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Abstract


In this paper we propose a methodology based on a genetic algorithm (GA) to automate


the design of combinational logic circuits in which we aim to minimize the total number


of gates used. Our results are compared against those produced by human designers and


with another GA-based approach. We also analyze the importance of using a non-binary


representation in this problem despite the commonly accepted notion of universality of the


binary representation in all kinds of GA-based applications.


Keywords: circuit design, optimization, genetic algorithms, computer-aided design, arti-
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1 Introduction


Design is a task that requires knowledge and creativity which are two human attributes


normally considered too complex to be automated.


Researchers in Arti�cial Intelligence (AI) have devoted a lot of work towards automating


di�erent aspects of design, but most of the current results consist of complex and expensive


programs that can be easily outperformed by experienced human designers.


The main goal of the research reported in this paper was to develop a low-cost computer-


based design tool that could generate combinational logic circuits which are not only fully


functional, but also optimum according to some metrics.


Since the de�nition itself of the term design is so elusive, it is convenient to start by


stating the de�nition of design that better ful�lls the purposes of this paper:


Design is the process of deriving, from a speci�ed input/output behavior, a


structure (in our case a certain combination of logic gates) that is functional







(produces all the outputs desired for all the inputs speci�ed) within a certain


set of speci�ed constraints.


Furthermore, we want this design to be optimum in terms of certain structural features


(e.g., the number of gates used). It should be added that our current work focuses only


on combinational logic circuits, which contain no memory elements and no feedback paths.


However, the approach proposed is general enough as to allow its generalization to other


(more complex) circuits.


2 Previous Work


A general search technique inspired by natural evolution, called the genetic algorithm (GA)


[12], has been widely used for optimization tasks [9] and is known to be a very powerful


tool in certain domains. In our current work we wish to �nd a way to use the GA as a


design tool, with particular emphasis in the design of combinational circuits.


The design process for combinational logic circuits has evolved from its �rst notions


[29] to a standard element of undergraduate computing curricula [27]. Standard graphical


design aids such as Karnaugh Maps [14, 32] are widely used and tools suitable for computer


implementation have evolved from the Quine-McCluskey Method [26, 22] to freely available


tools such as Espresso [2] and MisII [3] and many commercial products.


Probably the earliest attempt to evolve circuits is Friedman's thesis, that dates back to


the mid 1950s [8]. In his thesis, Friedman proposed that a series of control circuits, similar


to what we now call neural networks, could be evolved through \selective feedback" in a


process analogous to natural selection. J. W. Atmar [1] was another early researcher to


incorporate directly the bit string representing the con�guration of a programmable circuit


within the genotype of an evolutionary-based technique.


In the contemporary literature, the attempt to use evolutionary-based techniques to


design electrical circuits has been called \evolvable hardware" [16, 7]. Within evolvable


hardware there are only a few researchers working on the design of circuits at the gate-


level.


Louis [21] is one of earliest sources that report the use of GAs to design combinational


logic circuits. In his dissertation [20] Louis combines knowledge-based systems with the


genetic algorithm, making use of a genetic operator called masked crossover that adapts


to the encoding, being able to exploit information unused by classical crossover operators.


His results, although very encouraging for certain examples, do not seem to have solved


the combinational circuit design problem completely. However, his idea of incorporating


knowledge about the domain in the genetic operator constitutes a big step toward increasing


the power of the GA as a design tool. Unfortunately, the incorporation of knowledge into


the GA decreases its usefulness as a general search tool. Louis overcomes this problem by


de�ning an operator that he claims to be domain independent, but whose e�ciency turns


out to depend on the representation used.


Koza [17] has used genetic programming to design combinational circuits. He has de-


signed, for example, a two-bit adder, using a small set of gates (AND, OR, NOT), but his


emphasis has been on generating functional circuits rather than on optimizing them. In


fact, this is also the case in Louis' research, where the main focus was to provide an easier


way to generate functional designs using the GA rather than in optimizing a functional


design according to certain metrics. In more recent work, Koza [19, 18] has focused more


towards the design of analog circuits in which the goal is to produce their appropriate







topology and size so that they are functional given a certain set of components. So far,


genetic programming has been considered a more powerful tool in such tasks, because the


representation it uses is more powerful for structural design in general. However, genetic


programming produces circuits that are highly redundant and di�cult to simplify auto-


matically. Furthermore, the computer resources normally required to produce such circuits


are very demanding in terms of memory and CPU time. That is why we decided to use


instead a matrix representation that is encoded linearly in a chromosome, and turns out to


be a compromise between the powerful tree representation used by genetic programming


and the relatively weak linear representation used by a conventional genetic algorithm.


Another early e�ort to codify the basic logic gates (AND, OR, and NOT) along with


their possible interconnections was o�ered by Thompson et al. [30]. Thompson's work


focuses on the con�guration of a Field Programmable Gate Array (FPGA) using genetic


algorithms, and was the basis for the research performed later by most of the other re-


searchers working in evolvable hardware at the gate level.


Miller et al. [24] developed (independently) an approach similar to ours, but using a


more compact representation that instead of considering the inputs and gates as completely


separate elements in the chromosomic string (as in our case), uses a single gene to encode


a complete Boolean expression. Miller's notation does not decrease the total length of the


chromosome, but it increases the cardinality of the alphabet needed, having as its main


drawback the lack of exibility of the representation to handle a larger number of inputs


(the cardinality of the alphabet in Miller's case grows exponentially with respect to the


number of inputs, whereas in our case, it grows linearly). Nevertheless, we will compare


the results found by our approach in one example with those previously reported by Miller


et al. [24].


The only other work on evolvable hardware at a gate level is the one reported by Iba


et al. [13]. Iba et al. [13] use a variable-length GA with an array representation. However,


since Iba's work is focused on learning rather than on optimization problems, we will not


be able to compare our work with theirs.


It should be mentioned that in the work reported here, we were interested not only


in producing functional designs, but also in optimizing them according to certain metrics.


This is a quite complicated task for the GA, because designing a fully functional circuit


from a random set of invalid circuits is a problem di�cult enough as to consume most of


the search time of a conventional genetic algorithm. Trying to �nd the feasible region in


this highly constrained search space and then try to locate the optimum within such region


is an even more di�cult task.


3 Statement of the Problem


The problem of interest to us consists of designing a circuit that performs a desired function


(speci�ed by a truth table), given a certain speci�ed set of available logic gates. In circuit


design, one can use various criteria to de�ne minimal-cost expressions. For example, from


a mathematical perspective, one could minimize the total number of literals or the total


number of binary operations or the total number of symbols in an expression. The mini-


mization problem is di�cult for all such cost criteria. In gate networks one could minimize


the total number of gates subject to such restrictions as fan-in, fan-out, number of levels,


or the total number of SSI packages. In general, it is very di�cult to �nd such minimal


networks or to prove the minimality of a given network [4]. In spite of this, it is possible







to solve a number of minimization problems using systematic techniques, provided that we


are satis�ed with less general solutions.


The complexity of a logic circuit is a function of the number of gates in the circuit. The


complexity of a gate generally is a function of the number of inputs to it. Because a logic


circuit is a realization (implementation) of a Boolean function in hardware, reducing the


number of literals in the function should reduce the number of inputs to each gate and the


number of gates in the circuit|thus reducing the complexity of the circuit.


The algebraic method used to minimize functions is tedious and error prone. Its success


depends on our ability to recognize the application of a theorem or a postulate during


the minimization process. Such recognition may not be obvious. Furthermore, there is no


general set of rules to aid that recognition.


Two popular minimization techniques are the Karnaugh Map [14], which is based on a


graphical representation of Boolean functions, and the Quine-McCluskey Procedure [26, 22],


which is a tabular method. Both of these methods are mechanical in nature. Karnaugh


Maps are useful in minimizing functions with up to �ve or six variables. The Quine-


McCluskey Procedure is useful for functions of any number of variables and can easily


be programmed to run on a digital computer. Generally, several minimum functions can


be obtained for a given function using either method, based on the choices made during


the minimization process. All minimum functions with the same number of literals yield


circuits of the same complexity; hence, any of them can be selected for implementation.


Both the Karnaugh Map and Quine-McCluskey Procedure produce two-level circuit


forms (e.g., minimum sum of products). This is the best form if the overriding concern


is minimizing propagation delay of signals through the circuit. However, in many cases a


greater concern is the minimization of the number of gates present in a circuit, and a small


penalty in circuit speed is acceptable. To minimize the total number of gates, it is often


necessary to �nd a multi-level circuit form. In order to �nd multi-level implementations, the


Karnaugh Map and Quine-McCluskey Methods must be combined with other techniques,


such as algebraic manipulation of logic expressions.


1


Additionally, the Quine-McCluskey Procedure is not very e�cient: it can be shown that


the upper bound on the number of prime implicants is


3


n


n


[15], where n is the number of


inputs in the truth table. This means that the CPU requirements for this procedure grows


exponentially with the number of inputs. Furthermore, once the prime implicants have


been found, the algorithm needs to �nd the minimum set cover, which is known to be an


NP-complete problem [15]. Also, although some authors have proposed extensions to the


basic Quine-McCluskey Procedure that allow to handle XOR gates (see for example [31]),


in the original proposal (which we have used here), only the basic gates are allowed (AND,


OR, NOT), and a human designer has to perform further re�nements in order to introduce


XOR gates into the circuit.


Note that the algebraic simpli�cation process depends entirely on one's familiarity with


the postulates and theorems and one's ability to recognize their application. Of course,


this ability varies from individual to individual. Depending on the sequence in which the


theorems and postulates are applied, more than one simpli�ed form of the expression may


be obtained. Usually all such simpli�ed forms are valid and acceptable. Thus, there is (in


the general case) no single, unique minimized form of a Boolean expression.


In this work, we compare the designs produced by a GA with those generated by a human


designer using Karnaugh maps and another one using the Quine-McCluskey Procedure


1


A tool like MisII [3] can �nd multi-level forms, but requires human guidance to do so e�ectively.







Input Output


Figure 1: A gate in a two-dimensional template, gets its second input from either one of


two gates in the previous column.


(unless indicated otherwise in the examples). The comparison is in many ways unfair


because of di�ering capabilities of man and machine. For example, a human designer tends


to use only the gates NOT, AND, OR and has more di�culties using XOR because the


Karnaugh Map and the Quine-McCluskey Procedure do not support the identi�cation of


XOR terms as well as they support \seeing" simple product terms. The computer, using our


GA approach, and not being restricted by human pattern recognition abilities, uses many


XOR gates, often disregarding the NOT gate. Our overall measure of circuit optimality is


the total number of gates used, regardless of their kind. This is approximately proportional


to the total part cost of the circuit. Obviously, we perform this analysis for only fully


functional circuits.


4 Using the Genetic Algorithm


The famous naturalist Charles Darwin de�ned Natural Selection or Survival of the Fittest


in his book [6] as the preservation of favorable individual di�erences and variations, and


the destruction of those that are injurious. In nature, individuals have to adapt to their


environment in order to survive in a process called evolution, in which those features that


make an individual more suited to compete are preserved when it reproduces, and those


features that make it weaker are eliminated. Such features are controlled by units called


genes which form sets called chromosomes. Over subsequent generations not only the �ttest


individuals survive, but also their �ttest genes which are transmitted to their descendants


during the sexual recombination process which is called crossover.


John H. Holland became interested in the application of natural selection to machine


learning, and in the late 1960s, while working at the University of Michigan, he developed


a technique that allowed computer programs to mimic the process of evolution. Originally,


this technique was called reproductive plans, but the term genetic algorithm became popular


after the publication of his book [11] [12].


More information on genetic algorithms may be found in the books by Goldberg [9],


Michalewicz [23] and Mitchell [25].


A genetic algorithm for a particular problem must have the following �ve components


[23]:


1. A representation for potential solutions to the problem.







Input 1 Input 2 Gate Type


Figure 2: Encoding used for each of the matrix elements that represent a circuit.


2. A way to create an initial population of potential solutions (this is normally done


randomly).


3. An evaluation function that plays the role of the environment, rating solutions in


terms of their \�tness".


4. Genetic operators that alter the composition of children.


5. Values for various parameters that the genetic algorithm uses (population size, prob-


abilities of applying genetic operators, etc.).


The �rst interesting aspect of this problem is the encoding (i.e., representation) of


solutions as chromosomic strings that the GA can evolve. The representation chosen for


our work is a bidimensional matrix as the one suggested by Louis [21] in which each matrix


element is a gate (there are 5 types of gates: AND, NOT, OR, XOR andWIRE) that receives


its 2 inputs from any gate
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at the previous column as shown in Figure 1. More formally,


we can say that any circuit can be represented as a bidimensional array of gates S


i;j


, where


j indicates the level of a gate, so that those gates closer to the inputs have lower values of


j. (Level values are incremented from left to right in Figure 1). For a �xed j, the index i


varies with respect to the gates that are \next" to each other in the circuit, but without


being necessarily connected. It is interesting to notice that if a row-order encoding is used,


the problem becomes disruptive [21], making it very hard for the GA. The reason is that


using such an encoding, any circuit designs that are close in two-dimensional (phenotypic)


space may be far apart in one-dimensional (genotypic) space, making it di�cult to preserve


highly �t schemas (in GA terminology, we say that the problem is deceptive [10]).


A chromosomic string encodes the matrix shown in Figure 1 by using triplets in which


the 2 �rst elements refer to each of the inputs used, and the third is the corresponding gate


as shown in Figure 2 (only 2-input gates were used in this work).


Our goal was then to produce a fully functional design (i.e., one that produces all the


expected outputs for any combination of inputs according to the truth table given for the


problem) which maximizes the number of WIREs


3


.


A critical part of getting a GA approach to succeed in this problem has to do with the


representation scheme used by the genetic algorithm. Although it has been argued that a


binary representation provides the maximum number of schemata [23] it turns out that in


some domains such as numerical optimization, alphabets of higher cardinality have proved


to provide better results in a shorter period of time than their binary counterparts [5].


With this idea in mind, we decided to experiment with an alphabet of cardinality n, where


n can be de�ned by the user and will be normally taken as the number of rows allowed in


2


It is worth mentioning that Louis �xes the position of one of the inputs to reduce the size of the search


space [20].
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WIRE basically indicates a null operation, or in other words, the absence of gate, and it is used just


to keep regularity in the representation used by the GA that otherwise would have to use variable-length


strings.







1 0 1 1 0 1 1 1 1 0 1 1 1 0


1 0 1 0 1 1


1 1 1 1


Descendants


0 1


011 0


  Cross-points                                       Cross-points


1 0


Figure 3: Use of a two-point crossover between two chromosomes. In this case the genes at


the extremes are kept, and those in the middle part are exchanged. If one of the two cross-


points happens to be at the string boundaries, a single-point crossover will be performed,


and if both are at the string boundaries, the parents remain intact for the next generation.


our circuit, according to the matrix encoding adopted in this problem. This representation


allows the manipulation of shorter strings, it decreases the complexity of the decoding task,


and as will be seen in this work, it provides better solutions than its binary counterpart.


Another di�culty is the development of a good �tness function. Again, our initial


approach was to use a slight variation of the function suggested by Louis in his dissertation


[20], which consists of the number of correct operations performed. Instead of checking on


the possible outcomes for each of the possible combinations of inputs, we checked only the


�nal result on each case, requiring, fewer comparisons than in Louis' approach. However,


we found in further tests that it is in general more convenient to check the output on a


bit-per-bit basis, because that provides more information to the GA to guide the search,


and better results can be achieved in less time.


Our �tness function works in two stages. At the beginning of the search, only validity


of the circuit outputs is taken into account, and the GA is basically exploring the search


space. Once a functional solution appears, then the �tness function is modi�ed such that


any valid designs produced are rewarded for each WIRE gate that they include, so that the


GA tries to �nd the circuit with the minimum number of gates that performs the function


required. It is at this stage that the GA is actually exploiting the search space, trying to


optimize the solutions found (in terms of their number of gates) as much as possible.


It should be mentioned that although at �rst sight the size of the search space for some


instances of this problem may seem too small to even attempt to use a heuristic function,


that is not true. For the representation used for this work, if we assume a cardinality n and


a chromosomic lenght l, the size of the intrinsic search space is n


l


. Both the cardinality and


the length of a string depend on the size of the matrix used to solve the circuit. In general:


l = u� t, where t = r � q, and r and q are the number of rows and columns of the matrix


respectively, and u refers to the number of genes required to represent a triplet. For the


case of a GA with n-cardinality (like the one used in this paper), u = 3, and for the case of


a binary GA, u = 9 (we are assuming 3 bits for each of the elements of the triplet).


For the experiments reported here we used a traditional two-point crossover operator


(see Figure 3) and a conventional mutation operator [9]. In all our experiments we kept


the best individual of each generation (elitism).







5 Comparison of Results


We have used several circuits of di�erent degrees of complexity to test our approach. For


the purposes of this paper, 5 examples were chosen to illustrate our approach, and the


results produced with the GA were compared with those generated by human designers


and, in one case, with another GA-based approach.


In each case, the size of the matrix used to �t the circuit was determined using the


following procedure:


1. Start with a square matrix of size 5.


2. If no feasible solution is found using this matrix, then increase the number of columns


by one.


3. If no feasible solution is found using this matrix, then increase the number of rows by


one.


4. Repeat steps 2 and 3 until a suitable matrix is produced.


As we will see in the following examples, it was normally the case that for small circuits


a matrix of 5� 5 was su�cient. However, in our last example, it was necessary to reach a


matrix size of 6�7. This made necessary to run the GA for more generations, performing, in


consequence, more �tness function evaluations. This situation normally arises with circuits


having several outputs, although in some cases, such as in the 2-bit multiplier of our fourth


example, even a 5� 5 matrix may be enough to �nd the best known circuit.


To distinguish between the (traditional) binary representation, we will refer to that


approach as the binary genetic algorithm (or BGA), and our proposed representation that


uses an n-cardinality encoding will be called NGA.


The other issue is regarding the crossover and mutation rates. After a series of experi-


ments, we decided to use a crossover rate of 50% and a mutation rate such that each string


had a 50% probability of being mutated at a certain position. Since mutation was applied


on a single-gene basis, we used as our probability of mutation the result of dividing this


50% by the length of the string. Since the length of the strings used to solve the �rst four


examples using the NGA is 75, the probability of mutation in those cases was 0.006667.


For the case of our BGA, the probability of mutation was 0.002222 because the length of


the strings used for the �rst four examples was 225. The last example used a longer string


(126 for the NGA and 252 for the BGA), which made necessary to use a lower probability


of mutation (0.003968 for the NGA and 0.001984 for the BGA).


The maximum number of generations was arbitrarily set to a reasonable large number,


and the population size was chosen based on a number of independent runs. For the case of


the �rst four examples, the population size was ranged from 100 to 3000 individuals with


increments of 100 (30 runs) and the maximum number of generations was set to 400. In the


case of the last example, the population size was ranged from 1000 to 3000 with increments


of 100 (20 runs), and the maximum number of generations was set to 2000. In each case,


the value shown for the population size is the one that produced the best results for that


particular circuit.


5.1 Example 1


Our �rst example has 4 inputs and one output, as shown in Table 1. In this case, the


matrix used was of size 5 � 5, and the chromosomic length was 75 for the case of the







X Y Z F


0 0 0 0


0 0 1 0


0 1 0 0


0 1 1 1


1 0 0 0


1 0 1 1


1 1 0 1


1 1 1 0


Table 1: Truth table for the circuit of the �rst example.
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Figure 4: Convergence graph of the NGA used to solve the �rst example. The feasibility


barrier is indicated with a horizontal line (any value above it represents a fully functional


circuit).


NGA (r = 5; q = 5; t = 5 � 5 = 25; l = 3 � t = 75), and 225 for the case of the BGA


(r = 5; q = 5; t = 5 � 5 = 25; l = 9 � t = 225). The cardinality c used for this problem


was max(r; g), for the NGA where g refers to the number of allowable gates (since only the


inputs from the previous level are considered, the number of columns does not a�ect the


cardinality used by the NGA). Obviously, for the BGA, the cardinality c = 2. Since g = 5,


and c = 5, then the size of the intrinsic search space for this problem is c


l


= 5


75


� 2:6�10


52


for the NGA and 2


225


� 5:39�10


67


for the BGA. The graphical representation of the circuit


produced by the NGA is shown in Figure 5.


The comparison of the results produced by the NGA, the BGA and two human designers


are shown in Tables 2, 3, and 4. In this and all the further examples, designer 1 used


Karnaugh Maps plus Boolean algebra identities to simplify the circuit, whereas designer 2


used the Quine-McCluskey Procedure.


The parameters used by the NGA for this example are the following: crossover rate


= 0.5, mutation rate = 0.007, population size = 700, maximum number of generations =







NGA Human Designer 1


F = Z(X + Y )� (XY ) F = Z(X � Y ) + Y (X � Z)


4 gates 5 gates


2 ANDs, 1 OR, 1 XOR 2 ANDs, 1 OR, 2 XORs


Table 2: Comparison of results between the n-cardinality GA (NGA) and a human designer


for the circuit of the �rst example


F


Z


Y


X


Figure 5: Circuit produced by a binary GA (BGA) and an n-cardinality GA (NGA) for the


�rst example.


400. The parameters for the BGA are the same except for the mutation rate that was


instead 0.0022. The convergence graph of the NGA is shown in Figure 5.1. Convergence


to the optimum was achieved in generation 103 for the case of the NGA. The best solution


found by the BGA had a �tness of 27 (the optimum solution had a �tness of 29), and was


achieved at generation 188. It should be mentioned, however, that if a population size of


900 was used instead, the BGA was able to achieve the optimum solution in 197 generations,


although at a higher computational expense. The solution found by the BGA is equivalent


to the one found by the second human designer, although its Boolean expression looks more


complex in the �rst case.


5.2 Example 2


Our second example has 4 inputs and one output, as shown in Table 5. In this case, the


matrix used was of size 5 � 5, and the chromosomic length was 75 for the case of the


NGA (r = 5; q = 5; t = 5 � 5 = 25; l = 3 � t = 75), and 225 for the case of the BGA


(r = 5; q = 5; t = 5� 5 = 25; l = 9 � t = 225). Again, the size of the intrinsic search space


for this problem is c


l


= 5


75


� 2:6� 10


52


for the NGA and 2


225


� 5:39� 10


67


for the BGA.


The graphical representation of the circuit produced by the NGA is shown in Figure 6.


BGA


F = ((X � Z) + (X � Y ))(Z


0


� (X � Y ))


6 gates


1 AND, 1 OR, 3 XORs, 1 NOT


Table 3: Results produced by the binary genetic algorithm (BGA) for the circuit of the


�rst example







Human Designer 2


F = X


0


Y Z +X(Y � Z)


6 gates


3 ANDs, 1 OR, 1 XOR, 1 NOT


Table 4: Results produced by a second human designer for the circuit of the �rst example


Z W X Y F


0 0 0 0 1


0 0 0 1 1


0 0 1 0 0


0 0 1 1 1


0 1 0 0 0


0 1 0 1 0


0 1 1 0 1


0 1 1 1 1


1 0 0 0 1


1 0 0 1 0


1 0 1 0 1


1 0 1 1 0


1 1 0 0 0


1 1 0 1 1


1 1 1 0 0


1 1 1 1 0


Table 5: Truth table for the circuit of the second example.


W


X


Y


Z


F


Figure 6: Circuit produced by our GA for the second example.
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Figure 7: Convergence graph of the NGA used to solve the second example. The feasibility


barrier is indicated with a horizontal line (any value above it represents a fully functional


circuit).


NGA


F = (((W �WX)� ((Z +X + Y )� Z))


0


8 gates


1 AND, 3 ORs, 3 XORs, 1 NOT


Table 6: Results produced by the NGA for the second example.


The comparison of the results produced by the NGA, the BGA, a human designer,


and Sasao's approach [28] are shown in Tables 6, 7, 8, and 9. Sasao has used this circuit


to illustrate his circuit simpli�cation technique based on the use of ANDs & XORs. His


solution uses, however, more gates than the circuit produced by the NGA or the BGA.


Note that the solution produced by the NGA is quite atypical, since it uses a negation at


the end of the Boolean expression. Savings in this case, with respect to the best known


solution were of 20%.


The parameters used by the NGA for this example are the following: crossover rate =


0.5, mutation rate = 0.007, population size = 1000, maximum number of generations =


400. The BGA used a mutation rate of 0.0022 and required a larger population size (2000


chromosomes). The convergence graph of the NGA is shown in Figure 5.2. Convergence to


the optimum in the case of the NGA was achieved in generation 376, and in the case of the


BGA, in generation 328.


5.3 Example 3


Our third example has 4 inputs and one output, as shown in Table 10. In this case, the


matrix used was of size 5 � 5, and the chromosomic length was 75 for the case of the


NGA (r = 5; q = 5; t = 5 � 5 = 25; l = 3 � t = 75), and 225 for the case of the BGA







BGA


F = (Z � ((W � Y ) +XY ))� (Z + (X + Y ))


0


8 gates


1 AND, 3 ORs, 3 XORs, 1 NOT


Table 7: Results produced by the BGA for the second example.


Human Designer 1


F = ((Z


0


X)� (Y


0


W


0


)) + ((X


0


Y )(Z �W


0


))


11 gates


4 ANDs, 1 OR, 2 XORs, 4 NOTs


Table 8: Results produced by a human designer for the second example.


Sasao


F = X � Y


0


W


0


�XY


0


Z


0


�X


0


Y


0


W


12 gates


3 XORs, 5 ANDs, 4 NOTs


Table 9: Result produced by Sasao for the second example.


W X Y Z F


0 0 0 0 1


0 0 0 1 0


0 0 1 0 1


0 0 1 1 0


0 1 0 0 1


0 1 0 1 0


0 1 1 0 1


0 1 1 1 1


1 0 0 0 1


1 0 0 1 1


1 0 1 0 1


1 0 1 1 0


1 1 0 0 0


1 1 0 1 1


1 1 1 0 1


1 1 1 1 1


Table 10: Truth table for the circuit of the third example.
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Figure 8: Convergence graph of the NGA used to solve the third example. The feasibility


barrier is indicated with a horizontal line (any value above it represents a fully functional


circuit).


(r = 5; q = 5; t = 5� 5 = 25; l = 9 � t = 225). Again, the size of the intrinsic search space


for this problem is c


l


= 5


75


� 2:6� 10


52


for the NGA and 2


225


� 5:39� 10


67


for the BGA.


The graphical representation of the circuit produced by the NGA is shown in Figure 9.


The parameters used by the NGA for this example are the following: crossover rate =


0.5, mutation rate = 0.007, population size = 700, maximum number of generations = 400.


The BGA used a mutation rate of 0.0022, and was not able to �nd the same solution as


the NGA (it found a solution with 8 gates instead), requiring a larger population size (900


chromosomes). The convergence graph of the NGA is shown in Figure 5.3. Convergence to


the optimum in the case of the NGA was achieved in generation 326, and in the case of the


BGA, in generation 227.


The comparison of the results produced by the NGA, the BGA, and two human designers


X


Y


Z


F


W


Figure 9: Circuit produced by our NGA for the third example.







NGA


F = ((XY � (X + Z))(Y + (W � Z)))


0


7 gates


2 ANDs, 2 ORs, 2 XORs, 1 NOT


Table 11: Result produced by our NGA for the third example.


BGA


F = (((W � Z) +WY )((X + Z)�XY ))


0


8 gates


3 ANDs, 2 ORs, 2 XORs, 1 NOT


Table 12: Result produced by our BGA for the third example.


are shown in Tables 11, 12, 13, and 14.


5.4 Example 4


Our fourth example has 4 inputs and 4 outputs, and it is a 2-bit multiplier as shown in


Table 15. In this case, the matrix used was of size 5� 5, and the chromosomic length was


75 for the case of the NGA (r = 5; q = 5; t = 5�5 = 25; l = 3�t = 75), and 225 for the case


of the BGA (r = 5; q = 5; t = 5 � 5 = 25; l = 9 � t = 225). Again, the size of the intrinsic


search space for this problem is c


l


= 5


75


� 2:6� 10


52


for the NGA and 2


225


� 5:39 � 10


67


for the BGA. The graphical representation of the circuit produced by the NGA is shown in


Figure 11.


The comparison of the results produced by the NGA, the BGA, a human designer, and


Miller et al. [24] are shown in Tables 16, 17 and 18, respectively. It should be mentioned


that Miller et al. consider their solution to contain only 7 gates because of the way in which


they encoded their Boolean functions (the reason is that they encoded NAND gates which


is also valid in practice). However, since we considered each gate as a separate chromosomic


element, we count each of them, including NOTs that are associated with AND & OR gates.


Regardless of that fact, it is more important to point out that Miller et al. found their


solution performing 50 runs of 3,000,000 evaluations each, whereas in our case, we only


performed 30 runs of 600,000 evaluations each.


Notice that the only di�erence between the solution produced by human designer 1 and


the NGA is on the output C


2


. This is the sort of example in which the solution may seem


di�cult to achieve by a human designer, because by looking at the solution for C


2


produced


by the NGA, one could think that is more ine�cient. However, the NGA is actually reusing


gates which, in terms of the overall circuit, turns out to be more e�cient, because it saves


Human Designer 1


F = (Z +WX)


0


+XY + (WY


0


)Z


9 gates


4 ANDs, 3 ORs, 2 NOTs


Table 13: Result produced by a human designer for the third example.







Human Designer 2


F =W


0


Z


0


+X


0


Z


0


+XY +WY


0


Z


12 gates


5 ANDs, 3 ORs, 4 NOTs


Table 14: Results produced by a second human designer for the third example.


A


1


A


0


B


1


B


0


C


3


C


2


C


1


C


0


0 0 0 0 0 0 0 0


0 0 0 1 0 0 0 0


0 0 1 0 0 0 0 0


0 0 1 1 0 0 0 0


0 1 0 0 0 0 0 0


0 1 0 1 0 0 0 1


0 1 1 0 0 0 1 0


0 1 1 1 0 0 1 1


1 0 0 0 0 0 0 0


1 0 0 1 0 0 1 0


1 0 1 0 0 1 0 0


1 0 1 1 0 1 1 0


1 1 0 0 0 0 0 0


1 1 0 1 0 0 1 1


1 1 1 0 0 1 1 0


1 1 1 1 1 0 0 1


Table 15: Truth table for the 2-bit multiplier of the fourth example.
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Figure 10: Convergence graph of the NGA used to solve the fourth example. The feasibility


barrier is indicated with a horizontal line (any value above it represents a fully functional


circuit).
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Figure 11: Circuit produced by our NGA for the fourth example.


NGA Human Designer 1


C


0


= A


0


B


0


C


0


= A


0


B


0


C


1


= A


0


B


1


�A


1


B


0


C


1


= A


0


B


1


� A


1


B


0


C


2


= A


1


B


1


� (A


0


B


0


A


1


B


1


) C


2


= A


1


B


1


(A


0


B


0


)


0


C


3


= A


0


B


0


A


1


B


1


C


3


= A


1


A


0


B


1


B


0


7 gates 8 gates


5 ANDs, 2 XORs 6 ANDs, 1 XORs, 1 NOT


Table 16: Results produced by our NGA and a human designer for the circuit of the fourth


example.


one gate with respect to the best solution produced by a human designer. With respect to


Miller's solution, notice that it uses the same value for C


2


as human designer 1, but it has


a much more complex expression for C


3


. That is the reason why their overall circuit uses


two more gates than our solution.


The parameters used by the NGA for this example are the following: crossover rate =


0.5, mutation rate = 0.007, population size = 2000, maximum number of generations =


400. The best solution found by the BGA had 8 gates, and was generated with a larger


population (2500 chromosomes). The mutation rate used was 0.0022 as in the previous


examples. of the NGA is shown in Figure 5.4. Convergence to the optimum in the case of


the NGA was achieved in generation 220, and in the case of the BGA, the best solution


reported was found in generation 691.


BGA Human Designer 2


C


0


= A


0


B


0


C


0


= A


0


B


0


C


1


= A


0


B


1


�A


1


B


0


C


1


= (B


1


+ B


0


)(A


1


+ A


0


)((A


1


A


0


)� (B


1


B


0


))


C


2


= A


0


B


0


� (A


0


B


0


+A


1


B


1


) C


2


= A


1


B


1


(A


0


B


0


)


0


C


3


= A


0


B


0


A


1


B


1


C


3


= A


1


B


1


A


0


B


0


8 gates 12 gates


5 ANDs, 2 XORs, 1 OR 8 ANDs, 1 XOR, 2 ORs, 1 NOT


Table 17: Results produced by the BGA and a second human designer for the circuit of the


fourth example.







Miller et al.


C


0


= A


0


B


0


C


1


= A


1


B


0


� A


0


B


1


C


2


= (A


0


B


0


)


0


(A


1


B


1


)


C


3


= (A


1


B


0


�A


0


B


1


)


0


(A


1


B


0


)


9 gates


6 ANDs, 1 XORs, 2 NOTs


Table 18: Results produced by Miller et al. for the circuit of the fourth example.


A B C D F1 F2 F3


0 0 0 0 1 0 0


0 0 0 1 0 1 0


0 0 1 0 0 1 0


0 0 1 1 0 1 0


0 1 0 0 0 0 1


0 1 0 1 1 0 0


0 1 1 0 0 1 0


0 1 1 1 0 1 0


1 0 0 0 0 0 1


1 0 0 1 0 0 1


1 0 1 0 1 0 0


1 0 1 1 0 1 0


1 1 0 0 0 0 1


1 1 0 1 0 0 1


1 1 1 0 0 0 1


1 1 1 1 1 0 0


Table 19: Truth table for the circuit of the �fth example.


5.5 Example 5


Our �fth example has 4 inputs and 3 outputs, as shown in Table 19. In this case, the


matrix used was of size 6 � 7, and the chromosomic length was 126 for the case of the


NGA (r = 6; q = 7; t = 6 � 7 = 42; l = 3 � t = 126), and 378 for the case of the BGA


(r = 6; q = 7; t = 6� 7 = 42; l = 9� t = 378). The cardinality used for the NPGA was c =


max(r; g) = 6. The size of the intrinsic search space for this problem is c


l


= 6


126


� 1:1�10


98


for the NGA and 2


378


� 6:16�10


113


for the BGA. The graphical representation of the circuit


produced by the NGA is shown in Figure 12.


The comparison of the results produced by the NGA, the BGA, and a human designer


are shown in Tables 20, 21, 22, and 23.


This is an extreme case of how the NGA can reuse blocks of the circuit to optimize the


total number of gates. Notice how the functions produced by the NGA for each separated


output are more complex, but since they use common blocks, the total number of gates is


almost half of what one of the human designers required.


The parameters used by the NGA for this example are the following: crossover rate =
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Figure 12: Circuit produced by our GA for the �fth example.
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Figure 13: Convergence graph of the NGA used to solve the �fth example. The feasibility


barrier is indicated with a horizontal line (any value above it represents a fully functional


circuit).







NGA


F1 = ((A� C) + (B �D))


0


F2 = ((B �D) + (A� C))(((A� C)A� (D + (A� C))) + ((B �D) + (A� C))


0


F3 = (((A� C)A� ((A� C) +D)) + ((B �D) + (A� C))


0


)


0


11 gates


3 XORs, 3 ORs, 2 ANDs, 3 NOTs


Table 20: Results produced by our NGA for the �fth example.


BGA


F1 = ((A� C) + (B �D))


0


F2 = ((A� C) + (B �D))� (((A� C) + (B �D))� ((C +A)�A))((C � A) +D


0


)


F3 = ((C � A) +D


0


)(((B�D) + (A� C))� ((C +A)�A)


10 gates


5 XORs, 3 ORs, 1 ANDs, 1 NOT


Table 21: Results produced by our BGA for the �fth example.


0.5, mutation rate = 0.004, population size = 1000, maximum number of generations =


2000. The best solution found by the BGA had 11 gates and required a larger population


(3500 chromosomes), running a larger number of generations. The mutation rate used


with the BGA was 0.00132. The convergence graph of the NGA is shown in Figure 5.5.


Convergence to the optimum in the case of the NGA was achieved in generation 1059, and


the best solution reported for the BGA was found in generation 3755.


6 Discussion


It is interesting to notice that both the NGA and the BGA tend to favor the use of XOR


gates, since this gate allows to produce in many cases solutions with a shorter symbolic


representation. These solutions, however, are not entirely obvious for a human designer


who can normally visualize easily only designs with the basic gates (AND, OR, NOT) and


with XORs that are not nested. The GA (using either representation), on the other hand,


tends to use very often nested XORs to produce the same e�ect that a human designer


would achieve combining the basic gates. There it lies the main reason for which the GA


tends to produce circuits that are di�cult for a human to design and even to understand.


However, from the two alternative chromosome representations presented in this paper,


Human Designer 1


F1 = (A� C)


0


(B �D)


0


F2 = B


0


D(A


0


+ C) + A


0


C


F3 = BD


0


(A+ C


0


) + AC


0


19 gates


2 XORs, 4 ORs, 7 ANDs, 6 NOTs


Table 22: Results produced by a human designer for the �fth example.







Human Designer 2


F1 = (A� C)


0


(B �D)


0


F2 = A


0


C + (A� C)


0


(B


0


D)


F3 = (F1 + F2)


0


13 gates


2 XORs, 2 ORs, 4 ANDs, 5 NOTs


Table 23: Results produced by a second human designer for the �fth example.


our results show clearly the superiority of the NGA over the BGA both in terms of speed


of convergence and in terms of total number of evaluations performed. The reason seems


to be the capability of the NGA to encapsulate a higher-level representation of a circuit,


allowing less disruption in the corresponding matrix (i.e., mutations produce more drastic


but meaningful changes in the circuit) than when using a binary representation.


Although it may be argued that the relatively high number of evaluations performed


by the GA (with either representation) is far beyond the search capabilities of a human


designer, it must be said that the GA is in fact exploring a minimum portion of the total


search space that is intractable by simple brute force search methods. For instance, for the


examples in which the size of the intrinsic search space is 2:6 � 10


52


, even assuming that


our computer could evaluate 1� 10


12


solutions per second, we would need 8:39� 10


32


years


to explore the entire search space using a brute force approach.


7 Conclusions


We have shown a technique to design combinational logic circuits using a genetic algorithm,


and we have explored the impact of changing from a traditional binary representation to a


more compact n-cardinality representation. Our NGA has been able to �nd circuits that


are smaller (in terms of the total number of gates) than those produced by human designers


and even other GA-based approaches, performing a relatively small number of evaluations


with respect to the total size of the search space.


By analyzing the solutions produced by the NGA, it can be seen how it reuses com-


ponents within a circuit as to reduce the total number of gates, even if in the process the


Boolean expression for a certain output could become more complex than the one produced


by a human designer. This reuse of components seems to be the key to �nd simpli�ed ver-


sions of a circuit, but it becomes harder to understand it as we increase the complexity of


the circuit.


Future Work


It is important to realize the di�culties of the GA (with either representation) to even gen-


erate a feasible circuit in early generations. If proper matrix dimensions are not provided,


the GA may not converge at all regardless of the parameters used.


Although we have provided some basic guidelines to deal with this problem, we want


to explore more exible representations that allow an easier encoding of variable-length


Boolean expressions as to minimize the tune up required to design any sort of combinational


circuit. We would also like to extend our representation to handle circuits with more than


two inputs. Right now, the most promising alternative seems to be genetic programming







[17], but we still have to de�ne a way of optimizing the Boolean expressions produced which


are, generally, quite long.


In the future we would like to consider also other factors in our �tness functions, such


as the number of levels, the number of packages of integrated circuits used, the costs of


each component, etc.


Later on, we would like to move towards more complex circuits (for example sequential),


and consider more complex factors such as time delays. Also, it would be desirable to build


a graphical interface to our system, which currently has a text-based interface that makes


the interpretation of results a little bit di�cult for those not familiar with the software.
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