

Comparing Different Serial and Parallel
Heuristics to Design Combinational Logic Circuits

Carlos A. Coello Coello
�

CINVESTAV-IPN
Evolutionary Computation Group

Dpto. de Ingenierı́a Eléctrica
Sección Computación

Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D.F. 07300, MEXICO

Phone: +52 55 5747 3800 x 6564
Fax: +52 55 5747 3757

ccoello@cs.cinvestav.mx

Enrique Alba, Gabriel Luque
Dpto. de Lenguajes y Ciencias de la Computación

E.T.S. Ingenierı́a Informática
Campus Teatinos, 29071, Málaga, SPAIN�

eat,gabriel � @lcc.uma.es

Arturo Hernández Aguirre
Center for Research in Mathematics (CIMAT)

Department of Computer Science
Guanajuato, Gto. 36240, MEXICO

artha@cimat.mx

Abstract

In this paper, we perform a comparative study of differ-
ent heuristics used to design combinational logic circuits.
The use of local search hybridized with a genetic algorithm
and the effect of parallelism are of particular interest in the
study conducted. Our results indicate that a hybridization
of a genetic algorithm with simulated annealing is benefi-
tial and that the use of parallelism does not only introduce
a speedup (as expected) in the algorithms, but also allows
to improve the quality of the solutions found.

1 Introduction

In this paper, we perform a comparative study of several
heuristics with respect to a traditional genetic algorithm in
the design of combinational logic circuits. Despite the con-
siderable amount of work currently available on the use of
genetic algorithms and evolution strategies to design combi-
national logic circuits in the last few years (see for example
[4, 12]), there have been few attempts to compare different
heuristics in this problem. The main motivation for such a

�
Corresponding author

comparative study is to analyze if a certain type of heuristic
(mainly hybrid approaches) could be more suitable for this
type of problem.

Previous work has found, among other things, that de-
signing combinational logic circuits is highly sensitive to
the encoding [10], and to the degree of interconectivity al-
lowed among gates [19]. There have also been studies on
the fitness landscapes of these problems which are appar-
ently rather simple but turn out to be quite difficult for any
evolutionary algorithm [13, 18]. However, this sort of anal-
ysis has been conducted only on a single type of heuristics
(e.g., a genetic algorithm or an evolution strategy).

Additionally, given the scalability problem associated
with the design of combinational logic circuits using evo-
lutionary algorithms, the use of parallelism seems a vital
issue. Remarkably, however, few studies available in the
literature have considered parallelism.

This paper presents a comparative study among a tradi-
tional genetic algorithm, and three heuristics that have local
search capabilities. The rationale behind adopting these ap-
proaches is precisely to see if the design of combinational
logic circuits (operating on a binary encoding) can benefit
from local search strategies that are not included in a tradi-
tional genetic algorithm. For the study, we used both serial
and parallel versions of each algorithm, so that we could an-

alyze if the use of parallelism brings any benefits in terms of
performance other than the obvious computational speedup.

The remainder of the paper is organized as follows. In
Section 2, we provide a brief description of the approaches
and the circuit encoding adopted in our study. Section 3
contains the examples and the results of the comparative
study. Then, there is a further discussion on the results ob-
tained in Section 4. Finally, we provide some conclusions
and possible paths of future research in Section 5.

2 Description of the approaches used

In this paper, we compare four heuristics in the design of
combinational logic circuits:

1. A genetic algorithm (GA) with binary representation
such as the one described in [2].

2. A CHC [7], which is a non-traditional GA which com-
bines an elitist selection strategy (i.e., the approach al-
ways preserves the best individuals found so far) with
a highly disruptive recombination (HUX, which is a
variant of uniform crossover). Certain highly disrup-
tive crossover operators provide more effective search
in many problems, which represents the core idea be-
hind the CHC search method. This algorithm also in-
troduces a bias against mating individuals which are
too similar (this is called incest prevention [8]). Muta-
tion is not performed and, instead, a restart process re-
introduces diversity whenever convergence is detected.

GENETIC ALGORITHM

HYBRID ALGORITHM

Initial
Population

Selection

SIMULATED
ANNEALING

Improve

Replace

Reproduction

Figure 1. Hybrid scheme 1 (GASA1).

3. A hybrid called GASA1, where a GA uses simulated
annealing (SA) as an evolutionary operator (see Fig.
1). The simulated annealing algorithm (SA) was first
proposed in 1983 [9] based on a mathematical model
originated in the mid-1950s [11]. SA is a stochastic

relaxation technique that can be seen as a hill-climber
with an internal mechanism to escape local optima. To
allow escaping from a local optimum, moves that in-
crease the energy function are accepted with a decreas-
ing probability ���������
	����� , where is a parameter
called the “temperature” [6].

The rationale for this selection of algorithms is that,
while the GA locates “good” regions of the search
space (exploration), SA allows for exploitation in the
best regions found by its partner.

GASA1

SA

SA

SA

SA

SA

T

O

U

R

N

A

M

E

N

T

Figure 2. Hybrid scheme 2 (GASA2).

4. A second hybrid scheme called GASA2, which ex-
ecutes a GA until the algorithm completely finishes.
Then the hybrid selects some individuals from the fi-
nal population and executes a SA algorithm over them.
Concretely, we analyze a version that uses a tourna-
ment selection (see Fig. 2)).

Both in GASA1 and GASA2, we update the temper-
ature of the simulated annealing component using the
Fast SA (or FSA, for short) scheme [17]:

���� ������� (1)

All of the previous approaches adopt the matrix repre-
sentation proposed by Louis [10], and used in our previous
work [2, 3] as shown in Figure 3. This matrix is encoded as
a fixed-length string of integers from � to ��� �

, where �
refers to the number of rows allowed in the matrix. Each of
these integer values are encoded as binary numbers in the
experiments reported within.

More formally, we can say that any circuit can be rep-
resented as a bidimensional array of gates � �"! # , where $
indicates the level of a gate, so that those gates closer to

AND

OR

NOT

XOR

WIRE

INPUT 2INPUT 1
GATE

 I 1

 I 2

TYPE OF

OUTPUTSINPUTS

 I 1 I 2

Figure 3. Matrix used to represent a circuit. Each gate gets its inputs from either of the gates in the
previous column. Note the encoding adopted for each element of the matrix as well as the set of
available gates used.

the inputs have lower values of $. (Level values are incre-
mented from left to right in Figure 3). For a fixed $, the
index � varies with respect to the gates that are “next” to
each other in the circuit, but without being necessarily con-
nected. Each matrix element is a gate (there are 5 types
of gates: AND, NOT, OR, XOR and WIRE1.) that receives
its 2 inputs from any gate at the previous column as shown
in Figure 3. Although our GA implementation allows gates
with more inputs and these inputs might come from any pre-
vious level of the circuit, we limited ourselves to 2-input
gates and restricted the inputs to come only from the previ-
ous level. This was mainly done to allow direct comparisons
with our previous approaches.

Our fitness function works in two stages. At the begin-
ning of the search, only validity of the circuit outputs is
taken into account, and the GA is basically exploring the
search space. Once a functional solution appears, then the
fitness function is modified such that any valid designs pro-
duced are rewarded for each WIRE gate that they include,
so that the GA tries to find the circuit with the maximum
number of WIREs that performs the function required. It
is at this stage that the GA is actually exploiting the search
space, trying to optimize the solutions found (in terms of
their number of gates) as much as possible.

A chromosomic string encodes the matrix shown in Fig-
ure 3 by using triplets in which the 2 first elements refer to
each of the inputs used, and the third is the corresponding
gate from the available set.

1WIRE basically indicates a null operation, or in other words, the ab-
sence of gate, and it is used just to keep regularity in the representation
used by the GA that otherwise would have to use variable-length strings.

3 Comparison of Results

We compared our binary GA with respect to CHC,
GASA1 and GASA2 both in a serial and a parallel version.
For our parallel implementation, we used a kind of decen-
tralized distributed evolutionary algorithm [1] in which sep-
arate subpopulations evolve independently and sparsely ex-
change one individual with a given frequency. The selection
of the emigrant is through binary tournaments and the arriv-
ing immigrant replaces the worst one in the population only
if the new one is better than this current worst individual.

The most relevant aspects that were measured in this
comparison were the following: best fitness value obtained
(we call this opt), the number of times that the approach
found the best fitness value (we call this hits), the aver-
age fitness (called avg), and the average number of fitness
function evaluations required to find the best fitness value
(#evals).

Since our main goal was to analyze the behavior of dif-
ferent heuristics and the impact of parallelism, no particu-
lar effort was placed in fine-tuning the parameters for each
of the circuits tried. The population sizes, mutation and
crossover rates used correspond to the values previously re-
ported for a traditional (binary) GA [2]. It is also important
to mention that despite the relative simplicity of the circuits
used in this paper, the intrinsic size of the search spaces
of each of the problems adopted is fairly large (the intrinsic
size refers to the search space that would have to be covered
if we enumerated all the different strings possible with the
representation adopted). Although these circuits are consid-
ered simple by human designers, their solution using evolu-
tionary algorithms turns out to be difficult [12]. The main

benefit of studying techniques that can deal efficiently with
circuit design problems has more to do with the possible
extrapolation of these techniques to other design domains
rather than applying them directly in circuit design.

A parallel EA (PEA) is an algorithm having multiple
component EAs, interconnected in a given topology. In this
work, we have chosen a distributed EA (dEA) because of
its popularity and because it can be readily implemented in
clusters of workstations (COWs). In distributed EAs there
exists a small number of islands performing separate EAs,
and periodically exchanging individuals after a number of
isolated steps (migration frequency). As the migration pol-
icy we use a static ring topology, migration frequency =
10, select random migrants and include them in the target
populations only if they are better than the worst-existing
solutions. For the parallel experiments, we used six PCs in-
terconnected by a Fast Ethernet network. Each of these PCs
has a Pentium III processor running at 550 MHz and 128
MB of RAM.

3.1 Example 1

Z W X Y F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Table 1. Truth table for the circuit of the first
example.

Our first example has 4 inputs and one output, as shown
in Table 1. In this case, the matrix used was of size ����� ,
and the chromosomic length was ��� (�����	��
����	�� �
�����������	��� ������ �����). The size of the intrinsic search
space for this problem is then ��� ������� ���	! "#� � ����$.

We performed 20 independent runs per algorithm per cir-
cuit per version (either serial or parallel) using the parame-
ters summarized in Table 2.

Our comparison of results is shown in Table 3. In this
case both GASA1 and GASA2 were able to converge to the
best known solution for this circuit (which has 7 gates and
a fitness of 34) [5]. Note that both GASA1 and GASA2 re-
quired more fitness function evaluations to reach their best
fitness value, but their final solution was significantly better
than the solutions found by the GA and by CHC. Also note
that the parallel versions of GASA1 and GASA2 slightly
increased the average fitness value and the number of hits.
However, the average number of fitness function evalua-
tions to find the best fitness value did not decrease in the
parallel versions of GASA1 and GASA2, as it occurred for
the parallel versions of the traditional GA and CHC.

Just to give an idea of how good is the solution found
by GASA2, we show in Table 4 a comparison of the best
solution found by GASA2 with respect to other approaches
previously used to design the circuit of this first example.
This second comparison is only in terms of the boolean ex-
pression found. Note that the % -cardinality GA (NGA) used
the same parameters as its binary counterpart. We can see
that GASA2 found a solution significantly better than the
other approaches against which it was compared (the % -
cardinality GA, Sasao’s simplification technique based on
the use of ANDs & XORs [15], and a human designer us-
ing Karnaugh maps).

3.2 Example 2

Our second example has 5 inputs and one output, as
shown in Table 5. In this case, the matrix used was of size
"��&� (for guidelines regarding how to setup the matrix size
to be adopted, see [3]). The size of the intrinsic search space
for this problem is �'����")(*$�+ � � ! ��� � � ��,�- .

We performed 20 independent runs per algorithm per cir-
cuit per version (either serial or parallel) using the parame-
ters summarized in Table 6.

Our comparison of results is shown in Table 7. Again,
GASA2 found the best solution, but in this case, the par-
allel version produced a slightly better result than its serial
counterpart. Note also that the average fitness was increased
both for GASA1 and GASA2 in their parallel versions, but
the best solution was found only 10% of the time in the
case of GASA2 (i.e., the hit rate did not improve in the par-
allel version of GASA2). Also note that in this case the use
of parallelism decreased the average number of evaluations
required to find the best possible fitness value produced by
each of the algorithms under study.

To have an idea of how good is the solution found by
GASA2, we show in Table 8 a comparison of the best so-
lution found by GASA2 with respect to other approaches
previously used to design the circuit of the second exam-
ple. This second comparison is only in terms of the boolean
expression found. In this case, GASA2 improved the best

Algorithm popsize Xover prob. Mut. prob. Others
GA 320 0.6 0.00667 NONE

CHC 320 0.6 0.00667 35% population restart
(uniform mutation 0.7)

GASA1 320 0.6 0.00667 SA operator (prob. 0.01)
100 iters., Markov C.L. = 10

GASA2 320 0.6 0.00667 GASA1 + SA execution
with 3000 iterations (MCL = 300)

Table 2. Parameters used for the experiments of the first example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 31 10% 15.75 96806 33 5% 18.15 79107
CHC 27 5% 15.02 107680 32 5% 16.4 75804

GASA1 34 10% 23.2 145121 34 20% 25.46 151327
GASA2 34 10% 24.24 147381 34 30% 27.76 155293

Table 3. Comparison of results between a binary GA, CHC, GASA1 and GASA2 for the first example.

GASA2 NGA HD 1 Sasao� � ������� � ������� ��� � � ���	�
��� � � � ������ � � ���������
���	�
� � ��� � � � � � �� � ����� � � � � ��� � � � � � ����� � �

���� ��� � ��������� � �������
���� � � �������� ������	� � �
7 gates 10 gates 11 gates 12 gates

1 AND, 3 ORs, 2 ANDs, 3 ORs, 4 ANDs, 1 OR, 3 XORs,
2 XORs, 1 NOT 3 XORs, 2 NOTs 2 XORs, 4 NOTs 5 ANDs,

4 NOTs

Table 4. Comparison of the best solutions found by GASA2, the % -cardinality genetic algorithm (NGA)
[2], a human designer using Karnaugh Maps (HD 1), and Sasao [15] for the circuit of the first example.

Algorithm popsize Xover prob. Mut. prob. Others
GA 600 0.6 0.00667 NONE

CHC 600 0.6 0.00667 35% population restart
(uniform mutation 0.7)

GASA1 600 0.6 0.00667 SA operator (prob. 0.01)
500 iters., Markov C.L. = 50

GASA2 600 0.6 0.00667 GASA1 + SA execution
with 10000 iterations (MCL = 1000)

Table 6. Parameters used for the experiments of the second example.

solution found both by the NGA and by a human designer
(using Karnaugh maps).

It is also important to mention that the best solution
found by GASA2, which has 9 gates, is not the best pos-

sible solution for this circuit (there is another one with only
7 gates:

� � ��� ����� ���� !��" � � � �#� �$�# � , which
can be obtained with genetic programming [16]). However,
as indicated before, no attempt was made to fine-tune the

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 60 5% 36.52 432170 62 10% 41 345578
CHC 58 15% 29.85 312482 61 5% 28.95 246090

GASA1 63 40% 45.12 694897 65 5% 50.62 593517
GASA2 64 10% 47.3 720106 65 10% 52.87 609485

Table 7. Comparison of results between a binary GA, CHC, GASA1 and GASA2 for the second
example.

GASA2 NGA HD 1� � � � � � ��� � � � � ��� � � � � ����� ��� ����� ��� � �� ��" � � �� ��� � � � � � � ��� � ��� � � �
��� � � ��� � � � � � � " � � � � � ��� � � ��� � � � " ��� � � � � � ����� �

9 gates 10 gates 12 gates
4 ANDs, 3 ORs 3 ANDs, 3 ORs, 5 ANDs, 4 ORs,

2 NOTs 2 XORs, 2 NOTs 3 NOTs

Table 8. Comparison of the best solutions found by GASA2, the % -cardinality genetic algorithm (NGA)
[2], and a human designer using Karnaugh Maps (HD 1) for the circuit of the second example.

parameters of the algorithms used as to achieve a better so-
lution.

3.3 Example 3

Our third example has 4 inputs and 3 outputs, as shown
in Table 9. In this case, the matrix used was of size " � � .
Again, in this case the size of the intrinsic search space is
� � ��")(*$�+ � � ! ��� � � � ,�- .

We performed 20 independent runs per algorithm per cir-
cuit per version (either serial or parallel) using the parame-
ters summarized in Table 10.

Our comparison of results is shown in Table 11. In this
case, both GASA1 and GASA2 found the best solution re-
ported in the literature for this circuit [5], which has 9 gates
and a fitness of 81. However, note that GASA2 had a bet-
ter hit rate (in the parallel version). In this case, the use
of parallelism produced a noticeable increase in the average
fitness of GASA1 and GASA2, but the best solution was
only rarely found. It is also interesting to see how GASA1
and GASA2 both have a computational cost of twice the tra-
ditional GA. Also note that, as in the previous example, in
this case the use of parallelism decreased the average num-
ber of evaluations required to find the best possible fitness
value produced by each of the algorithms under study.

We show in Table 12 a comparison of the best solution
found by GASA2 with respect to other approaches previ-
ously used to design the circuit of the third example. This
second comparison is only in terms of the boolean expres-
sion found. In this case, GASA2 again improved the best

solution found by two human designers (one using Kar-
naugh maps and the other one using the Quine-McCluskey
method), and by the NGA.

3.4 Example 4

Our fourth example is a 2-bit multiplier which has 4 in-
puts and 4 outputs, as shown in Table 13. A matrix of ��� �
was adopted in this case. The size of the intrinsic search
space for this problem is �'��������� ��� ! " � � ����$.

We performed 20 independent runs per algorithm per cir-
cuit per version (either serial or parallel) using the parame-
ters summarized in Table 14.

Our comparison of results is shown in Table 15. In this
case, GASA2 found the best solution reported in the liter-
ature for this circuit [5], which has 7 gates and a fitness
value of 82. In this case, the use of parallelism produced
only a slight increase in the average fitness of GASA1 and
GASA2, but allowed GASA2 to converge to the best solu-
tion reported in the literature. It is also interesting to see
how GASA1 and GASA2 both have a computational cost
much higher than the traditional GA. Note however, that
the parallel version of the parallel GA was able to converge
to a better solution than the parallel version of GASA1, al-
though the average fitness of the GA was still slightly below
GASA1.

We show in Table 16 a comparison of the best solution
found by GASA2 with respect to other approaches previ-
ously used to design the circuit of the fourth example. This

Algorithm popsize Xover prob. Mut. prob. Others
GA 600 0.6 0.00395 NONE

CHC 600 0.6 0.00395 35% population restart
(uniform mutation 0.7)

GASA1 600 0.6 0.00395 SA operator (prob. 0.01)
100 iters., Markov C.L. = 10

GASA2 600 0.6 0.00395 GASA1 + SA execution
with 10000 iterations (MCL = 1000)

Table 10. Parameters used for the experiments of the third example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 71 10% 51.2 552486 76 15% 54.5 498512
CHC 64 20% 47.3 362745 70 5% 49.3 252969

GASA1 78 35% 70 1090472 81 5% 76.1 963482
GASA2 78 5% 69.32 1143853 81 10% 77.9 1009713

Table 11. Comparison of results between a binary GA, CHC, GASA1 and GASA2 for the third example.

GASA2 NGA HD 1 HD 2� � � � � � �� � � � � � � � �� � � � � ��� � � ��� � � � ��� � � � �� ��� � � ��� � � ����� � ��� � � � �� � � � � �� � �� � � � � � �� � � � � � � � �� � � � � � � ��� � � � � � ��� � � � �� ��� � � � � � ��� � � � � +
� � �

� ����� � � � ���� � ��� � � � � �� ��� � � � � � �����
� � ��� + ����� � � � � �� � � � � � � � � � � � �� � � � � � � � � � ��� �

� � � �� � � ��� � � � � ����� ��� � � ��� � � � �� ��� � � � � � ��� � �� � � ��� � � � �� �� ��� � � � �
���� � ���
� � � � �� ����� ��� ��� �

9 gates 12 gates 19 gates 13 gates
3 XORs, 3 ORs, 3 XORs, 4 ORs, 2 XORs, 4 ORs, 2 XORs, 2 ORs,
2 ANDs, 2 NOTs 1 AND, 4 NOTs 7 ANDs, 6 NOTs 4 ANDs, 5 NOTs

Table 12. Comparison of the best solutions found by GASA2, the % -cardinality GA (NGA), and two
human designers (HD 1 and HD 2) for the circuit of the third example.

second comparison is only in terms of the boolean expres-
sion found. In this case, GASA2 again improved the best
solution found by two human designers (one using Kar-
naugh maps and the other one using the Quine-McCluskey
method), by the NGA and by the cartesian genetic program-
ming of [14]. Note that in [12], a solution using only 7 gates
is reported. Such a solution required a computational effort

(to achieve a 99% success rate) of 585,045 fitness function
evaluations.

4 Discussion of Results

Although this is just a preliminary study, a few things
can be inferred from our results. First, the hybridization of

Algorithm popsize Xover prob. Mut. prob. Others
GA 600 0.6 0.00667 NONE

CHC 600 0.6 0.00667 35% population restart
(uniform mutation 0.7)

GASA1 600 0.6 0.00667 SA operator (prob. 0.01)
500 iters., Markov C.L. = 50

GASA2 600 0.6 0.00667 GASA1 + SA execution
with 10000 iterations (MCL = 1000)

Table 14. Parameters used for the experiments of the fourth example.

Algorithm sequential parallel
opt hits avg #evals opt hits avg #evals

GA 78 15% 71.85 528390 81 5% 76.3 425100
CHC 76 5% 72.75 417930 80 10% 74.2 246090

GASA1 78 25% 74.15 711675 80 20% 76.9 852120
GASA2 80 10% 75.4 817245 82 20% 78.75 927845

Table 15. Comparison of results between a binary GA, CHC, GASA1 and GASA2 for the fourth example.

GASA2 NGA HD 1 HD 2 MIL� � � � � � � � � ��� � � � � � ��� � � � � � ��� � � � � � ��� � � ��
(� � �

�
(

�
(� � (�
�

�
(���
�

�
(

�
(� � � (

��� � � �
(��� (

� �
� � (

� � � � � (� � (
� � ��� (

� �
��� � � � � (� ��� � � (� ��� (� � �� � (
� � � � � � (

� � ����
$ � � (

�
(

�
$ � ��� � � � �

$ ��� (
�
(

�
$ ��� (

�
(

�
$ � ��� � � � � �

� ��� � � � � � (
�
(� ��� � � � ��� ��� � � � ��� ��� (

�
(�� (

�
(� � �
� � ��

� � � � � � �
� ��� (

�
(

�
� ��� (� �

�
� ��� (

�
(

�
� � ��� (

� �
� (
�
(� � � � �

(
� � � � � � � � � � (� ���� (

� � �
7 gates 9 gates 8 gates 12 gates 9 gates

5 ANDs, 5 ANDs, 6 ANDs, 8 ANDs, 6 ANDs,
2 XORs 2 ORs, 1 XOR, 1 XOR, 1 XOR,

2 XORs 1 NOT 2 ORs, 1 NOT 2 NOTs

Table 16. Comparison of the best solutions found by GASA2, the % -cardinality GA (NGA), two human
designers (HD 1 & HD 2), and Miller et al. [14] (MIL) for the circuit of the fourth example. The two
human designers used in this example were electrical engineering students.

a genetic algorithm with simulated annealing seems to be
benefitial for designing combinational logic circuits (at least
when compared to a traditional GA). From the two hybrids
tried, GASA2 had a better performance. This is apparently
due to its use of simulated annealing over the final popu-
lation of a GA, which allows to focus the search on more
specific regions (something hard to do with the traditional
genetic operators).

On the other hand, despite our belief that the highly dis-
ruptive recombination operator of CHC would be benefitial
in circuit design, our results indicate that this approach has
the worst overall performance of all the heuristics tried. Ap-
parently, the mating restrictions of CHC (called incest pre-
vention) and its restart process were not sufficient to com-
pensate the diversity introduced by a conventional mutation
operator, and the approach had difficulties to converge to

A B C D E F
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 0
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 1
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 0
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 1 1
1 1 1 1 0 0
1 1 1 1 1 1

Table 5. Truth table for the circuit of the sec-
ond example.

feasible solutions.

5 Conclusions and Future Work

The comparative study conducted in this paper has
shown that the hybridization of a genetic algorithm with
simulated annealing may bring benefits when designing
combinational logic circuits. Emphasis is placed on the fact
that the GA hybridized is a traditional one using binary en-
coding. Additionally, the use of parallelism also brought
benefits in terms of the quality of solutions produced, but
did not necessarily improve the hit rate (i.e., the number of
times that an algorithm converged to its best possible so-

A B C D F1 F2 F3
0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1
0 1 0 1 1 0 0
0 1 1 0 0 1 0
0 1 1 1 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 0
1 0 1 1 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 0

Table 9. Truth table for the circuit of the third
example.

A (A � B (B � C � C $ C (C �
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

Table 13. Truth table for the 2-bit multiplier of
the fourth example.

lution). Note however, that the use of parallelism tended
to decrease the average number of evaluations required by
each algorithm to achieve their best possible fitness value.
The exception was the first example, but this might be due
to the relative simplicity of the circuit. In examples 2 and 3,
parallelism clearly reduced this number of evaluations, and
in the fourth example, it produced reductions for the GA

and CHC. Nevertheless, a more in-depth study of the im-
pact of parallelism in combinational circuit design remains
to be an open research area.

As part of our future work, we are interested in using a
population-based multiobjective optimization approach (the
so-called MGA that we proposed in [5], in which each out-
put value from the truth table is considered as an objective
to be achieved by a multi-objective evolutionary algorithm)
hybridized with simulated annealing. Intuitively, this sort
of approach should produce better results when hybridized,
since by itself is a very powerful search engine for com-
binational circuit design. However, we ignore the possible
bias that could arise from combining the local search ca-
pabilities of simulated annealing with the population-based
selection mechanism of the MGA. Alternatively, the use of
Pareto-based selection mechanisms would also be an inter-
esting matter of study.

Acknowledgements

The first author acknowledges support from CONACyT
through project 32999-A. The second author acknowledges
that this work has been partially founded by the Min-
istry of Science and Technology and FEDER under con-
tract TIC2002-04498-C05-02 (the TRACER project). The
last author acknowledges support from CONACyT through
project I-39324-A.

References

[1] E. Alba and M. Tomassini. Parallelism and Evolutionary Al-
gorithms. IEEE Transactions on Evolutionary Computation,
6(5):443–462, October 2002.

[2] C. A. Coello Coello, A. D. Christiansen, and A. Hernández
Aguirre. Automated Design of Combinational Logic Cir-
cuits using Genetic Algorithms. In D. G. Smith, N. C.
Steele, and R. F. Albrecht, editors, Proceedings of the Inter-
national Conference on Artificial Neural Nets and Genetic
Algorithms, pages 335–338. Springer-Verlag, University of
East Anglia, England, April 1997.

[3] C. A. Coello Coello, A. D. Christiansen, and A. Hernández
Aguirre. Use of Evolutionary Techniques to Automate the
Design of Combinational Circuits. International Journal
of Smart Engineering System Design, 2(4):299–314, June
2000.

[4] C. A. Coello Coello, A. D. Christiansen, and A. Hernández
Aguirre. Towards Automated Evolutionary Design of Com-
binational Circuits. Computers and Electrical Engineering.
An International Journal, 27(1):1–28, January 2001.

[5] C. A. Coello Coello, A. Hernández Aguirre, and B. P. Buck-
les. Evolutionary Multiobjective Design of Combinational
Logic Circuits. In J. Lohn, A. Stoica, D. Keymeulen,
and S. Colombano, editors, Proceedings of the Second

NASA/DoD Workshop on Evolvable Hardware, pages 161–
170. IEEE Computer Society, Los Alamitos, California, July
2000.

[6] K. A. Dowsland. Simulated Annealing. In C. R. Reeves, ed-
itor, Modern Heuristic Techniques for Combinatorial Prob-
lems, chapter 2, pages 20–69. John Wiley & Sons, 1993.

[7] L. J. Eshelman. The CHC Adaptive Search Algorithm: How
to Have Safe Search when Engaging in Nontraditional Ge-
netic Recombination. In G. E. Rawlins, editor, Foundations
of Genetic Algorithms, pages 265–283. Morgan Kaufmann
Publishers, San Mateo, California, 1991.

[8] L. J. Eshelman and J. D. Schaffer. Preventing Premature
Convergence in Genetic Algorithms by Preventing Incest.
In R. K. Belew and L. B. Booker, editors, Proceedings of
the Fourth International Conference on Genetic Algorithms,
pages 115–122, San Mateo, California, July 1991. Morgan
Kaufmann Publishers.

[9] S. Kirkpatrick, C. Gellatt, and M. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[10] S. J. Louis. Genetic Algorithms as a Computational Tool
for Design. PhD thesis, Department of Computer Science,
Indiana University, August 1993.

[11] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equation of State Calculations by Fast Computing
Machines. Journal of Chemical Physics, 21(6):1087–1092,
1953.

[12] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the
Evolutionary Design of Digital Circuits—Part I. Genetic
Programming and Evolvable Machines, 1(1/2):7–35, April
2000.

[13] J. F. Miller, D. Job, and V. K. Vassilev. Principles in the
Evolutionary Design of Digital Circuits—Part II. Genetic
Programming and Evolvable Machines, 1(3):259–288, July
2000.

[14] J. F. Miller, P. Thomson, and T. Fogarty. Designing Elec-
tronic Circuits Using Evolutionary Algorithms. Arithmetic
Circuits: A Case Study. In D. Quagliarella, J. Périaux,
C. Poloni, and G. Winter, editors, Genetic Algorithms and
Evolution Strategy in Engineering and Computer Science,
pages 105–131. Morgan Kaufmann, Chichester, England,
1998.

[15] T. Sasao, editor. Logic Synthesis and Optimization. Kluwer
Academic Press, 1993.

[16] E. Serna Pérez. Diseño de Circuitos Lógicos Combinatorios
utilizando Programación Genética. Master’s thesis, Maestrı́a
en Inteligencia Artificial, Facultad de Fı́sica e Inteligencia
Artificial, Universidad Veracruzana, Enero 2001. (In Span-
ish).

[17] H. Szu and R. Hartley. Fast Simulated Annealing. Physical
Letters A, 122(3):157–162, 1987.

[18] V. K. Vassilev, T. C. Fogarty, and J. F. Miller. Information
Characteristics and the Structure of Landscapes. Evolution-
ary Computation, 8(1):31–60, Spring 2000.

[19] V. K. Vassilev, J. F. Miller, and T. C. Fogarty. Digital Cir-
cuit Evolution and Fitness Landscapes. In 1999 Congress
on Evolutionary Computation, volume 2, pages 1299–1306,
Washington, D.C., July 1999. IEEE Service Center.

