An Introduction to Multi-Objective Particle
Swarm Optimizers

Carlos A. Coello Coello*

CINVESTAV-IPN

Evolutionary Computation Group (EVOCINV)
Departamento de Computacién, Av. IPN No. 2508

Col. San Pedro Zacatenco, México, D.F. 07360, MEXICO

ccoello@cs.cinvestav.mx

Summary. This paper provides a discussion on the main changes required in order
to extend particle swarm optimization to the solution of multi-objective optimization
problems. A short discussion of some potential paths for future research in this area
is also included.

keywords: particle swarm optimization, multi-objective optimization, meta-
heuristics.

1 Introduction

There is a wide variety of real-world problems which have two or more (nor-
mally conflicting) objectives that we aim to optimize at the same time. Such
problems are called multi-objective, and their solution involves the search of
solutions that represent the best possible compromise among all the objec-
tives.

Particle Swarm Optimization (PSO) is a bio-inspired metaheuristic that
simulates the movements of a flock of birds or fish which seek food. Its rela-
tive simplicity (with respect to evolutionary algorithms) have made it a pop-
ular optimization approach, and a good candidate to be extended for multi-
objective optimization.

The first multi-objective particle swarm optimizer (MOPSQO) was proposed
by Moore and Chapman in an unpublished manuscript from 19992 [11]. This

* The author acknowledges support from CONACyT project no. 103570.
2 This paper may be found in the EMOO repository located at:
http://delta.cs.cinvestav.mx/~ccoello/EMO0/

2 Carlos A. Coello Coello

paper was published the following year [12], but the actual interest in devel-
oping MOPSOs really started in 2002. Due to obvious space limitations, this
paper does not intend to provide a survey on MOPSOs (see, for example, [13]
for a survey of that sort). Here, we only provide a short review of PSO and
the way in which it has to be modified so that it can solve multi-objective
optimization problems.

The remainder of this paper is organized as follows. In Section 2, we provide
some basic concepts from multi-objective optimization required to make the
paper self-contained. Section 3 presents an introduction to the PSO strategy
and Section 4 presents a brief discussion about extending the PSO strategy
for solving multi-objective problems. In Section 5, possible paths of future
research are discussed and, finally, we present our conclusions in Section 6.

2 Basic Concepts

We are interested in solving the so-called multi-objective optimization problem
(MOP) which has the following form?:

minimize f(x) := [f1(x), fo(x), ..., f&(X)] (1)
subject to:
gi(x) <0 i=1,2,....m (2)
hix)=0 i=1,2,...,p (3)
where x = [z1, 22, ..., xn]T is the vector of decision variables, f; : R" — IR,

i = 1,...,k are the objective functions and g;,h; : R" — R, ¢ = 1,...,m,
j =1,...,p are the constraint functions of the problem.

Definition 1. Given two vectors x,y € R”, we say that x <y if z; < y; for
i=1,...,k, and that x dominates y (denoted by x < y) if x <y and x # y.

Definition 2. We say that a vector of decision variables x € X C R" is
nondominated with respect to X, if there does not exist another x’ € X
such that f(x') < f(x).

Definition 3. We say that a vector of decision variables x* € F C R" (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to
F.

Definition 4. The Pareto Optimal Set P* is defined by:

P* = {x € F|x is Pareto-optimal}

3 Without loss of generality, we will assume only minimization problems.

An Introduction to Multi-Objective Particle Swarm Optimizers 3

Definition 5. The Pareto Front PF* is defined by:

PF* = {f(x) e RF|x € P*}

We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). In practice, it is normally the
case that only some elements of the Pareto optimal set is required, although
multi-objective metaheuristics normally aim to find as many elements of the
Pareto optimal set as possible [2].

3 An Introduction to Particle Swarm Optimization

PSO is a population-based metaheuristic which was originally introduced by
James Kennedy and Russell C. Eberhart in the mid-1990s [8]. PSO was orig-
inally adopted for balancing weights in neural networks, but it soon became
a very popular global optimizer, maybe in problems in which the decision
variables are real numbers [6, 9].

Although some authors consider PSO as another evolutionary algorithm
(EA), other authors such as Angeline [1], make important distinctions between
them:

1. EAs rely on three main mechanisms: parents encoding, selection of indi-
viduals and fine tuning of their parameters. In contrast, PSO only relies
on two mechanisms, since it does not adopt an explicit selection function
(this is compensated by the use of leaders to guide the search, but there
is no notion of offspring generation in PSO as in EAs).

2. PSO adopts a velocity value for each particle, and this is used to guide
the search. The velocity can be seen as a directional mutation operator in
which the direction is defined by both the particle’s personal best and the
global best (of the swarm). In contrast, EAs use a randomized mutation
operator that can set an individual in any direction. Clearly, PSO has a
more limited operator, and such limitations have led to several researchers
to incorporate a randomized mutation operator.

In order to make this paper self-contained, we provide next a small glossary
of terms used by the PSO community:

e Swarm: Number of particles adopted (i.e., population size).

e Particle: One member (or individual) of the swarm. Each particle repre-
sents a potential solution to the problem being solved. The position of a
particle is determined by the solution that it currently represents.

e pbest (personal best): The best position that a given particle has achieved
so far. That is, the position of the particle that has provided the greatest
success (measured in terms of a scalar value defined by the user, which is
analogous to the fitness value adopted in EAs).

4 Carlos A. Coello Coello

e lbest (local best): Position of the best particle member belonging to the
neighborhood of a given particle.
gbest (global best): Position of the best particle of the entire swarm.
Leader: Particle that is used to guide another particle towards better
regions of the search space.

e Velocity (vector): This vector drives the optimization process, that is,
it determines the direction in which a particle needs to “fly” (move), in
order to improve its current position.

e Inertia weight: The inertial weight (denoted by W) is adopted to control
the impact of the previous history of velocities on the current velocity of
a given particle.

e Learning factor: It represents the attraction that a particle has towards
either its own best previous value or that of its neighbors. Two learning
factors are adopted in PSO: C, which is the cognitive learning factor and
represents the attraction that a particle has toward its own success, and
C5, which is the social learning factor and represents the attraction that a
particle has toward the success of its neighbors. Both of them are normally
defined as constants.

e Neighborhood topology: It determines the way in which particles are
interconnected and thus defines the way in which they contribute to the
computation of the lbest value of a given particle.

In PSO, the position of a particle (within the search space being explored)
changes based on its own experience and the success of its neighbors.

Let x;(t) denote the position of particle p;, at time step ¢. The position of
p; is then changed by adding a velocity v;(¢) value to the current position of
the particle, i.e.:

x;(t) = x;(t — 1) + v4(t) (4)

The velocity vector reflects the exchanged information and, in general, is
defined in the following way:

v; (t) =Wv; (t — 1) + Cl'f'l (Xpbestri — X (t))
+027'2 (Xleader — X (t)) (5)

where and ry, 73 € [0,1] are randomly generated values.

Particles are influenced by the success of any particle connected to them.
It is worth noting, however, that the way this influence information is prop-
agated depends on the neighborhood topology adopted. Any of the possible
neighborhood topologies that can be adopted in PSO can be represented as a
graph. The following are the most commonly adopted neighborhood topolo-
gies:

An Introduction to Multi-Objective Particle Swarm Optimizers 5

e Empty graph: In this topology, each particle is connected only with itself,
and it compares its current position only to its own best position found so
far (pbest) [5]. In this case, Co = 0 in equation (5).

e Local best: In this topology, each particle is affected by the best perfor-
mance of its k& immediate neighbors (lbest), as well as by their own past
experience (pbest) [5]. When k = 2, this structure is equivalent to a ring
topology. In this case, leader=Ibest in equation (5).

e Fully connected graph: This topology connects all members of the
swarm to one another. This structure is also called star topology in the
PSO community [5]. In this case, leader=gbest in equation (5).

e Star network: In this topology, one particle is connected to all others
and they are connected to only that one (called focal particle) [5]. This
structure is also called wheel topology in the PSO community. In this case,
leader=focal in equation (5).

e Tree network: In this topology, all particles are arranged in a tree and
each node of the tree contains exactly one particle [7]. This structure is also
called hierarchical topology in the PSO community. In this case, leader=
pbestparent I equation (5).

The neighborhood topology is likely to affect the rate fo convergence as
it determines how much time it takes to the particles to find out about the
location of good (better) regions of the search space. For example, since in
the fully connected topology all particles are connected to each other, all par-
ticles receive the information of the best solution from the entire swarm at
the same time. Thus, when using such topology, the swarm tends to converge
more rapidly than when using local best topologies, since in this case, the
information of the best position of the swarm takes a longer time to be trans-
ferred. However, for the same reason, the fully connected topology is also more
susceptible to suffer premature convergence (i.e., to converge to local optima)
[6].

Figure 1 shows the way in which the general (single-optimization) PSO
algorithm works. First, the swarm (both positions and velocities) is randomly
initialized. The corresponding pbest of each particle is initialized and the leader
is located (usually the gbest solution is selected as the leader). Then, for a
maximum number of iterations, each particle flies through the search space
updating its position (using equations (4) and (5)) and its pbest and, finally,
the leader is updated too.

4 Particle Swarm Optimization for Multi-Objective
Problems

In order to apply the PSO strategy for solving MOPs, it is obvious that the
original scheme has to be modified. As we saw in Section 2, in multi-objective

6 Carlos A. Coello Coello

Begin
Initialize swarm
Locate leader
g=20
While g < gmaz
For each particle
Update position (flight)
Evaluation
Update pbest
EndFor
Update leader
g++
EndWhile
End

Fig. 1. Pseudocode of the general PSO algorithm for single-objective optimization.

optimization, we aim to find not one, but a set of different solutions (the so-
called Pareto optimal set). In general, when solving a MOP, the main goals are
to converge to the true Pareto front of the problem (i.e., to the solutions that
are globally nondominated) and to have such solutions as well-distributed as
possible along the Pareto front. Given the population-based nature of PSO,
it is desirable to produce several (different) nondominated solutions with a
single run. So, as with any other evolutionary algorithm, the main issues to
be considered when extending PSO to multi-objective optimization are [2]:

1. How to select particles (to be used as leaders) in order to give preference
to nondominated solutions over those that are dominated?

2. How to retain the nondominated solutions found during the search process
in order to report solutions that are nondominated with respect to all the
past populations and not only with respect to the current one? Also, it is
desirable that these solutions are well spread along the Pareto front.

3. How to maintain diversity in the swarm in order to avoid convergence to
a single solution?

As we just saw, when solving single-objective optimization problems, the
leader that each particle uses to update its position is completely deter-
mined once a neighborhood topology is stablished. However, when dealing
with MOPs, each particle might have a set of different leaders from which
just one can be selected in order to update its position. Such set of leaders is
usually stored in a different place from the swarm, that we will call external
archive *: This is a repository in which the nondominated solutions found
so far are stored. Only solutions that are nondominated with respect to the

4 This external archive is also used by many Multi-Objective Evolutionary Algori-
htms (MOEAs).

An Introduction to Multi-Objective Particle Swarm Optimizers 7

contents of the entire archive are retained. The solutions contained in the ex-
ternal archive are used as leaders when the positions of the particles of the
swarm have to be updated. Furthermore, the contents of the external archive
is also usually reported as the final output of the algorithm.

Begin
Initialize swarm
Initialize leaders in an external archive
Quality(leaders)
g=20
While g < gmaz
For each particle
Select leader
Update Position (Flight)
Mutation
Evaluation
Update pbest
EndFor
Update leaders in the external archive
Quality(leaders)
g++
EndWhile
Report results in the external archive
End

Fig. 2. Pseudocode of a general MOPSO algorithm.

Figure 2 shows the way in which a general MOPSO works. We have marked
with idtalics the processes that make this algorithm different from the gen-
eral PSO algorithm for single objective optimization shown before. First, the
swarm is initialized. Then, a set of leaders is also initialized with the nondom-
inated particles from the swarm. As we mentioned before, the set of leaders is
usually stored in an external archive. Later on, some sort of quality measure
is calculated for all the leaders in order to select (usually) one leader for each
particle of the swarm. At each generation, for each particle, a leader is selected
and the flight is performed. Most of the existing MOPSOs apply some sort
of mutation operator® after performing the flight. Then, the particle is evalu-
ated and its corresponding pbest is updated. A new particle replaces its pbest
particle usually when this particle is dominated or if both are incomparable
(i.e., they are both nondominated with respect to each other). After all the
particles have been updated, the set of leaders is updated, too. Finally, the

5 The mutation operators adopted in the PSO literature have also been called
turbulence operators.

8 Carlos A. Coello Coello

quality measure of the set of leaders is re-calculated. This process is repeated
for a certain (usually fixed) number of iterations.

As we can see, and given the characteristics of the PSO algorithm, the
issues that arise when dealing with multi-objective problems are related with
two main algorithmic design aspects [14]:

1. Selection and updating of leaders:

e How to select a single leader out of set of nondominated solutions
which are all equally good? Should we select this leader in a random
way or should we use an additional criterion (to promote diversity, for
example)?

e How to select the particles that should remain in the external archive
from one iteration to another?

2. Creation of new solutions:

e How to promote diversity through the two main mechanisms to create
new solutions: updating of positions (equations (4) and (5)) and a
mutation (turbulence) operator.

Regarding the selection of leaders, the most simple approach is to adopt ag-
gregating functions (i.e., weighted sums of the objectives) or approaches that
optimize each objective separately. However, most researchers redefine the
concept of leader, incorporating the definition of Pareto optimality. However,
since all the nondominated solutions currently available can be considered as
potential leaders, a quality measure is required in order to choose one of them
at a given time. Several authors have proposed the use of density measures
for this sake. The two most commonly adopted are:

e Nearest neighbor density estimator [4]. The nearest neighbor density
estimator gives us an idea of how crowded are the closest neighbors of
a given particle, in objective function space. This measure estimates the
perimeter of the cuboid formed by using as vertices the nearest neighbors.

e Kernel density estimator [3]: When a particle is sharing resources with
others, its fitness is degraded in proportion to the number and closeness
to particles that surround it within a certain perimeter. A neighborhood
of a particle is defined in terms of a parameter that defines the radius of
the neighborhood. Such neighborhoods are called niches.

As indicated before, most MOPSOs adopt an external archive that retains
solutions that are nondominated with respect to all the previous populations
(or swarms). Such an archive will allow the entrance of a solution only if:
(a) it is nondominated with respect to the contents of the archive or (b) it
dominates any of the solutions within the archive (in this case, the dominated
solutions have to be deleted from the archive).

Mainly due to practical reasons, archives tend to be bounded [2], which
makes necessary the use of an additional criterion to decide which nondom-
inated solutions to retain, once the archive is full. In evolutionary multi-
objective optimization, researchers have adopted different techniques to prune

An Introduction to Multi-Objective Particle Swarm Optimizers 9

the archive (e.g., clustering [15] and geographical-based schemes that place
the nondominated solutions in cells in order to favor less crowded cells when
deleting in-excess nondominated solutions [10]).

It is worth noting that, strictly speaking, three archives should be used
when implementing a MOPSO: one for storing the global best solutions, one
for the personal best values and a third one for storing the local best (if
applicable). However, in practice, few authors report the use of more than
one archive in their MOPSOs.

In a MOPSO, diversity can be promoted through the selection of lead-
ers. However, this can be also done through the two main mechanisms used
for creating new solutions: (a) updating of positions (topologies that define
neighborhoods smaller than the entire swarm for each particle can also pre-
serve diversity within the swarm a longer time), and (b) through the use of
a mutation (or turbulence) operator (this will help a MOPSO to escape from
local optima).

5 Future Research Paths

Most of the work in this are has focused on algorithm development, but we
believe that there are several other topics that constitute very promising paths
for future research:

e Self-Adaptation: The design of MOPSOs with no parameters that have
to be fine-tuned by the user is a topic that is worth studying. The design of
a parameterless MOPSO requires a in-depth knowledge of the relationship
between its parameters and its performance in problems with different
features.

e Theoretical Developments: There is an evident lack of research on even
the most basic aspects of a MOPSO (e.g., convergence properties, run-time
analysis, population dynamics, etc.), but it is expected that some work in
this direction will be conducted in the next few years.

e Applications: The applications of MOPSOs have steadily grown in the
last few years, but more are expected to arise, as MOPSOs become better
developed and widespread multi-objective optimization tools.

6 Conclusions

This paper has provided a review of the basic concepts of the PSO algo-
rithm, including its basic equation, neighborhood topologies and leader se-
lection mechanisms. Then, the main changes required to extend PSO to the
solution of MOPs were briefly described, including the use of external archives,
the mechanisms to select leaders and the promotion of diversity in a swarm.
In the final part of the paper, some of the possible paths for future research
on MOPSOs were briefly addressed.

10

Carlos A. Coello Coello

References

10.

11.

12.

13.

14.

15.

. Angeline PJ (1998) Evolutionary optimization versus particle swarm optimiza-

tion: Philosophy and performance differences. In: Porto V, Saravanan N, Waagen
D, Eiben A (eds) Evolutionary Programming VII. 7th International Conference,
EP 98, Springer. Lecture Notes in Computer Science Vol. 1447, San Diego, Cal-
ifornia, USA, pp 601-610

. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary Al-

gorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York,
iSBN 978-0-387-33254-3

. Deb K, Goldberg DE (1989) An investigation of niche and species formation in

genetic function optimization. In: Schaffer JD (ed) Proceedings of the Third In-
ternational Conference on Genetic Algorithms, George Mason University, Mor-
gan Kaufmann Publishers, San Mateo, California, pp 42-50

. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6(2):182-197

. Engelbrecht AP (ed) (2002) Computational Intelligence: An Introduction. John

Wiley & Sons, England

. Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.

John Wiley & Sons

. Janson S, Middendorf M (2003) A hierarchical particle swarm optimizer. In:

Congress on Evolutionary Computation (CEC’2003), IEEE Press, Camberra,
Australia, pp 770-776

. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings

of the 1995 IEEE International Conference on Neural Networks, IEEE Service
Center, Piscataway, New Jersey, pp 1942-1948

. Kennedy J, Eberhart RC (2001) Swarm Intelligence. Morgan Kaufmann Pub-

lishers, San Francisco, California

Knowles JD, Corne DW (2000) Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary Computation 8(2):149-172
Moore J, Chapman R (1999) Application of particle swarm to multiobjective op-
timization, department of Computer Science and Software Engineering, Auburn
University

Moore J, Chapman R, Dozier G (2000) Multiobjective Particle Swarm Opti-
mization. In: Turner AJ (ed) Proceedings of the 38th Annual Southeast Regional
Conference, 2000, ACM Press, Clemson, South Carolina, USA, pp 56-57
Reyes-Sierra M, Coello Coello CA (2006) Multi-Objective Particle Swarm Op-
timizers: A Survey of the State-of-the-Art. International Journal of Computa-
tional Intelligence Research 2(3):287-308

Toscano Pulido G (2005) On the use of self-adaptation and elitism for multi-
objective particle swarm optimization. PhD thesis, Computer Science Section,
Department of Electrical Engineering, CINVESTAV-IPN, Mexico

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A compara-
tive case study and the strength pareto approach. IEEE Transactions on Evo-
lutionary Computation 3(4):257-271

