number of individuals in
the current population by which it is dominated. Consider, for example, an individual
xi at generation t, which is dominated by p(t)

i individuals in the current generation.
The rank of an individual is given by [50]:

rank(xi, t) = 1 + p
(t)
i (4)

All nondominated individuals are assigned rank 1, while dominated ones are penalized
according to the population density of the corresponding region of the trade-off surface.
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Fitness assignment is performed in the following way [50]:

(a) Sort population according to rank.

(b) Assign fitness to individuals by interpolating from the best to the worst in the way
proposed by Goldberg [59], according to some function, usually linear, but not
necessarily.

(c) Average the fitnesses of individuals with the same rank, so that all of them are
sampled at the same rate. This procedure keeps the global population fitness con-
stant while maintaining appropriate selective pressure, as defined by the function
used.

From these 3 algorithms, a few comparative studies undertaken during the mid and late
1990s, indicated that MOGA was the most effective and efficient approach, followed by the
NPGA and by the NSGA [22, 108]. It is worth indicating that during the early days (up to the
end of the 1990s), most papers would compare MOEAs without using performance measures,
but only in a graphical way (plotting the Pareto fronts generated by each MOEA).

3.2. Elitist MOEAs

Towards the end of the 1990s, elitism became a standard mechanism to be provided into any
MOEA. The Strengh Pareto Evolutionary Algorithm (SPEA) [118] played a key role in pop-
ularizing elitism, since it adopted an external population, and its publication in a specialized
journal (the IEEE Transactions on Evolutionary Computation), quickly made it a landmark
in the field. Consequently, many researchers started to incorporate external populations in
their MOEAs, popularizing this mechanism. There are, however, also theoretical reasons for
which elitism is a required mechanism in MOEAs (see [97]). Elitism consists of retaining the
best solutions found during the search so that they are subject to crossover or mutation. In
the context of multi-objective optimization, elitism usually (although not necessarily) refers
to the use of an external population (also called secondary population) to retain the nondom-
inated individuals found during the search. External archives can be unbounded but, mainly
because of practical reasons, they are normally bounded. Another mechanism that can be
used instead of an external archive is the so-called (µ + λ)-selection in which parents com-
pete with their children and those which are nondominated (and possibly comply with some
additional criterion such as providing a better distribution of solutions) are selected for the
following generation. This sort of selection is implicitly elitist, because it will retain the best
half of the individuals under consideration.

With the advent of elitist MOEAs, performance measures started to become popular in
the specialized literature [27, 119, 109]. It has been found, however, that some of these
performance measures are not Pareto-compliant and can provide no reliable assessment [124].
There are also several benchmarks for testing new MOEAs, from which the most popular are:
the Zitzler-Deb-Thiele (ZDT) test suite [119], the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [32] and the Walkig-Fish-Group (WFG) test suite [70].

The three following approaches are representative of the elitist MOEAs in common use
nowadays:
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1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm was introduced in
[118], and was conceived as a way of integrating different MOEAs. It uses an archive
containing nondominated solutions previously found (the so-called external nondom-
inated set). At each generation, nondominated individuals are copied to the external
nondominated set. For each individual in this external set, a strength value is computed.
This strength is similar to the ranking value of MOGA [50], since it is proportional to
the number of solutions to which a certain individual dominates. In SPEA, the fit-
ness of each member of the current population is computed according to the strengths
of all external nondominated solutions that dominate it. The fitness assignment pro-
cess of SPEA considers both closeness to the true Pareto front and even distribution
of solutions at the same time. Thus, instead of using niches based on distance, Pareto
dominance is used to ensure that the solutions are properly distributed along the Pareto
front. Although this approach does not require a niche radius, its effectiveness relies
on the size of the external nondominated set. In fact, since the external nondominated
set participates in the selection process of SPEA, if its size grows too large, it might re-
duce the selection pressure, thus slowing down the search. Because of this, the authors
decided to adopt a technique that prunes the contents of the external nondominated set
so that its size remains below a certain threshold (a clustering technique called “aver-
age linkage method” [88] was used for that sake). There is a revised version of SPEA,
called SPEA2, which has three main differences with respect to its predecessor [121]:
(1) it incorporates a fine-grained fitness assignment strategy which takes into account
for each individual the number of individuals that dominate it and the number of in-
dividuals by which it is dominated; (2) it uses a nearest neighbor density estimation
technique which guides the search more efficiently, and (3) it has an enhanced archive
truncation method that guarantees the preservation of boundary solutions.

2. Pareto Archived Evolution Strategy (PAES): This algorithm was introduced in [81].
It consists of a (1+1) evolution strategy (i.e., a single parent that generates a single
offspring) in combination with a historical archive (the elitist mechanism) that records
the nondominated solutions previously found. This archive is used as a reference set
against which each mutated individual is being compared. An interesting aspect of this
algorithm is the procedure used to maintain diversity which consists of a crowding pro-
cedure that divides objective space in a recursive manner. Each solution is placed in a
certain grid location based on the values of its objectives (which are used as its “coor-
dinates” or “geographical location”). A map of such grid is maintained, indicating the
number of solutions that reside in each grid location. Since the procedure is adaptive,
no extra parameters are required (except for the number of divisions of the objective
space).

3. Nondominated Sorting Genetic Algorithm II (NSGA-II): This approach was intro-
duced in [29, 31] as an improved version of the NSGA [103]. In the NSGA-II, for each
solution one has to determine how many solutions dominate it and the set of solutions
to which it dominates. The NSGA-II estimates the density of solutions surrounding a
particular solution in the population by computing the average distance of two points
on either side of this point along each of the objectives of the problem. This value
is the so-called crowding distance. During selection, the NSGA-II uses a crowded-
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comparison operator which takes into consideration both the nondomination rank of an
individual in the population and its crowding distance (i.e., nondominated solutions are
preferred over dominated solutions, but between two solutions with the same nondom-
ination rank, the one that resides in the less crowded region is preferred). The NSGA-II
combines the best parents with the best offspring obtained (i.e., a (µ+λ)-selection), in-
stead of using an external archive. Due to its clever mechanisms, the NSGA-II is much
more efficient (computationally speaking) than its predecessor, and its performance is
so good, that it has become very popular in the last few years, becoming a landmark
against which other MOEAs have to be compared.

Although many other MOEAs exist (see for example [20, 101, 115]), it is not the intention
of this paper to be comprehensive. The interested reader may refer to [19, 28, 105] for more
information on this topic.

3.3. Current Trends in MOEAs
During some time, the use of relaxed forms of Pareto dominance became popular as a mech-
anism to regulate convergence of a MOEA. From these mechanisms, ε-dominance was, with
no doubt, the most popular [85]. ε-dominance allows to control the granularity of the ap-
proximation of the Pareto front obtained. As a consequence, it is possible to accelerate con-
vergence using this mechanism (if we are satisfied with a very coarse approximation of the
Pareto front). Several MOEAs incorporated ε-dominance in their external archives (see for
example [33, 65]), and there was even one MOEA fully developed around this concept (see
[30]).

However, the main current research trend regarding algorithmic development is to adopt
a performance measure in the selection scheme of a MOEA (hypervolume3 has been the most
popular). See for example:

• Evolution Strategy with Probability Mutation (ESP): This approach uses a hyper-
volume-based, scaling independent, parameterless measure, to truncate overpopulated
external archives [71].

• Indicator-Based Evolutionary Algorithm (IBEA): This is a framework that allows
any performance indicator to be incorporated into the selection mechanism of a MOEA
[120]. Its authors tested it with the hypervolume and with the binary ε indicator.

• S Metric Selection Evolutionary Multiobjective Algorithm (SMS-EMOA): This
approach is based on the hypervolume performance measure [42, 9].

• Set Preference Algorithm for Multiobjective optimization (SPAM): This can be
seen as a generalization of IBEA which allows the use of any sort of set preference
relation [123].

The use of hypervolume has some advantages, from which the main one is that it has
been proved that the maximization of this performance measure is equivalent to finding the

3The hypervolume (also known as the S metric or the Lebesgue Measure) of a set of solutions measures the size
of the portion of objective space that is dominated by those solutions collectively.
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Pareto optimal set [48]. Additionally, empirical studies have shown that (for a certain number
of points previously determined) the maximization of the hypervolume does indeed produce
subsets of the Pareto front which are well-distributed [82, 42]. Furthermore, hypervolume
measures convergence and, to a certain extent, also the spread of solutions along the Pareto
front. Finally, it has been shown that hypervolume-selection is less sensitive to scalability
in objective function space, which makes it promising to deal with problems having many
objectives [75].

Hypervolume has, however, some problems of its own. First, the computation of this
performance measure depends on a reference point, which can influence the results in a sig-
nificant manner. Some people have proposed to use the worst objective function values in the
current population, but this requires scaling of the objectives. Its main drawback, however,
is that the best algorithms known to compute hypervolume have a polynomial complexity
on the number of points used, but such complexity grows exponentially on the number of
objectives. This has triggered an important amount of efforts aimed to produce more efficient
algorithms to approximate the hypervolume [112, 10, 8, 7, 13].

§4. Other Metaheuristics

Several other metaheuristics have also been used as multi-objective optimizers [19, 23]. Next,
we will discuss four of the most popular of them in more detail:

• Particle Swarm Optimization: This metaheuristic was inspired on the choreography
of a bird flock which aim to find food [78, 79]. The implementation of this algo-
rithm employs a population of particles, whose behavior is affected by either the best
local (i.e., within a certain neighborhood) or the best global individual (i.e., with re-
spect to the entire swarm). Particle swarm optimization (PSO) has been successfully
used for both continuous nonlinear and discrete binary optimization [43, 44]. An im-
portant number of multi-objective versions of PSO currently exist (see for example
[21, 94, 95, 46]). However, until relatively recently, most of the research had concen-
trated on producing new variations of existing algorithms, rather than on studying other
(more interesting) topics, such as the role of the main components of a multi-objective
particle swarm optimizer. Some recent research in that direction has shown that certain
components that had been traditionally disregarded (e.g., the leader selection mecha-
nism and the parameters of the flight formula) play a key role in the performance of
a multi-objective particle swarm optimizer [12, 107]. There are also other interest-
ing comparative studies aimed to identify their advantages and limitations [39]. It is
expected that more research of this sort will be conducted in the next few years.

• Artificial Immune Systems: If considered from a computational point of view, our
natural immune system can be considered a distributed intelligent system, which is
able to learn and retrieve knowledge previously acquired, in order to solve several
(highly complex) recognition and classification tasks [89]. These features make our
immune has motivated researchers to develop computational models of our immune
system which have been used for a variety of tasks, including classification, pattern
recognition, and optimization [26, 89]. Several multi-objective extensions of artifi-
cial immune systems have been proposed in the specialized literature (see for example
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[17, 53, 14, 52]). Also, several hybrid approaches have been proposed to solve specific
tasks (see for example [2], where the authors use a multi-objective immune system hy-
bridized with evolutionary operators and local search, in order to solve a rule extraction
problem). More hybrid approaches are still to come, but until now, the high potential
of multi-objective artificial immune systems in classification and pattern recognition
tasks has not been fully exploited yet [117].

• Ant Colony Optimization: This metaheuristic was inspired on the foraging behavior
of real ants. It is a distributed, stochastic search procedure based on the indirect com-
munication of a set (called “colony”) of artificial ants, which mediate using artificial
pheromone trails. These pheromone trails can be seen as distributed information which
is used by the ants to construct their solutions to the problem at hand. Such pheromone
trails are modified during the algorithm’s execution, such that they reflect the search
experience acquired by the ants. This metaheuristic is intended for solving difficult
(both static and dynamic) combinatorial optimization problems, in which solutions can
be generated through the use of a construction procedure [36, 37]. There are several
multi-objective extensions of ant colony optimization (ACO) algorithms (see for exam-
ple [66, 35, 55, 1]), but as multi-objective combinatorial optimization becomes more
attractive for researchers [40, 54], it is expected that more multi-objective ant colony
optimization approaches (and hybrids of ACO algorithms with other metaheuristics)
are proposed within the next few years.

• Scatter Search: This approach was originally conceived as an extension of a heuris-
tic called surrogate constraint relaxation, which was designed for solving integer pro-
gramming problems [56]. Its core idea is to adopt a series of different initializations
to generate solutions. A reference set of solutions (the best found so far) is adopted,
and then such solutions are “diversified” in order to generate new solutions within the
neighborhood of the contents of the reference set. This sort of simple procedure is re-
peated until no further improvements to the contents of the reference set are detected.
In the mid-1990s, some further mechanisms were added to the original scatter search
algorithm, which allowed its extension to solve nonlinear, binary and permutation op-
timization problems [57]. These new applications triggered an important amount of
research in the following years [83, 86]. Multi-objective extensions of scatter search
are relatively recent, but have been steadily increasing [4, 90]. Scatter search has a lot
of potential for hybrid approaches, such as memetic MOEAs [58], since it can act as
a powerful local search engine for tasks such as generating missing parts of a Pareto
front [98]. Because of its flexibility and ease of use, scatter search is expected to be-
come more commonly adopted in the near future, particularly when designing hybrid
MOEAs that rely heavily on good local search engines.

§5. Applications

MOEAs have been applied to a wide variety of domains (see for example [18]). However,
and for the purposes of this paper, we can roughly classify the applications of MOEAs into
three large groups: engineering, industrial and scientific. Some specific areas within each of
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these groups are indicated next.
We will start with the engineering applications, which are, by far, the most popular in

the literature. This should not be surprising, since engineering disciplines normally have
problems with better understood mathematical models, which makes them more suitable for
the use of MOEAs. Some sample applications of MOEAs in engineering are the following:

• Electrical engineering [111]

• Hydraulic engineering [5]

• Structural engineering [15]

• Aeronautical engineering [93]

• Robotics [106]

• Control [114]

• Telecommunications [24]

• Civil engineering [38]

• Transport engineering [61]

Now, we will provide some applications of MOEAs in industry:

• Design and manufacture [62]

• Scheduling [64]

• Management [72]

Finally, we have a variety of scientific applications of MOEAs:

• Chemistry [34]

• Physics [96]

• Medicine [125]

• Geography [6]

• Bioinformatics [3]

• Computer science [102]

Although small, this sample should give a good idea of the type of work being done
with MOEAs these days. Nevertheless, many other applications exist. The interested reader
should refer to the EMOO repository [16] for more information on this topic.
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§6. Future Research Paths

In spite of the high volume of research done around multi-objective metaheuristics, several
interesting topics remain to be explored in greater depth. Next, we briefly discuss two of
them:

1. Hybridization: The hybridization of MOMHs with other metaheuristics and with lo-
cal search mechanisms (either gradient-based or not) aimed to improve their perfor-
mance is a topic that is currently being explored by many researchers (see for example
[63, 67, 76, 84]), because of its high potential. Hybrid MOMHs could be viable al-
ternatives for solving some of the great challenges of today, such as many-objective
optimization problems (i.e., problems having 4 or more objective functions) [73, 74].
The use of scalarization methods combined with MOMHs is also another type of in-
teresting hybridization that has a lot of potential for solving highly complex problems
(see for example [116]).

2. Incorporation of user’s preferences: In most real-world applications, users are not
interested in the entire Pareto front, but only in a portion of it. Several mechanisms
to incorporate user’s preferences into a MOMH have been reported in the specialized
literature (see for example [25, 77, 110, 11]), but this topic has only been scarcely
explored and certainly deserves more attention.

§7. Conclusions

In this paper, we have provided a short (and highly compact) tutorial on the use of meta-
heuristics for solving multi-objective optimization problems. As such, this tutorial provides
a very general overview of the field and is intended to serve as a quick reference for those
interested in in this area. The author hopes that, in spite of favoring breadth over depth, this
tutorial can be useful for those wishing to do research in multi-objective optimization using
metaheuristics, since that has been the purpose of this work.
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