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Abstract. Evolutionary algorithms (as well as a number of other meta-
heuristics) have become a popular choice for solving problems having two
or more (often conflicting) objectives (the so-called multi-objective op-
timization problems). This area, known as EMOO (Evolutionary Multi-
Objective Optimization) has had an important growth in the last 20
years, and several people (particularly newcomers) get the impression
that it is now very difficult to make contributions of sufficient value to
justify, for example, a PhD thesis. However, a lot of interesting research is
still under way. In this paper, we will briefly review some of the research
topics on evolutionary multi-objective optimization that are currently at-
tracting a lot of interest (e.g., indicator-based selection, many-objective
optimization and use of surrogates) and which represent good opportu-
nities for doing research. Some of the challenges currently faced by this
discipline will also be delineated.
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1 Introduction


The solution of problems having two or more (normally conflicting) objectives
has attracted a considerable attention in the last few years. The solution of
these so-called multi-objective optimization problems (MOPs) gives rise to a set
of solutions representing the best possible trade-offs among the objectives. Such
solutions, defined in decision variable space constitute the so-called Pareto op-
timal set, and their corresponding objective function values form the so-called
Pareto front.


Although a number of mathematical programming techniques have been de-
veloped since the 1970s to solve MOPs [81], such techniques present several
limitations, from which two of the most relevant are that these algorithms are
normally very susceptible to the shape or continuity of the Pareto front and
that they tend to generate a single element of the Pareto optimal set per run.
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Additionally, in some real-world MOPs, the objective functions are not provided
in algebraic form, but are the output of a black box software (which, for exam-
ple, runs a simulation to obtain an objective function value), thus limiting the
applicability of mathematical programming techniques. Such limitations have
motivated the development of alternative approaches from which metaheuris-
tics1 have been, with no doubt, the most popular and effective choice available
so far (see for example [24]).


From the many metaheuristics in current use, Evolutionary Algorithms (EAs)
are, clearly, the most popular in today’s specialized literature. EAs are inspired
on the “survival of the fittest” principle from Darwin’s evolutionary theory [43],
and simulate the evolutionary process in a computer, as a way to solve problems.
EAs have become very popular as multi-objective optimizers because of their
ease of use (and implementation) and generality (e.g., they are less sensitive
than mathematical programming techniques to the initial points used for the
search and to the specific features of a MOP). EAs have also an additional
advantage: since they are population-based techniques, it is possible for them to
manage a set of solutions at a time, instead of only one, as normally done by
traditional mathematical programming techniques. This allows EAs to generate
several elements from the Pareto optimal set in a single run.


The first Multi-Objective Evolutionary Algorithm (MOEA) was proposed in
the mid-1980s by David Schaffer [103]. However, it was until the mid-1990s that
MOEAs started to attract serious attention from researchers. Nowadays, it is
possible to find applications of MOEAs in practically all domains.2


The remainder of this paper is organized as follows. In Section 2, we provide
some basic multi-objective optimization concepts required to make this paper
self-contained. Section 3 briefly describes some relevant research topics that are
worth currently being explored by EMOO researchers. In Section 4, we present
other challenges in the field that have been only scarcely explored. Finally, the
main conclusions of this paper are provided in Section 5.


2 Basic Concepts


We are interested in solving problems of the type3:


minimize f(x) := [f1(x), f2(x), . . . , fk(x)] (1)


subject to:
gi(x) ≤ 0 i = 1, 2, . . . ,m (2)


1 A metaheuristic is a high level strategy for exploring search spaces by using dif-
ferent methods [14]. Metaheuristics have both a diversification (i.e., exploration of
the search space) and an intensification (i.e., exploitation of the accumulated search
experience) procedure.


2 The author maintains the EMOO repository, which currently contains over 10,850
bibliographic references related to evolutionary multi-objective optimization. The
EMOO repository is located at: https://emoo.cs.cinvestav.mx.


3 Without loss of generality, we will assume only minimization problems.
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hi(x) = 0 i = 1, 2, . . . , p (3)


where x = [x1, x2, . . . , xn]
T


is the vector of decision variables, fi : IRn → IR,
i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ...,m,
j = 1, ..., p are the constraint functions of the problem.


To describe the concept of optimality in which we are interested, we will
introduce next a few definitions.


Definition 1. Given two vectors x,y ∈ IRk, we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x 6= y.


Definition 2. We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).


Definition 3. We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is nondominated with respect to F .


Definition 4. The Pareto Optimal Set P∗ is defined by:


P∗ = {x ∈ F|x is Pareto-optimal}


Definition 5. The Pareto Front PF∗ is defined by:


PF∗ = {f(x) ∈ IRk|x ∈ P∗}


We thus wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (2) and (3). Note however that in practice,
not all the Pareto optimal set is normally desirable (e.g., it may not be desirable
to have different solutions that map to the same values in objective function
space) or achievable.


3 Some Open Research Topics that are Worth Exploring


In spite of the significant development that MOEAs have experienced since their
inception, there are still some research topics that are worth exploring in the next
few years. From them, we will discuss three in this paper:


1. Algorithmic design
2. Scalability
3. Dealing with expensive objective functions


Next, we briefly discuss some of the most representative research that has
been conducted on these topics.
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3.1 Algorithmic design


In the early days of MOEAs, the approaches that were adopted were very sim-
ple and naive. For example, it was relatively common to use linear aggregating
functions that combined all the objective functions into a single scalar value [48].
However, by the mid-1990s, several MOEAs started to adopt mechanisms such
as Pareto ranking [43] and nondominated sorting [109]. In these mechanisms, the
idea is to rank solutions based on Pareto optimality, such that nondominated in-
dividuals obtain the highest (best) possible rank. Since diversity is an important
issue in MOEAs, in order to avoid convergence to a single solution, an addi-
tional mechanism was integrated to them: the so-called density estimator. Since
the mid-1990s, a number of density estimators have been adopted, including:
fitness sharing [44], clustering [129], adaptive grids [67], crowding [30], entropy
[88] and parallel coordinates [54].


By the end of the 1990s, another mechanism was incorporated into MOEAs:
elitism. The intuition behind the concept of elitism is that we need to retain the
solutions that remain nondominated with respect to the new individuals that are
being generated by our MOEA (otherwise, such solutions could be lost). Elitism
is important not only from a practical point of view, but also for theoretical
reasons, since this mechanism is required to guarantee convergence [99].


In spite of the large number of MOEAs that were proposed in the 1990s,
few of them were widely used. From them, clearly the Nondominated Sorting
Genetic Algorithm II (NSGA-II) [30] was the most popular (and is still being
used today).


However, a few years after NSGA-II, another interesting MOEA was pro-
posed: the Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) [124]. The idea of using decomposition was originally pro-
posed in mathematical programming and it consists in transforming a multi-
objective problem into several single-objective optimization problems which, in
the case of MOEA/D are simultaneously solved, using neighborhood search.
Decomposition-based methods would eventually become very popular research
trend in algorithmic design (see for example [101]) and would influence the de-
sign of the Nondominated Sorting Genetic Algorithm III (NSGA-III) [29]
which adopts decomposition and reference points.


Nevertheless, since 2004, a different type of algorithmic design has increas-
ingly attracted interest from researchers: indicator-based selection. The idea of
this sort of MOEA was introduced in the Indicator-Based Evolutionary Al-
gorithm (IBEA) [126] which consists of an algorithmic framework that allows
the incorporation of any performance indicator into the selection mechanism of
a MOEA. IBEA was originally tested with the hypervolume [128] and the binary
ε indicator [127]. Indicator-based selection has attracted a lot of interest, mainly
because this sort of mechanism is known to work properly in many-objective
optimization (i.e., MOPs having four or more objectives).


Over the years, a number of indicator-based MOEAs have been proposed,
but probably the most representative approach within this family has been
the S Metric Selection Evolutionary Multiobjective Algorithm (SMS-







Recent Results and Open Problems in EMOO 5


EMOA) [36]. SMS-EMOA randomly generates an initial population and then
produces a single solution per iteration (i.e., it uses steady state selection) using
the crossover and mutation operators from NSGA-II. Then, it applies nondomi-
nated sorting (as in NSGA-II). When the last nondominated front has more than
one solution, SMS-EMOA uses hypervolume to decide which solution should be
removed. Beume et al. [11] proposed a new version of SMS-EMOA in which
the hypervolume contribution is not used when, in the nondominated sorting
process, we obtain more than one front. In this case, they use the number of so-
lutions that dominate to a certain individual (i.e., the solution that is dominated
by the largest number of solutions is removed).


After the introduction of SMS-EMOA, most indicator-based MOEAs that
have been proposed adopt a performance indicator in their density estimator,4


and not in their selection mechanism (see for example [59]). The actual use of a
“pure” indicator-based selection mechanism has been very rare (see for example
[78]).


So, at this point, one obvious question is: why is that the hypervolume is such
an attractive choice for indicator-based selection?


The hypervolume (also known as the S metric or the Lebesgue Measure) of
a set of solutions measures the size of the portion of objective space that is
dominated by those solutions collectively. One of its main advantages are its
mathematical properties, since it has been proved that the maximization of this
performance measure is equivalent to finding the Pareto optimal set [39]. Ad-
ditionally, empirical studies have shown that (for a certain number of points
previously determined) the maximization of the hypervolume does indeed pro-
duce subsets of the Pareto front which are well-distributed [65, 36]. Also, the
hypervolume assesses both convergence and, to a certain extent, also the spread
of solutions along the Pareto front (although without enforcing uniform distri-
bution of solutions).


However, there are several issues regarding the use of the hypervolume. First,
the computation of this performance measure depends of a reference point, which
can influence the results in a significant manner. Some people have proposed
to use the worst objective function values in the current population, but this
requires scaling of the objectives. Nevertheless, the most serious limitation of
the hypervolume is its high computational cost. The best algorithms known to
compute hypervolume have a polynomial complexity on the number of points
used, but such complexity grows exponentially on the number of objectives [12].
This has triggered a significant amount of research regarding algorithms that can
reduce the computational cost of computing the hypervolume5 (see for example
[121, 15, 120, 57]).


4 In fact, the earliest use of the hypervolume into a MOEA is as a density estimator
in a secondary population (see [65]).


5 See also:
http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
http://people.mpi-inf.mpg.de/˜tfried/HYP/
http://iridia.ulb.ac.be/˜manuel/hypervolume
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An alternative to deal with this problem is to approximate the actual hy-
pervolume contributions. This is the approach adopted by the Hypervolume
Estimation Algorithm for Multi-Objective Optimization (HyPE) [3] in
which Monte Carlo simulations are used to approximate exact hypervolume val-
ues. Although this is certainly a very interesting idea, in practice HyPE does not
produce results as competitive as when using exact hypervolume computations.


Another possibility is to use another performance indicator, but the fact that
the hypervolume is the only unary indicator which is known to be Pareto com-
pliant [130] has made this alternative less attractive to researchers. Nevertheless,
the use of a few other performance indicators has been reported to be successful
in practice. Examples of these alternative indicator that have been used within
MOEAs are: R2 [17, 51, 33, 46, 16, 52], ∆p [105, 98, 79] and Inverted Generational
Distance plus (IGD+) [60, 74]. Also, the use of other mechanisms such as the
maximin fitness function, which seems to be related to the ε indicator are very
promising (see for example [77]). All of these MOEAs are computationally inex-
pensive and perform quite well in many-objective problems, however, their use
in practice is still very limited.


It is worth indicating that while some researchers debate if decomposition-
based MOEAs or indicator-based MOEAs will become the new algorithmic trend
in the next few years, other alternatives to the use of Pareto-based selection have
been proposed. For example, Molinet Berenguer and Coello Coello [7], proposed
an approach that transforms a multi-objective optimization problem into a linear
assignment problem using a set of weight vectors uniformly scattered. Uniform
design is adopted to obtain the set of weights, and the Kuhn-Munkres (Hun-
garian) algorithm [68] is used to solve the resulting assignment problem. This
approach was found to perform quite well (and at a low computational cost) in
many-objective optimization problems.


3.2 Scalability


In their early days, MOEAs were mainly used to solve problems having only
two or three objectives. However, once Pareto-based MOEAs became popular,
the need for solving problems having more objectives was very evident. At this
point, problems started to arise, since it was soon evident that Pareto-based
MOEAs tend to perform poorly in many-objective optimization problems [56]


Experimental [89, 117] and analytical studies [26, 66] have identified the fol-
lowing limitations of Pareto-based MOEAs in many-objective problems:


1. Deterioration of the Search Ability: The proportion of nondominated solu-
tions in a population increases rapidly with the number of objectives [37].
According to Bentley et al. [5] the number of nondominated k-dimensional
vectors on a set of size n is O(lnk−1 n). This implies that in problems with
a large number objectives, the selection of solutions is carried out almost at
random or guided by diversity criteria. In fact, Mostaghim and Schmeck [85]
have shown that a random search optimizer achieves better results than
NSGA-II [30] in a problem with 10 objectives.
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2. Dimensionality of the Pareto front: Due to the ‘curse of dimensionality’ the
number of points required to represent accurately a Pareto front increases
exponentially with the number of objectives. The number of points neces-
sary to represent a k-dimensional Pareto front with resolution r is given by
O(krk−1) (e.g., see [106]). This poses a challenge both to the data structures
to efficiently manage that number of points and to the density estimators to
achieve an even distribution of the solutions along the Pareto front.


3. Visualization of the Pareto front: Clearly, with more than three objectives
is not possible to plot the Pareto front as usual. This is a serious problem
since visualization plays a key role for a proper decision making process. In
recent years, a number of visualization techniques have been proposed for
many-objective problems (see for example [113]), but this is still an active
research area.


In order to properly deal with many-objective optimization problems, three
main approaches have been normally adopted [72, 70, 4]:


1. As indicated before, the use of indicator-based MOEAs has been an impor-
tant research trend to deal with many-objective optimization problems, in
spite of the limitations of some performance indicators such as the hyper-
volume (see for example [62]).


2. One interesting possibility that was adopted in the early days of many-
objective optimization was the use of an optimality relation that yields a
solution ordering finer than that yielded by Pareto optimality. Among these
alternative relations we can find average ranking [6, 40], k-optimality [37],
preference order ranking [32], favour relation [110], and a method that con-
trols the dominance area [102], among others. Besides providing a richer
ordering of the solutions, these relations obtain an optimal set that it is
usually a subset of the Pareto optimal set.


3. Another interesting approach which is now rarely used is to reduce the num-
ber of objectives of the problem during the search process or in an a poste-
riori manner, during the decision making process [18, 31, 71]. The main goal
of this kind of reduction techniques is to identify redundant objectives (or
redundant to some degree) in order to discard them. A redundant objective
is one that can be removed without changing the dominance relation induced
by the original objective set.


In contrast with the significant interest that many-objective optimization
has attracted in recent years, scalability in decision variable space has been only
recently studied in the context of multi-objective optimization (see for example
[82, 125, 83, 73]). This is remarkable if we consider that large-scale multi-objective
optimization problems (i.e., problems having more than 100 decision variables)
are not rare in real-world applications (see for example [119]). In this area, the
use of cooperative coevolutionary approaches (which have been very successful
in single-objective large-scale optimization) is the most common research trend.
It is worth indicating, however, that no current benchmark exists that includes
large-scale multi-objective optimization problems.
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A more challenging problem would consist in solving many-objective large-
scale problems, but no work in this direction has been reported yet, to the best
of the author’s knowledge.


3.3 Dealing with expensive objective functions


In spite of the current popularity of MOEAs, one of their limitations is that,
since they are stochastic search techniques, they normally require a significant
number of objective function evaluations in order to generate a proper sampling
that allows a reasonably good approximation of the Pareto front, even when
dealing with problems of low dimensionality. This is, indeed, a serious limitation
when dealing with real-world problems, because in many cases, the cost of a
MOEA becomes prohibitive.


In general, MOEAs can be unaffordable for an application when:


– The evaluation of the fitness functions is computationally expensive (i.e., it
takes from minutes to hours).


– The fitness functions cannot be defined in an algebraic form (e.g., when the
fitness functions are generated by a simulator).


– The total number of evaluations of the fitness functions is limited by financial
constraints (i.e., there is a financial cost involved in computing the fitness
functions).


In recent years, a significant amount of research has been conducted to allow
MOEAs to properly deal with computationally expensive problems [100]. The
main approaches that have been developed in this area can be roughly divided
into three main groups:


1. Use of parallelism: This is clearly the most obvious approach given the
current access to cheap parallel architectures (e.g., GPUs [28, 8, 107]). It is
worth noting, however, that in spite of the existence of interesting proposals
in this area (see for example [111, 84, 1]), the basic research in this area has
remained scarce, since most publications involving parallel MOEAs focus on
specific applications or on parallel extensions of specific MOEAs.


2. Surrogates: In this case, knowledge of past evaluations of a MOEA is used
to build an empirical model that approximates the fitness functions to be
optimized. This approximation can then be used to predict promising new
solutions at a smaller evaluation cost than that of the original problem [64,
63]. Current functional approximation models include Polynomials (response
surface methodologies [92, 41]), neural networks (e.g., multi-layer percep-
trons (MLPs) [55, 58, 87]), radial-basis function (RBF) networks [86, 114,
122], support vector machines (SVMs) [104, 13], Gaussian processes [115,
20], and Kriging [35, 93] models. Although frequently used in engineering
applications, surrogate methods can normally be adopted only in problems
of low dimensionality, which is an important limitation when dealing with
real-world MOPs.
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3. Fitness inheritance: This technique was introduced by Smith et al. [108],
and its main motivation is to reduce the total number of fitness function
evaluations performed by a (single-objective) evolutionary algorithm. The
mechanism works as follows: when assigning the fitness to an individual,
some times we evaluate the objective function as usual, but the rest of the
time, we assign fitness as an average of the fitness of the parents. This saves
one fitness function evaluation, and is based on the assumption of similarity
of an offspring to its parents. Fitness inheritance must not be always applied,
since the algorithm needs to use the true fitness function several times, in
order to obtain enough information to guide the search. The percentage of
time in which fitness inheritance is applied is called inheritance proportion. If
this inheritance proportion is 1, the algorithm is most likely to prematurely
converge [23]. Extending fitness inheritance involves several issues, mainly
related to its apparent limitation for dealing with non-convex Pareto fronts
[34]. However, some researchers have managed to successfully adapt fitness
inheritance to MOEAs [94], reporting important savings on the total number
of objective function evaluations performed.


Other approaches are also possible. For example, some researchers have
adopted cultural algorithms [25, 9, 10, 95], which obtain knowledge during the
evolutionary process and use it to perform a more efficient search at the ex-
pense of a significantly large memory usage. Cultural algorithms were proposed
by Reynolds [96, 97], as an approach that tries to add domain knowledge to
an evolutionary algorithm during the search process, avoiding the need to add
it a priori. This approach uses, in addition to the population space commonly
adopted in evolutionary algorithms, a belief space, which encodes the knowl-
edge obtained from the search points and their evaluation, in order to influence
the evolutionary operators that guide the search. However, the belief space is
commonly designed based on the group of problems that is to be solved. At
each generation, the cultural algorithm selects some exemplar individuals from
the population, in order to extract information from them that can be useful
during the search. Such an information is used to update the belief space. The
belief space will then influence the operators of the evolutionary algorithm, to
transform them in informed operators and enhance the search process. Cultural
algorithms can be an effective means of saving objective function evaluations,
but since a map of decision variable space must be kept at all times, their cost
will soon become prohibitive even for problems of moderate dimensionality.


4 Other Challenges


Several other topics remain scarcely explored in evolutionary multi-objective
optimization. For example:


1. Dynamic problems: In the real world, there are problems in which the
objective function values may vary over time (e.g., because of the presence
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of noise), depending on certain events. The solution of such problems re-
quires algorithms that are able to quickly “adapt” to these changes in the
environment. There are relatively few MOEAs that have been designed to
deal with dynamic MOPs and the current research in this area remains rel-
atively scarce [21, 118, 27, 49, 91]. It is worth noting that dynamic problems
require different types of benchmarks (see for example [38]) and performance
measures (see for example [50]).


2. Hyper-heuristics: In spite of the fact that multi-objective memetic algo-
rithms (i.e., MOEAs that are hybridized with a local search engine, which
could be, for example, a gradient-based method [69] or a direct search method
[123]) have gained popularity in recent years (see for example [42, 61, 75]),
hyper-heuristics have been only scarcely explored in the context of multi-
objective optimization, particularly for dealing with continuous optimiza-
tion problems (see for example [45, 53]). Hyper-heuristics [22] are approaches
that combine several types of heuristics, with the aim of combining their
advantages in a wide class of problems. Their main motivation is to have
a more general search engine that can solve a wider variety of hard opti-
mization problems. Hyper-heuristics have been mostly developed for discrete
search spaces and have been used to solve mainly single-objective optimiza-
tion problems. However, their use in continuous multi-objective optimization
problems, although possible, has been scarcely explored (see for example
[76]). The use of other (similar) approaches that combine operators and dif-
ferent MOEAs into a common framework are also promising research venues
(see for example [116, 47]).


3. Automatic parameter configuration: Although some relevant work has
been conducted on parameter fine-tuning for MOEAs (see for example [19,
112, 2]), it has been only recently that researchers in evolutionary multi-
objective optimization have considered the use of tools to do an automatic
calibration of MOEAs (see for example [80]). One limitation for the use of
such tools is that a scalar measure is required, but some researchers have
relied on the use of hypervolume (see for example [90]) for that sake.


5 Conclusions


In this paper, a few research trends in evolutionary multi-objective optimization
have been briefly described with the aim of encouraging more research in such
areas.


The main goal of this paper is to illustrate that, in spite of its 32 years
of existence, evolutionary multi-objective optimization still has several research
opportunities to offer to newcomers. The contents of this paper is just a small
sample of the several topics that are still available for starting a research career
in this area.
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México (20-23 June 2013), iSBN 978-1-4799-0454-9


34. Ducheyne, E.I., De Baets, B., De Wulf, R.: Is Fitness Inheritance Useful for Real-
World Applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele,
L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Con-
ference, EMO 2003. pp. 31–42. Springer. Lecture Notes in Computer Science.
Volume 2632, Faro, Portugal (April 2003)
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MICAI 2009: Advances in Artificial Intelligence. 8th Mexican International Con-
ference on Artificial Intelligence. pp. 633–645. Springer. Lecture Notes in Artificial
Intelligence Vol. 5845, Guanajuato, México (November 2009)


41. Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., Tucker, K.: Re-
sponse surface approximation of pareto optimal front in multiobjective optimiza-
tion. Tech. Rep. 2004-4501, AIAA (2004)


42. Goh, C.K., Ong, Y.S., Tan, K.C. (eds.): Multi-Objective Memetic Algorithms.
Springer, Berlin, Germany (2009), iSBN 978-3-540-88050-9


43. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Reading, Massachusetts (1989)


44. Goldberg, D.E., Richardson, J.: Genetic Algorithms with Sharing for Multimodal
Function Optimization. In: Genetic Algorithms and their Applications: Proceed-
ings of the Second International Conference on Genetic Algorithms. pp. 41–49.
Lawrence Erlbaum, Massachusetts, USA (July 1987), iSBN 0-8058-0158-8
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