

A Survey of Constraint Handling

Techniques used with Evolutionary Algorithms

Carlos A. Coello Coello

ccoello@xalapa.lania.mx

Laboratorio Nacional de Inform�atica Avanzada

R�ebsamen 80, Xalapa, Veracruz 91090, M�exico

Abstract

Despite the extended applicability of evolutionary algorithms to a wide range of domains, the fact that these algo-

rithms are unconstrained optimization techniques leaves open the issue regarding how to incorporate constraints of

any kind (linear, non-linear, equality and inequality) into the �tness function as to search e�ciently. The main

goal of this paper is to provide a detailed and comprehensive survey of the many constraint handling approaches

that have been proposed for evolutionary algorithms, analyzing in each case their advantages and disadvantages,

and concluding with some of the most promising paths of research.

Keywords: evolutionary algorithms, optimization, genetic algorithms, evolutionary optimization, constraint han-

dling.

1 Introduction

Early analogies between the mechanism of natural selection and a learning (or optimization) process led to the

development of the so-called \evolutionary algorithms" (EAs) [46], in which the main goal is to simulate the

evolutionary process in a computer. There are 3 main paradigms within evolutionary algorithms, whose motivations

and origins were completely independent from each other: evolution strategies [123], evolutionary programming

[47], and genetic algorithms [63].

In general, evolutionary algorithms simulate evolution using 4 main elements [45]: (1) a encoding structure that

will be replicated, (2) operators that a�ect the individuals of a population, (3) a �tness function that indicates

how \good" a certain individual is with respect to the others, and (4) a selection mechanism.

The 3 main paradigms mentioned before di�er mainly in terms of the importance given to the operators (re-

combination vs. mutation), the way in which selection is performed (stochastic vs. deterministic), the level of

abstraction at which evolution is modeled (species vs. individual), and consequently, the level at which the opera-

tors are applied (phenotypic vs. genotypic).

Regardless of their di�erences, evolutionary algorithms have been quite successful in a wide range of applications

[56, 91, 83, 2, 108, 53, 45, 109, 124]. However, an aspect normally disregarded when using evolutionary algorithms

for optimization (a rather common trend) is that these algorithms are unconstrained optimization procedures,

and therefore is necessary to device ways of incorporating the constraints (normally existing in any real-world

application) into the �tness function.

Despite the relative success of penalty functions [115, 56] in many optimization problems, researchers in evolu-

tionary computing have developed a considerable amount of alternative approaches to handle constraints and have

proposed di�erent ways to automate the de�nition of good penalty factors, which remains as the main drawback

of using penalty functions.

In this paper, we provide a comprehensive survey of contraint-handling techniques that have been adopted

over the years to handle all sorts of constraints (linear, non-linear, equality, inequality, explicit and implicit) in

1

evolutionary algorithms. A brief criticism of each of them will also be provided, showing their advantages and

disadvantages, and we will conclude with some of the most promising paths of future research.

It should be mentioned that despite the fact that there are other surveys on constraint handling techniques

available in the specialized literature (see for example [86, 85, 52, 23, 127]), they are either too narrow (i.e., they

cover a single constraint handling technique) or they focus more on empirical comparisons and on the design of

interesting test functions and do not attempt to be comprehensive as we pretend in this paper.

Our main goal is to provide enough (mainly descriptive) information as to allow newcomers in this area to get

a very complete picture of the research that has been done and that is currently under way. Since trying to be

exhaustive is as fruitless as it is ambitious, we have focused on papers in which the main emphasis is the way

in which constraints are handled, and from this subset, we have selected the most representative work available

(particularly, when dealing with very proli�c authors).

2 Basic de�nitions

The problem that is of interest to us is the general non-linear programming problem in which we want to:

Find X which optimizes f(X) (1)

subject to:

g

i

(X) � 0; i = 1; : : : ; n (2)

h

j

(X) = 0; j = 1; : : : ; p (3)

where X is the vector of solutions (X = x

1

; x

2

; : : : ; x

r

), n is the number of inequality constraints and p is the

number of equality constraints (in both cases, constraints could be linear or non-linear).

If we denote with F to the feasible region and with S to the whole search space, then it should be clear that

F � S.

For an inequality constaint that satis�es g

i

(X) = 0, then we will say that is active at X. All equality constraints

h

j

(regardless of the value of X used) are considered active at all points of S.

For simplicity, we will use �(X), i = 1; : : : ;m (m is the total number of constraints) to denote constraints of

both kinds (inequality and equality), unless the approach analyzed makes a clear distinction between equality and

inequality constraints.

3 A Taxonomy of Approaches

Focusing only on numerical optimization, particularly regarding non-linear optimization problems, the constraint-

handling techniques developed over the years can be roughly classi�ed as follows [23]:

� Use of penalty functions.

� Maintaining a feasible population by special representations and genetic operators.

� Separation of objectives and constraints.

� Hybrid methods.

� Novel approaches.

2

4 Use of penalty functions

The most common approach in the EA (mainly with genetic algorithms) community to handle constraints (partic-

ularly, inequality constraints) is to use penalties. The basic approach is to de�ne the �tness value of an individual

i by extending the domain of the objective function f(X) using [23]

�tness

i

(X) = f

i

(X)�Q

i

(4)

where Q

i

represents either a penalty for an infeasible individual i, or a cost for repairing such an individual (i.e.,

the cost for making it feasible). It is assumed that if i is feasible then Q

i

= 0 (i.e., we do not penalize feasible

individuals). In genetic algorithms, we typically have

Q

i

= c�

m

X

i=1

[�

i

(X)] (5)

where
[�

i

(X)] = �

i

(X)

2

for all violated constraints i, and c is a penalty coe�cient de�ned by the user [56].

Although evolution strategies normally use death penalties [123], there are also some proposals to incorporate

penalty functions into this approach. For example, Ho�meister & Sprave have proposed to use [62]:

Q

i

=

v

u

u

t

m

X

i=0

H(��

i

(X))�

i

(X)

2

(6)

where H : R! f0; 1g is the Heavyside function:

H(y) =

�

1 : y > 0

0 : y � 0

(7)

Ideally, the penalty should be kept as low as possible, just above the limit below which infeasible solutions are

optimal (this is called, the minimum penalty rule [28, 116, 128]). This is due to the fact that if the penalty is too

high or too low, then the problem becomes GA-hard [28, 116, 118]. However, although conceptually very simple, in

practice it is quite di�cult to implement this rule, because the exact location of the boundary between the feasible

and infeasible regions is unknown in most problems.

It is known that the relationship between an infeasible individual and the feasible part of the search space

plays a signi�cant role in penalizing such individual [115]. However, it is not completely clear how to exploit this

relationship to guide the search in the most desirable direction.

There are at least 3 main choices to de�ne a relationship between an infeasible individual and the feasible region

of the search space [23]:

1. an individual might be penalized just for being infeasible (i.e., we do not use any information about how close

it is from the feasible region),

2. the `amount' of its infeasibility can be measured and used to determine its corresponding penalty, or

3. the e�ort of `repairing' the individual (i.e., the cost of making it feasible) might be taken into account.

Several researchers have studied heuristics on the design of penalty functions. Probably the most well-known of

these studies is the one conducted by Richardson et al. [115] from which the following guidelines were derived:

1. Penalties which are functions of the distance from feasibility are better performers than those which are only

functions of the number of violated constraints.

2. For a problem having few constraints, and few fully feasible solutions, penalties which are solely functions of

the number of violated constraints are not likely to produce any solutions.

3. Good penalty functions can be constructed from two quantities: the maximum completion cost and the

expected completion cost. The completion cost is the cost of making feasible an infeasible solution.

3

4. Penalties should be close to the expected completion cost, but should not frequently fall below it. The

more accurate the penalty, the better will be the solution found. When a penalty often underestimates the

completion cost, then the search may fail to �nd a solution.

Based mainly on these guidelines, several researchers have attempted to derive good techniques to build penalty

functions. The most important will be analized next. It should be kept in mind, however, that these guidelines are

di�cult to follow in some cases. For example, the expected completion cost sometimes has to be estimated using

alternative methods (e.g., doing a relative scaling of the distance metrics of multiple constraints, estimating the

degree of constraint violation, etc. [127]). Also, it is not clear how to combine the two quantities indicated by

Richardson et al. [115] and how to design a �tness function that uses accurate penalties.

4.1 Static Penalties

Homaifar, Lai and Qi [64] proposed an approach in which the user de�nes several levels of violation, and a penalty

coe�cient is chosen for each in such a way that the penalty coe�cient increases as we reach higher levels of violation.

This approach starts with a random population of individuals (feasible or infeasible).

An individual is evaluated using [86]:

�tness

i

(X) = f

i

(X) +

m

X

j=1

R

k;j

�

2

j

(X) (8)

where R

i;j

are the penalty coe�cients used, m is the number of constraints, f(X) is the unpenalized objective

function, and k = 1; 2; : : : ; l, where l is the number of levels of violation de�ned by the user. The idea of this

approach is to balance individual constraints separately by de�ning a di�erent set of factors for each of them

through the application of a set of deterministic rules.

Criticism

The main drawback of this technique is the high number of parameters required [84]. For m constraints, this

approach requires m(2l+ 1) parameters in total. So, if we have for example 6 constraints and 2 levels, we would

need 30 parameters, which is a very high number considering the small size of the problem.

Other researchers have used di�erent distance based static penalty functions [56, 4, 65, 102, 115, 13, 136],

but in all cases these metrics rely on some extra parameter which is di�cult to generalize and normally remains

problem-dependent.

4.2 Dynamic Penalties

Joines and Houck [68] proposed a technique in which dynamic penalties (i.e., penalties that change over time) are

used. Individuals are evaluated (at generation t) using:

�tness

i

(X) = f

i

(X) + (C � t)

�

m

X

j=1

j�

j

(X)j

�

(9)

where C, � and � are constants de�ned by the user, m is the number of constraints, and � is a constant (the

authors used � = 1 and 2) de�ned by the user. This dynamic function increases the penalty as we progress through

generations. In their experiments, Joines and Houck [68] used a real-coded GA with arithmetical crossover and

non-uniform mutation [83]. The

Criticism

Some researchers [125] have argued that dynamic penalties work better than static penalties. However, it is di�cult

to derive good dynamic penalty functions in practice as it is to produce good penalty factors for static functions.

For example, in the approach proposed by Joines and Houck [68], the quality of the solution found was very sensitive

4

to changes in the values of the parameters. Even when a certain set of values for these parameters (C = 0:5, � = 1

or 2) were found by the authors of this method to be a reasonable choice, Michalewicz [84, 88] reported that these

values produced premature convergence most of the time in other examples. Also, it was found that the technique

normally either converged to an infeasible solution or to a feasible one that was far away from the global optimum

[84, 23].

Apparently, this technique provides very good results only when the objective function is quadratic [89].

4.3 Annealing Penalties

Michalewicz and Attia [82] considered a method based on the idea of simulated annealing [72]: the penalty coe�-

cients are changed once in many generations (after the algorithm has been trapped in a local optima). Only active

constraints are considered at each iteration, and the penalty is increased over time (i.e., the temperature decreases

over time) so that infeasible individuals are hardly penalized in the last generations.

The method of Michalewicz and Attia [82] requires that constraints are divided into 4 groups: linear equalities,

linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of active constraints A has to be

created, and all nonlinear equalities together with all violated nonlinear inequalities have to be included there. The

population is evolved using [84]:

�tness

i

(X) = f

i

(X) +

1

2�

X

j2A

�

2

j

(X) (10)

where � is the cooling schedule [72].

An interesting aspect of this approach is that the initial population is not really diverse, but consists of multiple

copies of a single individual that satis�es all the linear constraints (a single instance of this feasible individual is

really enough [89]). At each iteration, the temperature � is decreased and the new population is created using the

best solution found in the previous iteration as the starting point for the next iteration. The process stops when a

pre-de�ned �nal `freezing' temperature �

f

is reached.

Another, similar proposal was made by Carlson et al. [126]. In this case, the �tness function of an individual is

computed using:

�tness

i

(X) = A � f

i

(X) (11)

where A depends on 2 parameters: M , which measures the amount in which a constraint is violated (it takes a zero

value when no constraint is violated), and T , which is a function of the running time of the algorithm. T tends to

zero as evolution progresses. Using the basic principle of simulated annealing, Carlson et al. [126] de�ned A as:

A = e

�M=T

(12)

so that the initial penalty factor is small and it increases over time so that infeasible solutions are totally discarded

in the last generations.

To de�ne T (the cooling schedule), Carlson et al. [126] use:

T =

1

p

t

(13)

where t refers to the temperature used in the previous iteration.

Finally, it should be mentioned that Joines and Houck [68] also experimented with a penalty function based on

simulated annealing:

�tness

i

(X) = f

i

(X) + e

(C�t)

�

�

P

m

j=1

j�

j

(X)j

�

(14)

where t is the generation number, C = 0:05, and � = � = 1.

This �tness function was proposed as another form of handling constraints in a GA, but their success was

relative, mainly because they used unnormalized constraints.

5

Criticism

One of the main drawbacks of Michalewicz and Attia's approach is its extreme sensitivity to the values of its

parameters, and it is also well known that it is normally di�cult to choose an appropriate cooling scheme when

solving a problem with simulated annealing [72]. Michalewicz and Attia [82] used �

0

= 1 and �

f

= 0:000001 in their

experiments, with increments �

i+1

= 0:1 � �

i

. Carlson et al. [126] decided to use the mean constraint violation

(

�

M) as the starting temperature value. For the �nal temperature, they decided to use one hundreth of the mean

constraint violation at the last generation. However, these values are empirically derived and although proved to

be useful in some engineering problems by Carlson et al. [126], their de�nition remains as the most critical issue

when using simulated annealing.

Also, the approach used to handle linear constraints in Michalewicz and Attia's technique (treated separately

by them) is very e�cient, but it requires that the user provides an initial feasible point to the algorithm.

Regarding Joines and Houck's approach [68], their main problems had to do with the overows produced by the

fact that they did not normalize their constraints and therefore, the exponential function would sometimes fall out

of the valid numerical range of the computer. Furthermore, the de�nition of C was not justi�ed, and the authors

admitted that further experimentation regarding its e�ect was necessary.

4.4 Adaptive Penalties

Bean and Hadj-Alouane [7, 57] developed a method of adapting penalties that uses a penalty function which takes

a feedback from the search process. Each individual is evaluated by the formula:

�tness

i

(X) = f

i

(X) + �(t)

m

X

j=1

�

2

j

(X) (15)

where �(t) is updated every generation t in the following way:

�(t + 1) =

8

<

:

(1=�

1

) � �(t); if case #1

�

2

� �(t); if case #2

�(t); otherwise;

(16)

where cases #1 and #2 denote situations where the best individual in the last k generation was always (case

#1) or was never (case #2) feasible, �

1

; �

2

> 1, and �

1

6= �

2

(to avoid cycling). In other words, the penalty

component �(t+1) for the generation t+1 is decreased if all best individuals in the last k generations were feasible

or is increased if they were all infeasible. If there are some feasible and infeasible individuals tied as best in the

population, then the penalty does not change.

Smith and Tate [128] proposed an approach later re�ned by Coit and Smith [20] and Coit et al. [21] in which

the magnitude of the penalty is dynamically modi�ed according to the �tness of the best solution found so far. An

individual is evaluated using the formula:

�tness

i

(X) = f

i

(X) + (B

feasible

� B

all

)

m

X

j=1

�

�

j

(X)

NFT (t)

�

k

(17)

where B

feasible

is the best known objective function at generation t, B

all

is the best (unpenalized) overall objective

function at generation t, �

j

(X) is the amount by which the constraint �

j

is violated, k is a constant that adjusts

the \severity" of the penalty (a value of k = 2 has been previously suggested by Coit and Smith [20]), and NFT

is the so-called Near Feasibility Threshold, which is de�ned as the threshold distance from the feasible region at

which the user would consider that the search is \reasonably" close to the feasible region [89, 52].

Norman & Smith [101] further applied Coit & Smith's approach to facility layout problems, and apparently the

technique has been used only in combinatorial optimization problems.

Gen and Cheng [52] indicate that Yokota et al. [140] proposed a variant of Smith, Tate and Coit's approach in

which they use a multiplicative form of the �tness function (instead of an addition as in Smith et al. [128]):

�tness

i

(X) = f

i

(X)� P (X) (18)

6

where P (X) is de�ned as:

P (X) = 1�

1

m

m

X

j=1

�

�b

j

(X)

b

j

�

k

(19)

and

�b

j

(X) = maxf0; �

j

(X)� b

j

g (20)

In this case, �b

j

(X) refers to the violation of constraint j. Notice that this approach is really a special case of

Smith et al.'s approach in which NFT = b

j

, assuming that g

j

(X) � b

j

is required to consider a solution as fully

feasible.

Gen and Cheng [51] later re�ned their approach introducing a more severe penalty for infeasible solutions. In

the new version of their algorithm,

P (X) = 1�

1

m

m

X

j=1

�b

j

(X)

�b

max

j

!

k

(21)

�b

j

(X) = maxf0; �

j

(X)� b

j

g (22)

�b

max

j

= maxf�;�b

j

(X);X 2 P (t)g (23)

where �b

j

(X) is the value by which the constraint j is violated in the n-th chromosome. �b

max

j

is the maximum

violation of constraint j in the whole (current) population, and � is a small positive number used to avoid dividing

by zero [52]. The motivation of this technique was to preserve diversity in the population, avoiding at the same

time overpenalizing infeasible solutions which will constitute most of the population at early generations in highly

constrained optimization problems [52].

Eiben & van der Hauw [41], Eiben et al. [42] and Eiben & Ruttkay [40] proposed an adaptive penalty function

that was successfully applied to the graph 3-coloring problem. They used a �tness function of the form

�tness

i

(X) =

n

X

i=1

w

i

� �(X; i) (24)

where w

i

is a weight (or penalty) assigned to node i of a graph, and

�(X; i) =

�

1 if node x

i

is left uncolored because of a constraint violation

0 otherwise

(25)

In this approach, originally introduced by Eiben et al. [39], the weights used in the �tness function are changed

during the evolutionary process such that the search focuses on satisfying those constraints that are considered

\harder" by giving higher rewards to the �tness function in those cases. This technique proved to be superior to a

powerful (traditional) graph coloring technique called DSatur [11] and to a Grouping Genetic Algorithm [43].

Criticism

The obvious drawback of Bean and Hadj-Alouane' approach [7, 57] is how to choose the generational gap (i.e., the

appropriate value of k) that provides reasonable information to guide the search, and more important, how do we

de�ne the values of �

1

and �

2

to penalyze fairly a given solution.

The most obvious drawback of Smith and Tate's [128] approach is how to choose NFT , since this parameter

will be problem dependent. Coit and Smith [20] have proposed to de�ne NFT as:

NFT =

NFT

0

1 + �� t

(26)

where NFT

0

is an upper bound for NFT , t is the generation number, and � is a constant that assures that

the entire region between NFT

0

and zero (feasible region) is searched. Care should be taken that NFT does not

7

approach zero either too quickly or too slowly [20]. Although Coit and Smith [20] have provided some alternatives

for de�ning NFT , its value remains as an additional parameter to be determined by the user.

Additionally, the factor B

feasible

�B

all

has some potential dangers: First, if B

feasible

is much greater than B

all

,

then the penalty would be quite large for all individuals in the population. Coit and Smith [20] claim that this

does not seem to happen too often in practice because they use selection strategies that preclude the possibility of

selecting solution vectors su�ciently far from the feasible region for this to happen, but in any case, they propose

changing the values of B

feasible

and B

all

for the initial generations.

The second potential danger is that if they are identical, then the penalty would be zero, which means that all

infeasible individuals would go unpenalized in that generation. The underlying assumption here is that the best

unpenalized individual in fact lies on the feasible region, but that might not be the case, and it could introduce a

strong bias towards infeasible solutions.

The approach proposed by Gen and Cheng [52] assigns a relatively mild penalty with respect to Coit et al. [21],

but the authors of this method argue that their approach is problem-independent [52]. However, no information

is provided by Gen and Cheng [52] regarding the sort of problems used to test this technique, and apparently the

approach was used only in one combinatorial optimization problem, which does not constitute enough evidence of

this statement.

Similarly, the approach of Eiben & van der Hauw [41] also requires the de�nition of additional parameters

(the weights w

i

assigned to each node of the graph), and it has been applied only to combinatorial optimization

problems. The use of adaptive penalties, therefore, remains to be extended to numerical optimization problems.

4.5 Self-Adaptive penalties

Michalewicz et al. [86] have recognized the importance of using adaptive penalties in evolutionary optimization,

and considered this approach as a very promising direction of research on evolutionary optimization. Following

this idea, Coello [19, 16] proposed the use of a penalty function of the form:

�tness

i

(X) = f

i

(X)� (coef �w

1

+ viol �w

2

) (27)

where f

i

(X) is the value of the objective function for the given set of variable values encoded in the chromosome

i; w

1

and w

2

are 2 penalty factors (considered as integers in this paper); coef is the sum of all the amounts by

which the constraints are violated (only inequality constraints were considered):

coef =

p

X

i=1

�

i

(X) 8�

i

(X) > 0 (28)

viol is an integer factor, initialized to zero and incremented by one for each constraint of the problem that is

violated, regardless of the amount of violation (i.e., only the number of constraints violated is counted with this

variable, but not the magnitude in which each constraint is violated).

In Coello's approach, the penalty is actually split into two values (coef and viol), so that the GA has enough

information not only about how many constraints were violated, but also about the amounts in which such con-

straints were violated. This follows Richardson's suggestion [115] about using penalties that are guided by the

distance to feasibility.

Coello [19] used 2 di�erent populations P1 and P2 with corresponding sizes M1 and M2. The second of these

populations (P2) encoded the set of weight combinations (w

1

and w

2

) that would be used to compute the �tness

value of the individuals in P1 (i.e., P2 contained the penalty factors that would be used in the �tness function).

The idea of Coello's approach is to use one population to evolve solutions (as in a conventional genetic algorithm),

and another to evolve the penalty factors w

1

and w

2

. A graphical representation of this approach may be seen

in Figure 1. Notice that for each individual A

j

in P2 there is an instance of P1. However, the population P1 is

reused for each new element A

j

processed from P2.

Each individual A

j

(1 � j � M2) in P2 is decoded and the weight combination produced (i.e., the penalty

factors) is used to evolve P1 during a certain number (Gmax1) of generations. The �tness of each individual B

k

(1 � k � M1) is computed using Equation (27), keeping the penalty factors constant for every individual in the

instance of P1 corresponding to the individual A

j

being processed.

8

B1

B1

B2

B2

B3

B3

Bk

Bk.

.

.B B BB1 2 3 k

A1

A 2

A j

P2

P1

P1

P1

Figure 1: Graphical representation of approach to handle constraints proposed by Coello [19].

After evolving each P1 corresponding to every A

j

in P2 (there is only one instance of P1 for each individual in

P2), the best average �tness produced is computed using:

average fitness

j

=

M1

X

i=1

�

�tness

i

count feasible

�

+ count feasible 8X 2 F (29)

In Equation (29), the �tnesses of all feasible solutions in P1 are added, and an average of them is computed

(the integer variable count feasible is a counter that indicates how many feasible solutions were found in the

population). The reason for considering only feasible individuals is that if infeasible solutions are not excluded

from this computation, the selection mechanism of the GA may bias the population towards regions of the search

space where there are solutions with a very low weight combination (w

1

and w

2

). Such solutions may have good

�tness values, and still be infeasible. The reason for that is that low values of w

1

and w

2

may produce penalties

that are not big enough to outweight the value of the objective function.

Notice also the use of count feasible to avoid stagnation (i.e., loss of diversity in the population) at certain

regions in which only very few individuals will have a good �tness or will be even feasible. By adding this quantity

to the average �tness of the feasible individuals in the population, the GA is encouraged to move towards regions

in which lie not only feasible solutions with good �tness values, but there are also lots of them. In practice, it

may be necessary to apply a scaling factor to the average of the �tness before adding count feasible, to avoid that

the GA gets trapped in local optima. However, such scaling factor is not very di�cult to compute because Coello

[19] assumes populations of constant size (such size must be de�ned before running the GA), and the range of the

�tness values can be easily obtained at each generation, because the maximum and minimum �tness values in the

population are known at each generation.

The process indicated above is repeated until all individuals in P2 have a �tness value (the best average fitness

of their corresponding P1). Then, P2 is evolved one generation using conventional genetic operators (i.e., crossover

and mutation) and the new P2 produced is used to start the same process all over again. It is important to notice

that the interaction between P1 and P2 introduces diversity in both populations, which keeps the GA from easily

converging to a local optimum.

9

Criticism

The problem with this approach is that it introduces the de�nition of four additional parameters: Gmax1, Gmax2,

M1 and M2. Coello [19, 18] argues that those parameters have to (empirically) determined for a GA in any

particular application, and showed that the approach was really more sensitive to changes in the parameters of P1

than to changes in the parameters of P2. However, the de�nition of these parameters remains as an additional

issue to be settle. Furthermore, if these parameters are not carefully chosen, a lot of �tness function evaluations

might be required due to the nested loops involved in the optimization process. A parallel algorithm may be a

viable solution to this problem, but such an alternative has not been implemented yet.

4.6 Segregated genetic algorithm

Le Riche et al. [118] designed a (segregated) genetic algorithm which uses two penalty parameters (for each

constraint) instead of one; these two values aim at achieving a balance between heavy and moderate penalties

by maintaining two subpopulations of individuals instead of one. Even when individulas of the two populations

interbreed, they are \segregated" in terms of satisfaction of a certain constraint.

The population is split into two cooperating groups, where individuals in each group are evaluated using either

one of the two penalty parameters. Then, the best individuals of each group are chosen as parents for the next

generation, which aims to combine feasible and infeasible individuals (if one of the penalties chosen is large and

the other is small), and to help each other out of local minima.

Linear ranking was used to decrease the selection pressure that could cause premature convergence. This

approach was used to solve a laminated design problem, providing excellent results [118].

Criticism

The problem with this approach is again the way of choosing the penalties for each of the 2 sub-populations, and

even when some guidelines have been provided by the authors of this method [118] to de�ne such penalties, they

also admit that it is di�cult to produce generic values that can be used in any problem for which no previous

information is available.

4.7 Penalty function based on feasibility

Deb [31] proposed an interesting approach in which an individual is evaluated using:

�tness

i

(X) =

�

f

i

(X) if �

j

(X) � 0; 8j = 1; 2; : : : ;m

f

worst

+

P

m

j=1

�

j

(X) otherwise

(30)

where f

worst

is the objective function value of the worst feasible solution in the population, and �

j

(X) refers

only to inequality constraints (equality constraints can be transformed to inequality constraints using a tolerance).

If there are no feasible solutions in the population, then f

worst

is set to zero.

Using binary tournament selection, Deb uses the following rules to compare two individuals [31]:

1. A feasible solution is always preferred over an infeasible one.

2. Between two feasible solutions, the one having better objective function is preferred.

3. Between two infeasible solutions, the one having smaller constraint violation is preferred.

No penalty factor is required, since the selection procedure only performs pairwise comparisons. Therefore,

feasible solutions have a �tness equal to their objective function value, and the use of constraint violation in the

comparisons aims to push infeasible solutions towards the feasible region. Due to the fact that constraints are

normally non-commensurable (i.e., they are expressed in di�erent units), Deb normalized them to avoid any sort

of bias toward any of them.

Deb [31] used a real-coded GA with simulated binary crossover (SBX) [32] and a parameter-based mutation

operator [34].

10

Criticism

Deb's results [31] are very encouraging, but the technique seems to have problems to maintain diversity in the

population, and the use of niching methods [33] combined with higher than usual mutation rates is apparently

necessary when using this approach.

4.8 Death penalty

The rejection of infeasible individuals (also called \death penalty") is probably the easiest and most e�cient way

to handle constraints, because when a certain solution violates a constraint, it is assigned a �tness of zero, and

no further calculations are necessary to estimate the degree of infeasibility of the solution. The normal approach

taken is to iterate recursively, generating a new point at each recursive call, until a feasible solution is found [62].

This might be a rather lengthy process in problems in which is very di�cult to approach the feasible region.

An interesting death penalty approach has been used by Kuri [94]. Fitness of an individual is determined using:

�tness

i

(X) =

�

f(X) if the solution is feasible

K �

P

s

i=1

�

K

m

�

otherwise

(31)

where s is the number of constraints satis�ed, and K is a large constant (it was set to 1�10

9

[93]in the experiments

reported in [94]). Notice that when an individual is infeasible, its �tness is not computed (as in evolution strategies)

and all the individuals that violate the same number of constraints receive the same penalty, regardless of how

close they are from the feasible region.

Criticism

Death penalty is very popular within the evolution strategies community [123, 3], but it is limited to problems in

which the feasible search space is convex and constitutes a reasonably large portion of the whole search space. This

approach has the drawback of not exploiting any information from the infeasible points that might be generated by

the evolutionary algorithm to guide the search. Michalewicz [84, 88, 89] has shown that the use of death penalty

is inferior to the use of penalties that are de�ned in terms of the distance to the feasible region.

Kuri's approach does not use information about the amount of constraint violation, but only about the number

of constraints that were violated. Although this contradicts one of the basic rules stated by Richardson [115] about

the de�nition of good penalty functions, apparently the self-adaptive GA used by Kuri (called Eclectic Genetic

Algorithm or EGA for short) could cope with this problem and was able to optimize several di�cult nonlinear

optimization problems. In one of the functions used, however, it was necessary to initialize the population with

another EGA because no feasible solutions were present in the �rst generation. This problem was obviously

produced by the lack of diversity in the population (not having a single feasible individual in the population, they

all had the very similar or equal �tness), which seriously limits its applicability in highly constrained search spaces.

It is interesting to mention that this is exactly the same problem that arises with death penalty, and that in some

sense this sort of high penalty can be seen as a more elaborate form of death penalty, since infeasible individuals

are not evaluated.

5 Special representations and operators

Some researchers have decided to develop special representation schemes to tackle a certain (particularly di�cult)

problem for which the conventional binary representation used in the GA might not be appropriate. Due to the

change of representation, it is necessary to design special genetic operators that work in a similar way than the

traditional operators used with a binary representation.

A change of representation is aimed at simplifying the shape of the search space and the special operators are

normally used to preserve the feasibility of a certain solution at all times. The main application of this approach

is naturally in problems in which it is extremelly di�cult to locate at least a single feasible solution.

11

5.1 Davis' applications

Lawrence Davis' Handbook of Genetic Algorithms [29] contains several examples of GAs that use special repre-

sentations and operators to solve complex real-world problems. For example, Yuval Davidor [26] (see also [25])

used a varying-length GA to generate robot trajectories, and de�ned a special crossover operator called analogous

crossover [24], which uses phenotypic similarities to de�ne crossover points in the parent strings. Davidor also used

Lamarckian probabilities for crossover and mutation. This means that the crossover and mutation points were

chosen according to the error distribution along the string, which was relatively easy to estimate in the application

presented by Davidor.

Other applications included in Davis' book are: schedule optimization [134], synthesis of neural networks archi-

tecture [61], and conformational analysis of DNA [80], among others.

Criticism

The use of special representations and operators is, with no doubt, quite useful for the intended application for

which they were designed, but their generalization to other (even similar) problems is by no means obvious.

5.2 GENOCOP

Another example of this approach is GENOCOP (GEnetic algorithm for Numerical Optimization for COnstrained

Problems), developed by Michalewicz [83], which handles linear constraints by eliminating equalities and designing

special genetic operators which guarantee to keep all chromosomes within the constrained solution space. Due to

the complexity of this approach, the interested reader is referred to Michalewicz [83] for details.

Criticism

GENOCOP assumes a feasible starting point (or feasible initial population), which implies that the user must have

a way of generating (in a reasonable time) such starting point. Also, since GENOCOP assumes the existence of

only linear constraints, it is inherently restricted to convex search spaces [23].

5.3 Constraint Consistent GAs

Kowalczyk [73] proposed the use of constraint consistency [76] to prune the search space by preventing variable

instantiations that are not consistent with the constraints of the problem (i.e., making sure that variables produce

only feasible solutions).

Kowalczyk used real-coded GAs and de�ned special genetic operators and a special initialization procedure that

incorporated the concept of constraint consistency. He indicated that his approach can be used in combination

with any other constraint-handling technique, and was fully aware that in many cases partially feasible solutions

may be preferred because they contain better building blocks or because they are much easier to �nd.

Criticism

The main drawback of this approach is the extra computational cost required to propagate constraints, which may

become a process more exprensive than the optimization itself. In any case, the approach deserves some attention

and more experimentation is required, since Kowalczyk only illustrated its performance with two optimization

problems.

5.4 Locating the boundary of the feasible region

The main idea of this technique is to search areas close to the boundary of the feasible region. Since in many

nonlinear optimization problems at least some constraints are active at the global optimum, it is perfectly justi�ed

to focus the search to the boundary between the feasible and infeasible regions.

The idea was originally proposed in an Operations Research technique known as strategic oscillation [54] and

has been used in combinatorial and nonlinear optimization problems [55]. The basic approach is to use adaptive

12

penalties or other similar mechanism (e.g., gradients) to cross the feasibility boundary back and forth by relaxing

or tightening a certain factor that determines the direction of movement [89].

The two basic components of this approach are: (a) an initialization procedure that can generate feasible points,

and (b) genetic operators that explore the feasible region.

Additionally, the genetic operators must satisfy the following conditions [111, 83]: (1) crossover should be able to

generate all points \between" the parents, (2) small mutations must result in small changes in the �tness function.

In the work done by Schoenauer and Michalewicz [120], several examples are presented and special genetic

operators are designed for each using geodesical curves and plane-based operators. In a further paper, Schoenauer

and Michalewicz [121] analyze in more detail the use of sphere operators in convex feasible search spaces.

Criticism

The main drawback of this approach is that the operators designed are either highly dependent on the chosen

parameterization [120], or more complex calculations are required to perform crossover and mutation. Also, the

use of such operators is limited to a single problem, although some of the concepts involved can be generalized.

Whenever applicable, however, the approach is quite e�cient and produces very good results.

5.5 Decoders

In this case, a chromosome \gives instructions" on how to build a feasible solution. Each decoder imposes a

relationship T between a feasible solution and a decoded solution [23]. When using decoders, however, it is

important that several conditions are satis�ed [105]: (1) for each feasible solution s there is a decoded solution d,

(2) each decoded solution d corresponds to a feasible solution s, and (3) all feasible solutions should be represented

by the same number of decodings d. Additionally, it is reasonable to request that (4) the transformation T is

computationally fast and (5) it has locality feature in the sense that small changes in the decoded solution result

in small changes in the solution itself [23].

Koziel and Michalewicz [74, 75] have recently proposed a homomorphous mapping between an n-dimensional

cube and a feasible search space (either convex or non-convex). The main idea of this approach is to transform the

original problem into another (topologically equivalent) function that is easier to optimize by the GA.

Kim and Husbands [69, 70] had an earlier proposal of a similar approach that used Riemann mappings to

transform the feasible region into a shape that facilitated the search for the GA.

Criticism

Despite the several advantages of Koziel and Michalewicz's approach [75], it also has some disadvantages [75]:

� It uses an extra parameter v which has to be found empirically, performing a set of runs.

� It is expensive (computationally speaking), because of the sort of computations involved in the technique.

However, in the experiments reported by Koziel and Michalewicz [75], this technique provided much better results

than those reported with any other constraint-handling method, and seems a very promising area of research.

Kim and Husbands' approach [69, 70] could only be used with problems of low dimensionality (no more than 4

variables) and required the objective function to be given in explicit (algebraic) form. The mapping proposed by

Koziel and Michalewicz [74, 75], however, can be used with problems of any dimensionality and does not require

that the objective function is given in algebraic form.

5.6 Repair algorithms

In many combinatorial optimization problems (e.g., traveling salesman problem, knapsack problem, set covering

problem, etc.) is relatively easy to `repair' an infeasible individual (i.e., to make feasible an infeasible individual).

Such a repaired version can be used either for evaluation only, or it can also replace (with some probability) the

original individual in the population.

13

Liepins et al. [78, 79] have shown, through an empirical test of GA performance on a diverse set of constrained

combinatorial optimization problems, that a repair algorithm is able to surpass other approaches in both speed

and performance.

GENOCOP III [88] also uses repair algorithms. The idea is to incorporate the original GENOCOP [87] system

(which handles only linear constraints) and extend it by maintaining two separate populations, where results in

one population inuences evaluations of individuals in the other population. The �rst population consists of the so-

called search points which satisfy linear constraints of the problem; the feasibility (in the sense of linear constraints)

of these points is maintained by specialized operators. The second population consists of fully feasible reference

points. Since these reference points are already feasible, they are evaluated directly by the objective function,

whereas search points are \repaired" for evaluation.

Xiao et al. [90, 139, 138] used a repair algorithm to transform an infeasible path of a robot trying to move

between two points in the presence of obstacles, such that the path would become feasible (i.e., collision-free). The

repair algorithm was implemented through a set of carefully designed genetic operators that used knowledge about

the domain to bring infeasible solutions into the feasible region in an e�cient way.

Other authors that have used repair algorithms are Orvosh and Davis [104], M�uhlenbein [95], Le Riche and

Haftka [117], and Tate and Smith [135].

There are no standard heuristics for the design of repair algorithms: normally, it is possible to use a greedy

repair (a greedy algorithm is an optimization algorithm that proceeds through a series of alternatives by making

the best decision, as computed locally, at each point in the series), a random repair or any other heuristic which

would guide the repair process, and the success of this approach relies mainly on the ability of the user to come up

with such a heuristic.

Another interesting aspect of this technique is that normally an infeasible solution that is repaired is only used

to compute its �tness, but the repaired version is returned to the population only in certain cases (using a certain

probability). The question of replacing repaired individuals is related to the so-called Lamarckian evolution, which

assumes that an individual improves during its lifetime and that the resulting improvements are coded back into

the chromosome. Some researchers like Liepins et al. [78, 79] have taken the never replacing approach (that is,

the repaired version is never returned to the population), while other authors such as Nakano [99] have taken the

always replacing approach.

Orvosh and Davis [103, 104] reported a so-called 5% rule for combinatorial optimization problems, which means

that genetic algorithms (applied to combinatorial optimization problems) with a repairing procedure provide the

best result when 5% of the repaired chromosomes replace their infeasible originals. Michalewicz et al. [86] have

reported, however, that a 15% replacement rule seems to be the best choice for numerical optimization problems

with nonlinear constraints.

Criticism

When an infeasible solution can be easily (or at least at a low computational cost) transformed into a feasible

solution, repair algorithms are a good choice. However this is not always possible

1

and in some cases repair

operators may severely disturb the good building blocks of the parent solutions carried in the children, harming the

evolutionary process itself [127]. Furthermore, this approach is problem-dependant, since a speci�c repair algorithm

has to be designed for each particular problem.

6 Separation of constraints and objectives

There are several approaches that handle constraints and objectives separately and we will review in this section

some of the most representative proposals.

1

In fact, in some cases the task of �nding a feasible solution is by itself an NP-hard problem [127].

14

6.1 Co-evolution

Paredis [106] proposed a technique based on a co-evolutionary model in which there are two populations: the �rst

contains the constraints to be satis�ed (in fact, this is not a population in the general sense of the term, since

its contents does not change over time) and the second contains potential (and possibly invalid) solutions to the

problem to be solved. Using an analogy with a predator-prey model, the selection pressure on members of one

population depends on the �tness of the members of the other population [106].

An individual with high �tness in the second population represents a solution that satis�es a lot of constraints

whereas an individual with high �tness in the �rst population represents a constraint that is violated by a lot of

solutions.

Solutions and constraints have encounters in which individuals belonging to both populations are evaluated.

Each individual keeps a history of its encounters, and its �tness is computed according to the sum of the last n

encounters (Paredis [106] used n = 25). The idea of the approach is to increase the �tness of those constraints

that are harder to satisfy so that the evolutionary search concentrates on them. In fact, the relevance of a certain

constraint can be changed over time using this approach.

Criticism

Paredis [106] indicated that his approach was similar to a self-adapting penalty function in which the relevance

of a certain constraint can be changed over time, according to its di�culty. The results reported by Paredis [106]

are very impressive, and the approach seems very e�cient because not all constraints have to be checked at all

times. One problem with this approach is that the use of a historical record to compute �tness of an invidual

might introduce \stagnation" (i.e., the search may not progress anymore) if all the constraints (or at least most

of them) are equally di�cult to satisfy. Also, there is no further evidence of the e�ectivity of the approach in

other combinatorial optimization problems, and apparently, it has not been extended to numerical optimization

problems either.

6.2 Superiority of feasible points

Powell and Skolnick [110] incorporated a heuristic rule (suggested by Richardson et al. [115]) for processing

infeasible solutions: evaluations of feasible solutions are mapped into the interval (�1, 1), and infeasible solutions

into the interval (1, 1). Individuals are evaluated using [110]:

�tness

i

(X) =

�

f

i

(X) if feasible

1 + r

P

m

j=1

�(X) otherwise

(32)

f

i

(X) is scaled into the interval (�1,1), �(X) is scaled into the interval (1, 1), and r is a constant.

Powell and Skolnick [110] used linear ranking selection [5, 6, 29] in such a way that at early generations there

would be slow convergence, and later on convergence could be forced by increasing the number of copies of the

highest ranked individuals.

Criticism

Although some might think that the de�nition of r introduces the traditional problems of using a penalty function,

this is not true, since the linear ranking selection scheme used makes irrelevant the value of this constant. The

approach has, however, other problems.

The key concept of this approach is the assumption of the superiority of feasible solutions over infeasible ones,

and as long as such assumption holds, the technique is expected to behave well [110]. However, in cases where the

ratio between the feasible region and the whole search space is too small (for example, when there are constraints

very di�cult to satisfy), the technique will fail unless a feasible point is introduced in the initial population [86].

15

6.3 Behavioral memory

Schoenauer and Xanthakis [122] proposed to extend a technique called behavioral memory, which was originally

proposed for unconstrained optimization [30]. The main idea of this approach is that constraints are handled in a

particular order. The algorithm is the following [122]:

� Start with a random population of individuals

� Set j = 1 (j is the constraint counter)

� Evolve this population to minimize the violation of the j-th constraint, until a given percentage of the

population (this is called the ip threshold �) is feasible for this constraint. In this case

�tness(X) =M � �

1

(X) (33)

where M is a su�ciently large positive number which is dynamically adjusted at each generation.

� j = j + 1

� The current population is the starting point for the next phase of the evolution, minimizing the violation of

the j-th constraint,

�tness(X) =M � �

j

(X) (34)

During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j � 1)-th constraints are

eliminated from the population. The halting criterion is again the satisfaction of the j-th constraint by the

ip threshold percentage � of the population.

� If j < m, repeat the last two steps, otherwise (j = m) optimize the objective function f rejecting infeasible

individuals.

The idea of this technique is to satisfy sequentially (one by one) the constraints imposed on the problem. Once a

certain percentage of the population (de�ned by the ip threshold) satis�es the �rst constraint, an attempt to satisfy

the second constraint (while still satisfying the �rst) will be made. Notice that in its last step of the algorithm,

Schoenauer and Xanthakis [122] use death penalty, because infeasible individuals are completely eliminated from

the population.

Criticism

This method requires that there is a linear order of all constraints, and apparently, the order in which the constraints

are processed inuences the results provided by the algorithm (in terms of total running time and precision) [86].

Schoenauer and Xanthakis also recommended the use of a sharing scheme (to keep diversity in the population),

which adds to the ip threshold � and the order of the constraints as extra parameters required by the algorithm.

Furthermore, since this approach violates the minimum penalty rule [116, 118], it has a high computational cost

(increased by the use of sharing to keep diversity in the population). As Schoenauer and Xanthakis [122] admit,

the extra computational cost of this approach is not justi�ed when the feasible region is quite large. However, it is

particularly suitable for applications in which constraints have a natural hierarchy of evaluation, like the problem

of generating software test data used by Schoenauer and Xanthakis [122].

6.4 Multiobjective Optimization Techniques

The main idea is to rede�ne the single-objective optimization of f as a multiobjective optimization problem in

which we will have m+1 objectives, where m is the number of constraints. Then, we can apply any multiobjective

optimization technique [49] to the new vector �v = (f; f

1

; : : : ; f

m

), where f

1

; : : : ; f

m

are the original constraints of

the problem. An ideal solution X would thus have f

i

(X)=0 for 1 � i � m and f(X) � f(Y) for all feasible Y

(assuming minimization).

16

Surry et al. [132] proposed the use of Pareto ranking [48] and VEGA [119] to handle constraints using this

technique. In their approach, called COMOGA, the population was ranked based on constraint violations (counting

the number of individuals dominated by each solution). Then one portion of the population was selected based on

constraint ranking, and the rest based on real cost (�tness) of the individuals.

Parmee and Purchase [107] implemented a version of VEGA [119] that handled the constraints of a gas turbine

problem as objectives to allow the GA to locate a feasible region within the highly constrained search space of this

application. However, VEGA was not used to further explore the feasible region, and instead Parmee and Purchase

[107] opted to use specialized operators that would create a variable-size hypercube around each feasible point to

help the GA to remain within the feasible region at all times.

Camponogara & Talukdar [12] proposed the use of a procedure based on an evolutionary multiobjective opti-

mization technique. Their proposal was to restate a single objective optimization problem in such a way that two

objectives would be considered: the �rst would be to optimize the original objective function and the second would

be to minimize:

�(X) =

k

X

i=1

max(0; �

i

(X)) (35)

Once the problem is rede�ned, non-dominated solutions with respect to the two new objectives are generated.

The solutions found de�ne a search direction d = (x

i

� x

j

)=jx

i

� xjj, where x

i

2 S

i

, x

j

2 S

j

, and S

i

and S

j

are

Pareto sets. The direction search d is intended to simultaneously minimize all the objectives [12]. Line search is

performed in this direction so that a solution x can be found such that x dominates x

i

and x

j

(i.e., x is a better

compromise than the two previous solutions found). Line search takes the place of crossover in this approach, and

mutation is essentially the same, where the direction d is projected onto the axis of one variable j in the solution

space [12]. Additionally, a process of eliminating half of the population is applied at regular intervals (only the less

�tted solutions are replaced by randomly generated points).

Jim�enez and Verdegay [67] proposed the use of a min-max approach [14] to handle constraints. The main idea

of this approach is to apply a set of simple rules to decide the selection process:

1. If the two individuals being compared are both feasible, then select based on the minimum value of the

objective function.

2. If one of the two individuals being compared is feasible and the other one is infeasible, then select the feasible

individual.

3. If both individuals are infeasible, then select based on the maximum constraint violation (max �

j

(X); forj =

1; : : : ;m). The individual with the lowest maximum violation wins.

Notice the great similarity between this approach and the technique proposed by Deb [31] that was described

in a previous section. Jim�enez and Verdegay [67] used a real-coded GA with uniform crossover [133], nonuniform

mutation [83], and tournament selection.

Coello [17] proposed the use of a population-based multiobjective optimization technique such as VEGA [119]

to handle each of the constraints of a single-objective optimization problem as an objective. The technique may

be better illustrated by Figure 2. At each generation, the population is split into m+ 1 sub-populations, where m

refers to the number of constraints of the problem (we have to add one to consider also the objective function).

Using this scheme, a fraction of the population will be selected using the (unconstrained) objective function as

its �tness; another fraction will use the �rst constraint as its �tness and so on.

For the sub-population guided by the objective function, the evaluation of such objective function for a given

vector X is used directly as the �tness function (probably multiplied by (-1) if it is a minimization problem), with

no penalties of any sort. For all the other sub-populations, the algorithm used was the following [17]:

if �

j

(X) < 0:0 then �tness = �

j

(X)

else if v 6= 0 then �tness = �v

else �tness = f

17

f(x)

g (x)

g (x)

g (x)

1

f(x)

g (x)

g (x)

1

22

Sub-populations
Old

Sub-populations
New

m+1

3

1

2

1

2

3

m+1

genetic
operators

Apply

g (x)
mm

Figure 2: Graphical representation of the approach introduced in this paper.

where �

j

(X) refers to the constraint corresponding to sub-population j + 1 (this is assuming that the �rst sub-

population is assigned to the objective function f), and v refers to the number of constraints that are violated

(� m).

There are a few interesting things that can be observed from this procedure. First, each sub-population associated

with a constraint will try to reduce the amount in which that constraint is violated. If the solution evaluated does

not violate the constraint corresponding to that sub-population, but it is infeasible, then the sub-population will

try to minimize the total number of violations, joining then the other sub-populations in the e�ort of driving the

GA to the feasible region. This aims at combining the distance from feasibility with information about the number

of violated constraints, which is the same heuristic normally used with penalty functions.

Finally, if the solution encoded is feasible, then this individual will be `merged' with the �rst sub-population,

since it will be evaluated with the same �tness function (i.e., the objective function).

It is interesting to notice that the use of the unconstrained objective function in one of the sub-populations may

assign good �tness values to infeasible individuals. However, because the number of constraints will normally be

greater than one, the other sub-populations will drive the GA to the feasible region. In fact, the sub-population

evaluated with the objective function will be useful to keep diversity in the population, making then unnecessary

the use of sharing techniques. The behavior expected under this scheme is to have few feasible individuals at the

beginning, and then gradually produce solutions that may be feasible with respect to some constraints but not

with respect to others. Over time, the building blocks of these sub-populations will combine to produce individuals

that are feasible, but not necessarily optimum. At that point the direct use of the objective function will help

the GA to approach the optimum, but since some infeasible solutions will still be present in the population, those

individuals will be responsible to keep the diversity required to avoid stagnation.

Criticism

COMOGA compared fairly with a penalty-based approach in a pipe-sizing problem, since the resulting GA was less

sensitive to changes in the parameters, but the results achieved were not better than those found with a penalty

function [132]. It should be added that COMOGA [132] required several extra parameters, from which the so-called

p

cost

was the most important (this parameter regulates the proportion of feasible and infeasible individuals that

will exist in the population at any given time). Also, due to the use of dominance to impose an order on the

constraints based on their violation, COMOGA involves the use of a more expensive process (in terms of CPU

18

time).

Parmee and Purchase's [107] approach was developed for a heavily constrained search space and it proved to be

appropriate to reach the feasible region. However, this application of a multiobjective optimization technique does

not aim at �nding the global optimum of the problem, and the use of special operators suggested by the authors

certainly limits the applicability of their approach.

Camponogara& Talukdar's approach [12] has obvious problems to keep diversity (a common problem with using

evolutionary multiobjective optimization techniques), as it is indicated by the fact that the technique discards the

worst individuals at each generation. Also, the use of line search increases the cost (computationally speaking) of

the approach and it is not clear what is the impact of the segment chosen to search in the overall performance of

the algorithm.

Jim�enez and Verdegay's approach [67] can hardly be said to be using a multiobjective optimization technique

since it only ranks infeasible individuals based on constraint violation. A subtle problem with this approach is that

the evolutionary process �rst concentrates only on the constraint satisfaction problem and therefore it samples

points in the feasible region essentially at random [132]. This means that in some cases (e.g., when the feasible

region is disjoint) we might land in an inappropriate part of the feasible region from which we will not be able to

escape. However, this approach (as in the case of Parmee and Purchase's [107] technique) may be a good alternative

to �nd a feasible point in a heavily constrained search space.

The main drawback of Coello's approach [17] may be the number of sub-populations that may be needed in

larger problems, since they will increase linearly with the number of constraints. However, it is possible to deal with

that problem in two di�erent ways: �rst, some constraints could be tied; that means that two or more constraints

could be assigned to the same sub-population. That would signi�cantly reduce the number of sub-populations

in highly constrained problems. Second, the approach could parallelized, in which case a high number of sub-

populations would not be a serious drawback, since they could be processed concurrently. The current algorithm

would however need modi�cations as to decide the sort of interactions between a master process (responsible for

actually optimizing the whole problem) and the slave sub-processes (all the sub-populations responsible for the

constraints of the problem).

Specialists in evolutionary multiobjective optimization may indicate that VEGA is not a very good choice

because of its well-known limitations (it tries to �nd individuals that excel only in one dimension regardless of

the others [119, 49]). However, that drawback turns out to be an advantage in the context of constraint-handling,

because what we want to �nd are precisely solutions that are completely feasible, instead of good compromises

that may not satisfy one of the constraints.

7 Hybrid methods

Within this category we are considering methods that are coupled with another technique (normally a numerical

optimization approach) to handle constraints in an evolutionary algorithm.

7.1 Lagrangian multipliers

Adeli and Cheng [1] proposed a hybrid GA that integrates the penalty function method with the primal-dual

method. This approach is based on sequential minimization of the Lagrangian method, and uses a �tness function

of the form:

�tness

i

= f

i

(X) +

1

2

m

X

j=1

j

�

[�

j

(X) + �

j

]

+

	

2

(36)

where

i

> 0, �

i

is a parameter associated with the ith constraint, and m is the number of constraints. Also:

[�

j

(X) + �

j

]

+

= max[0; �

j

(X) + �

j

] (37)

The proposal of Adeli and Cheng [1] was to de�ne �

j

in terms of the previously registered maximum violation

of its associated constraint and scale it using a parameter � which is de�ned by the user and has to be > 1.

j

is

19

increased using also the parameter �, whose value (kept constant through the entire process) is multiplied by the

previous value adopted for

j

as to ensure that the penalty is increased over generations.

Kim and Myung [71, 97] proposed the use of an evolutionary optimization method combined with an augmented

Lagrangian function that guarantees the generation of feasible solutions during the search process. This proposal

is an extension of a system called Evolian [98, 96], which uses evolutionary programming with a multi-phase

optimization procedure in which the constraints are scaled. During the �rst phase of the algorithm, the objective

is to optimize:

�tness

i

(X) = f

i

(X) +

C

2

m

X

i=1

�

2

j

(X)

!

(38)

where C is a constant. Once this phase is �nished (i.e., once constraint violations have been decreased as much

as the user wants), the second phase starts. During this second phase, the optimization algorithm of Maa and

Shanblatt [81] is applied to the best solution found during the �rst phase.

The second phase uses Lagrange multipliers to adjust the penalty function according to the feedback information

received from the environment during the evolutionary process, in a way akin to the proposal of Adeli and Cheng

[1].

Criticism

Adeli and Cheng's technique [1] provided them with good results, but the additional parameters needed to make

it work properly do not seem to overcome the most serious drawbacks of a traditional penalty function.

The main drawback of Kim and Myung;'s approach [71, 97] is the same as before: despite the fact that they

provide more guidelines regarding the de�nition of some of the extra parameters needed by their procedure, there

are still several values that have to be adjusted using an empirical procedure.

7.2 Constrained optimization by random evolution

Belur [8] proposed a hybrid technique called Constrained Optimization by Random Evolution (CORE). The main

idea of this approach is to use random evolutionary search combined with a mathematical programming technique

for unconstrained optimization (the author used the Nelder and Mead's simplex method [100], but any other

similar technique should work as well). Whenever a solution is not feasible, the following constraint functional is

minimized:

C(X) =

X

i2C

1

h

2

i

(X)�

X

j2C

2

g

j

(X) (39)

where

C

1

= fi = 1; : : : ;m=jh

i

(X)j > "

c

g (40)

C

2

= fj = 1; : : : ; q=g

j

(X) < 0g (41)

and "

c

is the tolerance allowed in the equality constraints h

i

(X).

Criticism

This minimization process can be seen as a repair algorithm for numerical optimization, which implies that this

technique has the same problems of this technique as we have seen in a previous section.

20

7.3 Fuzzy logic

T. Van Le [77] proposed the use of a combination of fuzzy logic and evolutionary programming to handle constraints.

The main idea was to replace constraints of the form �

i

(X) � b

i

by a set of fuzzy constraints C

1

; : : : ; C

m

, i =

1; : : : ;m de�ned as:

�C

i

(X) = �

�(b

i

;�

i

)

(�

i

(X)); i = 1; : : : ;m (42)

where �

i

is a positive real number that represents the tolerable violation of the constraints, and:

�

�(a;s)

(X) =

8

>

<

>

:

1 if x � a;

e

�p

(

x�a

s

)

2

�e

�p

1�e

�p

if a < x � a+ s

0 if x > a+ s

(43)

The rationale behind this fuzzi�cation process is to allow a higher degree of tolerance if �

i

(X) is (greater than

b

i

but) close to b

i

and then the tolerance decreases rapidly when the error increases.

The �tness function is then rede�ned as:

F (X) = f(X)�min(�

C

1

(X); : : : ; �

C

m

(X)) (44)

Criticism

This approach seems very promising, but Van Le [77] provides very little empirical evidence of its performance,

although this is certainly a research path that is worth exploring.

8 Novel approaches

There are some other proposals that do not quite �t into any of the previous categories and that are, therefore,

considered separately.

8.1 Immune system

Forrest and Perelson [50] and Smith et al. [129, 130] explored the use of a computational model of the immune

system in which a population of antibodies is evolved to cover a set of antigens. In this proposal, binary strings

were proposed to model both antibodies and antigens, and an antibody was said to match an antigen if their bit

strings were complementary (maximally di�erent).

Although Smith el al. [129, 128] proposed this approach as a way to keep diversity in multimodal optimization

problems, Hajela and Lee [58, 59] extended it to handle constraints.

The idea of Hajela and Lee's technique is to separate any feasible individuals in a population (the antigens) from

those that are infeasible (the antibodies). By using a simple matching function that computes the similarity (on a

bit-per-bit basis, assuming binary encoding) between the two chromosomes, this approach co-evolves the population

of antibodies until they become su�ciently similar to their antigens by maximizing the degree of matching between

the antigens and the antibodies. Then, the two populations are mixed and evolved using a standard genetic

algorithm, but without the use of a penalty function, since all the individuals are feasible at that point, and the

population will be re-�lled at certain intervals, to eliminate any infeasible individuals generated by the genetic

operators.

A simpler instance of this technique, called expression strategies was proposed by Hajela and Yoo [60]. In

this case, feasible and infeasible individuals are combined using uniform crossover [133] in such a way that their

chromosomic material is exchanged.

It is worth mentioning that Hajela and Yoo [60] proposed the use of the Kreisselmeir-Steinhauser function [131]

to handle equality constraints. The idea is that if h

i

is the ith equality constraint, then it can be represented by a

pair of inequality constraints as:

21

h

i

� 0 � h

i

� 0 (45)

The Kreisselmeir-Steinhauser function can then be used to fold these constraints into a cumulative measure
:

 = (1=�) ln(e

�h

i

+ e

��h

i

)� (1=�) ln2 + c

1

(46)

where c

1

represents the width of a band that replaces the original strict equaliy constraint, and � is a user-de�ned

constant. By reducing c

1

the solutions are forced to move closer to the equality constraint. This approach is just

a way of converting equality constraints into inequality constraints which should be easier to satisfy.

Criticism

Since the bit matching process does not require evaluating the �tness function, its computational cost is not really

signi�cant. However, some other issues remain to be solved. For example, it is not clear what is the e�ect (in terms

of performance) of mixing di�erent proportions of each population (antibodies and antigens), nor how to proceed

when there are no feasible solutions in the initial population.

8.2 Cultural algorithms

Some social researchers have suggested that culture might be symbolically encoded and transmitted within and

between populations, as another inheritance mechanism [38, 112]. Using this idea, Reynolds [113] developed a

computational model in which cultural evolution is seen as an inheritance process that operates at two levels: the

micro-evolutionary and the macro-evolutionary levels.

At the micro-evolutionary level, individuals are described in terms of \behavioral traits" (which could be socially

acceptable or unacceptable). These behavioral traits are passed from generation to generation using several socially

motivated operators. At the macro-evolutionary level, individuals are able to generate \mappa" [112], or generalized

descriptions of their experiences. Individual mappa can be merged and modi�ed to form \group mappa" using a

set of generic or problem speci�c operators. Both levels share a communication link.

Reynolds [113] proposed the use of GAs to model the micro-evolutionary process, and Version Spaces [92] to

model the macro-evolutionary process of a cultural algorithm.

The main idea behind this approach is to preserve beliefs that are socially accepted and discard (or prune)

unacceptable beliefs. The acceptable beliefs can be seen as constraints that direct the population at the micro-

evolutionary level [85]. Therefore, constraints can inuence directly the search process, leading to an e�cient

optimization process. In fact, Reynolds et al. [114] and Chung & Reynolds [15] have explored this area of research

with very encouraging results in numerical optimization.

The approach taken by Chung and Reynolds [15] was to use a hybrid of evolutionary programming and GENO-

COP [87] in which they incorporated an interval constraint-network [27, 66] to represent the constraints of the

problem at hand. An individual is considered as \acceptable" when it satis�es all the constraints of the problem.

When that does not happen, then the belief space is adjusted (the intervals associated with the constraints are

adjusted). This approach is really a more sophisticated repair algorithm in which an infeasible solution is made

feasible by replacing its genes by a di�erent value between its lower and upper bounds. Since GENOCOP assumes

a convex search space, it is relatively easy to design operators that can exploit a search direction towards the

boundary between the feasible and infeasible regions.

Criticism

Although interesting, the extension of the cultural operators to handle non-linear constraints is not obvious, since

�nding the boundary between the feasible and infeasible regions is a much harder problem (we have discussed

previously this problem with repair algorithms in general). However, this is an interesting application of domain

knowledge to handle constraints that turns out to be relatively general in scope (within numerical optimization, in

this case).

22

8.3 Ant colony optimization

This technique was proposed by Dorigo et al. [22, 37, 36, 35] and it consists of a meta-heuristic intended for hard

combinatorial optimization problems such as the traveling salesperson. The main algorithm is really a multi-agent

system where low level interactions between single agents (i.e., arti�cial ants) result in a complex behavior of the

whole ant colony. The idea was inspired by colonies of real ants, which deposit a chemical substance on the ground

called pheromone [35]. This substance inuences the behavior of the ants: they will tend to take those paths where

there is a larger amount of pheromone.

Recently, some researchers [9, 137] have extended this technique to numerical optimization problems, with very

promising results. The main issue when extending the basic approach to deal with continuous search spaces is how

to model a continuous nest neighborhood with a discrete structure. Bilchev and Parmee [10] for example, proposed

to represent a �nite number of directions whose origin is a common base point called the nest. Since the idea is to

cover eventually all the continuous search space, these vectors evolve over time according to the �tness values of

the ants.

To handle constraints, Bilchev and Parmee [9, 10] proposed to make a food source \unacceptable" in case it

violates a constraint regardless of the value of its objective function (i.e., death penalty). As evolution progresses,

some food sources that were acceptable before, will vanish, as constraints are tightened. To make this model

e�ective, 3 di�erent levels of abstraction were considered: (a) the individual search agent (the lowest level in which

any local search technique could be used), (b) the cooperation between agents (the middle level, which consists in

a joint search e�ort in a certain direction), and (c) the meta-cooperation between agents (the highest level, which

determines cooperation among di�erent paths rather than just among di�erent individuals).

In their model, Bilchev & Parmee [9, 10] used a real-coded GA with arithmetic crossover and non-uniform

mutation [83]. Their results were very encouraging and showed clearly the high potential of this technique in

multi-modal and/or heavily constrained search spaces.

Criticism

The �rst drawback of this approach is that it needs several parameters to work: �rst, an additional procedure

has to be used to locate the nest (Bilchev and Parmee [9] suggest the use of a niching GA), which implies extra

computational e�ort. Second, it requires a search radius R, which de�nes the portion of the search space that will

be explored by the ants and has an obvious impact on the performance of the algorithm. Third, it is necessary

to provide a model for the exhaustion of the food source to avoid that the ants pass through the same (already

exhausted) path more than once. Also, the use of non-uniform mutation introduces the need to de�ne a parameter

b that indicates the degree of non-uniformity of the mutations performed.

Finally, it is necessary to be very careful about the equilibrium between local and global exploration, because

in some cases (e.g., highly multi-modal landscapes), too much CPU time could be spent in local searches.

9 Future research paths

The most important issues that remain to be solved regarding constraint handling techniques for evolutionary

algorithms are the following:

� E�ciency. Any constraint-handling technique proposed must deal with e�ciency issues, since many real-

world applications have �tness functions whose evaluation cost is very high (computationally speaking).

� Generality. Ideally, constraint-handling techniques should be as general as possible, requiring only minor

(or no) modi�cation to work in di�erent problems.

� Ease of use. Most of the current approaches to handle constraints in evolutionary algorithms require the

�ne tuning of some parameters. This makes their use highly dependant on the setting of these parameters

and increases the (already tedious) parameter tuning process (i.e., population size, crossover and mutation

rates, etc.) normally required with evolutionary algorithms (particularly with genetic algorithms).

23

� Limitations of a technique. Since it is utopical to consider that a single constraint-handling technique

will be able to deal with any sort of constraints e�ciently, then it should be clear when it is possible to

use it. Michalewicz and Schoenauer [89] discussed this issue, but the question remains open regarding the

characteristics that we could use from a problem to decide what technique to use.

� Comparisons of approaches: Michalewicz [89, 83, 84, 85] has performed several (partial) comparisons of

constraint-handling approaches, but more work in this area must be done. It is desirable, for example, to

study in more detail the behavior of certain approaches under di�erent sorts of constraints (linear, non-linear,

etc.), so that we can establish under what conditions is more convenient to use them.

� Test suites: If it is necessary to compare more approaches, it is equally important to have good test suites

publicly available. Regarding this issue, there is some literature that can be used (see for example

2

[44, 84]).

Chung and Reynolds [15] have provided a test suite for cultural algorithms, and Michalewicz and Schoenauer

[89] make reference to the construction of another (more general) test suite, but any other e�orts in this

direction will certainly be useful as well.

� Incorporation of knowledge about the domain. Even when it is well known that incorporating knowl-

edge about an speci�c domain will reduce the generality of an evolutionary approach, in highly complex

problems (e.g., heavily constrained search spaces) such knowledge can bring great bene�ts in terms of perfor-

mance, and it is desirable that a new constraint-handling approach has the capability to incorporate e�ciently

such domain knowledge whenever available.

10 Conclusions

In this paper we have given a very comprehensive review of the most important constraint-handling techniques

developed for evolutionary algorithms. The spectrum covered is quite wide, and it includes approaches that go

from several variations of a simple penalty function to sophisticated mathematical techniques that aim at �nding

the boundary between the feasible and the infeasible region, and biologically inspired techniques that emulate the

behavior of the immune system, culture, or even ant colonies. In the �nal section, we have provided some promising

research paths (in the author's opinion) that may be worth exploring.

Acknowledgments

The author acknowledges support from CONACyT through project number I-29870 A.

References

[1] Hojjat Adeli and Nai-Tsang Cheng. Augmented lagrangian genetic algorithm for structural optimization.

Journal of Aerospace Engineering, 7(1):104{18, jan 1994.

[2] Thomas B�ack, editor. Proceedings of the Seventh International Conference on Genetic Algorithms. Morgan

Kaufmann Publishers, San Mateo, California, July 1997.

[3] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwefel. A Survey of Evolution Strategies. In R. K. Belew

and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages

2{9, San Mateo, California, 1991. Morgan Kaufmann Publishers.

[4] Thomas B�ack and Sami Khuri. An Evolutionary Heuristic for the Maximum Independent Set Problem. In

Z. Michalewicz, J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the First

IEEE Conference on Evolutionary Computation, pages 531{535, Piscataway, New Jersey, 1994. IEEE Press.

2

The web page http://solon.cma.univie.ac.at/ neum/glopt/test.html also contains test problems from constrained optimiza-

tion.

24

[5] James Edward Baker. Adaptive selection methods for genetic algorithms. In J. J. Grefenstette, editor,

Proceedings of an International Conference on Genetic Algorithms and Their Applications, pages 100{111,

Hillsdale, New Jersey, 1985. Lawrence Erlbaum.

[6] James Edward Baker. An Analysis of the E�ects of Selection in Genetic Algorithms. PhD thesis, Vanderbilt

University, Nashville, Tennessee, 1989.

[7] J. C. Bean and A. B. Hadj-Alouane. A Dual Genetic Algorithm for Bounded Integer Programs. Technical

Report TR 92-53, Department of Industrial and Operations Engineering, The University of Michigan, 1992.

[8] Sheela V. Belur. CORE: Constrained Optimization by Random Evolution. In John R. Koza, editor, Late

Breaking Papers at the Genetic Programming 1997 Conference, pages 280{286, Stanford University, Califor-

nia, July 1997. Stanford Bookstore.

[9] George Bilchev and Ian C. Parmee. The Ant Colony Metaphor for Searching Continuous Design Spaces.

In Terence C. Fogarty, editor, Evolutionary Computing, pages 25{39. Springer VErlag, She�eld, UK, April

1995.

[10] George Bilchev and Ian C. Parmee. Constrained and Multi-Modal Optimisation with an Ant Colony Search

Model. In Ian C. Parmee andM. J. Denham, editors, Proceedings of 2nd International Conference on Adaptive

Computing in Engineering Design and Control. University of Plymouth, Plymouth, UK, March 1996.

[11] D. Br�elaz. New methods to color vertices of a graph. Communications of the ACM, 22:251{256, 1979.

[12] Eduardo Camponogara and Sarosh N. Talukdar. A Genetic Algorithm for Constrained and Multiobjec-

tive Optimization. In Jarmo T. Alander, editor, 3rd Nordic Workshop on Genetic Algorithms and Their

Applications (3NWGA), pages 49{62, Vaasa, Finland, August 1997. University of Vaasa.

[13] Susan E. Carlson. A General Method for Handling Constraints in Genetic Algorithms. In Proceedings of the

Second Annual Joint Conference on Information Science, pages 663{667, 1995.

[14] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodology. Systems Science

and Engineering. North-Holland, 1983.

[15] Chan-Jin Chung and Robert G. Reynolds. A Testbed for Solving Optimization Problems using Cultural

Algorithms. In Lawrence J. Fogel, Peter J. Angeline, and Thomas B�ack, editors, Evolutionary Programming

V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge, Massachusetts,

1996. MIT Press.

[16] Carlos A. Coello Coello. Self-Adaptive Penalties for GA-based Optimization. In Proceedings of the 1999

Congress on Evolutionary Computation, Washington, D.C., July 1999. IEEE.

[17] Carlos A. Coello Coello. Treating Constraints as Objectives for Single-Objective Evolutionary Optimization.

Engineering Optimization, 32, 1999. (Accepted for publication).

[18] Carlos A. Coello Coello. The use of a multiobjective optimization technique to handle constraints. In

Alberto A. Ochoa Rodr��guez, Marta R. Soto Ortiz, and Roberto Santana Hermida, editors, Proceedings of

the Second International Symposium on Arti�cial Intelligence (Adaptive Systems), pages 251{256, La Habana,

Cuba, July 1999. Institute of Cybernetics, Mathematics and Physics, Ministry of Science, Technology and

Environment.

[19] Carlos A. Coello Coello. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems.

Computers in Industry, 1999. (Accepted for publication).

[20] David W. Coit and Alice E. Smith. Penalty guided genetic search for reliability design optimization. Com-

puters and Industrial Engineering, 30(4):895{904, September 1996. Special Issue on Genetic Algorithms.

25

[21] David W. Coit, Alice E. Smith, and David M. Tate. Adaptive Penalty Methods for Genetic Optimization of

Constrained Combinatorial Problems. INFORMS Journal on Computing, 8(2):173{182, Spring 1996.

[22] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In P. Bourgine and

F. Varela, editors, Proceedings of the First European Conference on Arti�cial Life, Cambridge, Massachusetts,

1991. MIT Press/Bradford Books.

[23] Dipankar Dasgupta and Zbigniew Michalewicz, editors. Evolutionary Algorithms in Engineering Applications.

Springer-Verlag, Berlin, 1997.

[24] Yuval Davidor. Analogous Crossover. In J. David Scha�er, editor, Proceedings of the Third International

Conference on Genetic Algorithms, pages 98{103, San Mateo, California, 1989. Morgan Kaufmann Publishers.

[25] Yuval Davidor. Genetic Algorithms and Robotics : A Heuristic Strategy for Optimization. World Scienti�c

Publishing Co., Singapore, 1990.

[26] Yuval Davidor. A Genetic Algorithm Applied To Robot Trajectory Generation. In Lawrence Davis, editor,

Handbook of Genetic Algorithms, chapter 12, pages 144{165. Van Nostrand Reinhold, New York, New York,

1991.

[27] Ernest Davis. Constraint propagation with interval labels. Arti�cial Intelligence, 32:281{331, 1987.

[28] Lawrence Davis. Genetic Algorithms and Simulated Annealing. Pitman, London, 1987.

[29] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, New York,

1991.

[30] Hugo de Garis. Genetic Programming: Building Arti�cial Nervous Systems using Genetically Programmed

Neural Networks Modules. In R. Porter and B. Mooney, editors, Proceedings of the 7th International Con-

ference on Machine Learning, pages 132{139. Morgan Kaufmann, 1990.

[31] Kalyanmoy Deb. An E�cient Constraint Handling Method for Genetic Algorithms. Computer Methods in

Applied Mechanics and Engineering, 1999. (in Press).

[32] Kalyanmoy Deb and R. W. Agrawal. Simulated binary crossover for continuous search space. Complex

Systems, 9:115{148, 1995.

[33] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species formation in genetic function

optimization. In J. David Scha�er, editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 42{50, San Mateo, California, jun 1989. George Mason University, Morgan Kaufmann

Publishers.

[34] Kalyanmoy Deb and Mayank Goyal. A Combined Genetic Adaptive Search GeneAS for Engineering Design.

Computer Science and Informatics, 26(4):30{45, 1996.

[35] M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. In D. Corne, M. Dorigo, and

F. Glover, editors, New Ideas in Optimization. McGraw-Hill, 1989.

[36] M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling

Salesman Problem. IEEE Transactions on Evolutionary Computation, 1(1):53{66, 1997.

[37] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a Colony of Cooperating Agents.

IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1):29{41, 1996.

[38] W. H. Durham. Co-evolution: Genes, Culture, and Human Diversity. Stanford University Press, Stanford,

California, 1994.

26

[39] A. E. Eiben, P.-E. Rau�e, and Zs. Ruttkay. GA-easy and GA-hard constraint satisfaction problems. In

M. Meyer, editor, Proceedings of the ECAI'94 Workshop on Constraint Processing, pages 267{284. Springer-

Verlag, 1995.

[40] A. E. Eiben and Zs. Ruttkay. Self-adaptivity for Constraint Satisfaction: Learning Penalty Functions. In

Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pages 258{261, Piscataway, New

Jersey, 1996. IEEE Service Center.

[41] A. E. Eiben and J. K. van der Hauw. Adaptive penalties for evolutionary graph coloring. In Arti�cial

Evolution'97, pages 95{106, Berlin, 1998. Springer-Verlag.

[42] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert. Graph Coloring with Adaptive Evolutionary

Algorithms. Journal of Heuristics, 4(1):25{46, 1998.

[43] E. Falkenauer. A new representation and operators for genetic algorithms applied to grouping problems.

Evolutionary Computation, 2(2):123{144, 1994.

[44] C. A. Floudas and P. M. Pardalos. A Collection of Test PRoblems for Constrained Global Optimization

Algorithms. Number 455 in Lecture Notes in Computer Science. Springer-Verlag, 1990.

[45] David B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute

of Electrical and Electronic Engineers, New York, 1995.

[46] David B. Fogel, editor. Evolutionary Computation. The Fossil Record. Selected Readings on the History of

Evolutionary Algorithms. The Institute of Electrical and Electronic Engineers, New York, 1998.

[47] Lawrence J. Fogel. Arti�cial Intelligence through Simulated Evolution. John Wiley, New York, 1966.

[48] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formula-

tion, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 416{423, San Mateo, California, 1993. University of Illinois at

Urbana-Champaign, Morgan Kau�man Publishers.

[49] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in multiobjective optimiza-

tion. Evolutionary Computation, 3(1):1{16, Spring 1995.

[50] Stephanie Forrest and Alan S. Perelson. Genetic algorithms and the immune system. In Hans-Paul Schwefel

and R. M�anner, editors, Parallel Problem Solving from Nature, Lecture Notes in Computer Science, pages

320{325. Springer-Verlag, Berlin, Germany, 1991.

[51] Mitsuo Gen and Runwei Cheng. Interval Programming using Genetic Algorithms. In Proceedings of the Sixth

International Symposium on Robotics and Manufacturing, Montpellier, France, 1996.

[52] Mitsuo Gen and Runwei Cheng. A Survey of Penalty Techniques in Genetic Algorithms. In Toshio Fukuda and

Takeshi Furuhashi, editors, Proceedings of the 1996 International Conference on Evolutionary Computation,

pages 804{809, Nagoya, Japan, 1996. IEEE.

[53] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Design. John Wiley & Sons, Inc, New

York, 1997.

[54] Fred Glover. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1):156{166,

1977.

[55] Fred Glover and G. Kochenberger. Critical event tabu search for multidimensional knapsack problems. In

Proceedings of the International Conference on Metaheuristics for Optimization, pages 113{133, Dordrecht,

The Netherlands, 1995. Kluwer Publishing.

27

[56] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley

Publishing Co., Reading, Massachusetts, 1989.

[57] A. B. Hadj-Alouane and J. C. Bean. A Genetic Algorithm for the Multiple-Choice Integer Program. Technical

Report TR 92-50, Department of Industrial and Operations Engineering, The University of Michigan, 1992.

[58] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation. An Immune Network Solution.

In Niels Olho� and George I. N. Rozvany, editors, Proceedings of the First World Congress of Stuctural and

Multidisciplinary Optimization, pages 915{920, Goslar, Germany, 1995. Pergamon.

[59] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation. An Immune Network Solution.

Structural Optimization, 12:11{15, 1996.

[60] P. Hajela and J. Yoo. Constraint Handling in Genetic Search Using Expression Strategies. AIAA Journal,

34(12):2414{2420, 1996.

[61] Steven A. Harp and Tariq Samad. Genetic Synthesis of Neural Network Architecture. In Lawrence Davis,

editor, Handbook of Genetic Algorithms, chapter 15, pages 202{221. Van Nostrand Reinhold, New York, New

York, 1991.

[62] Frank Ho�meister and Joachim Sprave. Problem-independent handling of constraints by use of metric penalty

functions. In Lawrence J. Fogel, Peter J. Angeline, and Thomas B�ack, editors, Proceedings of the Fifth Annual

Conference on Evolutionary Programming (EP'96), pages 289{294, San Diego, California, February 1996. The

MIT Press.

[63] John H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Harbor : University of Michigan Press,

1975.

[64] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained Optimization via Genetic Algorithms. Simulation,

62(4):242{254, 1994.

[65] W.-C. Huang, C.-Y. Kao, and J.-T. Horng. A Genetic Algorithm Approach for Set Covering Problem. In

Proceedings of the First IEEE Conference on Evolutionary Computation, pages 569{573. IEEE Press, 1994.

[66] E. Hyvoenen. Constraint reasoning based on interval arithmetic|The tolerance propagation approach. Ar-

ti�cial Intelligence, 58:71{112, 1992.

[67] Fernando Jim�enez and Jos�e L. Verdegay. Evolutionary techniques for constrained optimization problems. In

7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen, Germany, 1999.

Springer-Verlag.

[68] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear constrained

optimization problems with GAs. In David Fogel, editor, Proceedings of the �rst IEEE Conference on

Evolutionary Computation, pages 579{584, Orlando, Florida, 1994. IEEE Press.

[69] Dae Gyu Kim and Phil Husbands. Riemann Mapping Constraint Handling Method for Genetic Algorithms.

Technical Report CSRP 469, COGS, University of Sussex, UK, 1997.

[70] Dae Gyu Kim and Phil Husbands. Mapping Based Constraint Handling for Evolutionary Search; Thurston's

Circle Packing and Grid Generation. In Ian Parmee, editor, The Integration of Evolutionary and Adap-

tive Computing Technologies with Product/System Design and Realisation, pages 161{173. Springer-Verlag,

Plymouth, United Kingdom, April 1998.

[71] J.-H. Kim and H. Myung. Evolutionary programming techniques for constrained optimization problems.

IEEE Transactions on Evolutionary Computation, 1:129{140, July 1997.

[72] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220:671{

680, 1983.

28

[73] Ryszard Kowalczyk. Constraint Consistent Genetic Algorithms. In Proceedings of the 1997 IEEE Conference

on Evolutionary Computation, pages 343{348, Indianapolis, USA, April 1997. IEEE.

[74] Slawomir Koziel and Zbigniew Michalewicz. A Decoder-based Evolutionary Algorithm for Constrained Pa-

rameter Optimization Problems. In T. B�ack, A. E. Eiben, M. Schoenauer, and H.-P. Schwefel, editors,

Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V), pages 231{240, Amsterdam, Septem-

ber 1998. Springer-Verlag.

[75] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homomorphous Mappings, and Con-

strained Parameter Optimization. Evolutionary Computation, 7(1):19{44, 1999.

[76] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey. AI Magazine, pages 32{44, Spring

1992.

[77] T. Van Le. A Fuzzy Evolutionary Approach to Constrained Optimization Problems. In Proceedings of the

Second IEEE Conference on Evolutionary Computation, pages 274{278, Perth, November 1995. IEEE.

[78] G. E. Liepins and Michael D. Vose. Representational Issues in Genetic Optimization. Journal of Experimental

and Theoretical Computer Science, 2(2):4{30, 1990.

[79] Gunar E. Liepins andW. D. Potter. A Genetic Algorithm Approach to Multiple-Fault Diagnosis. In Lawrence

Davis, editor, Handbook of Genetic Algorithms, chapter 17, pages 237{250. Van NostrandReinhold, NewYork,

New York, 1991.

[80] C. B. Lucasius, M. J. J. Blommers, L. M. C. Buydens, and G. Kateman. A Genetic Algorithm for Confor-

mational Analysis of DNA. In Lawrence Davis, editor, Handbook of Genetic Algorithms, chapter 18, pages

251{281. Van Nostrand Reinhold, New York, New York, 1991.

[81] C. Maa and M. Shanblatt. A two-phase optimization neural network. IEEE Transactions on Neural Networks,

3(6):1003{1009, 1992.

[82] Z. Michalewicz and N. Attia. Evolutionary Optimization of Constrained Problems. In Proceedings of the 3rd

Annual Conference on Evolutionary Programming, pages 98{108. World Scienti�c, 1994.

[83] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, second

edition, 1992.

[84] Zbigniew Michalewicz. Genetic Algorithms, Numerical Optimization, and Constraints. In Larry J. Eshelman,

editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 151{158, San Mateo,

California, July 1995. University of Pittsburgh, Morgan Kaufmann Publishers.

[85] Zbigniew Michalewicz. A Survey of Constraint Handling Techniques in Evolutionary Computation Methods.

In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the 4th Annual Conference on

Evolutionary Programming, pages 135{155. The MIT Press, Cambridge, Massachusetts, 1995.

[86] Zbigniew Michalewicz, Dipankar Dasgupta, R. Le Riche, and Marc Schoenauer. Evolutionary algorithms for

constrained engineering problems. Computers & Industrial Engineering Journal, 30(4):851{870, September

1996.

[87] Zbigniew Michalewicz and Cezary Z. Janikow. Handling Constraints in Genetic Algorithms. In R. K. Belew

and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages

151{157, San Mateo, California, 1991. Morgan Kaufmann Publishers.

[88] Zbigniew Michalewicz and G. Nazhiyath. Genocop III: A co-evolutionary algorithm for numerical optimiza-

tion with nonlinear constraints. In David B. Fogel, editor, Proceedings of the Second IEEE International

Conference on Evolutionary Computation, pages 647{651, Piscataway, New Jersey, 1995. IEEE Press.

29

[89] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for Constrained Parameter Optimiza-

tion Problems. Evolutionary Computation, 4(1):1{32, 1996.

[90] Zbigniew Michalewicz and Jing Xiao. Evaluation of Paths in Evolutionary Planner/Navigator. In Proceedings

of the 1995 International Workshop on Biologically Inspired Evolutionary Systems, pages 45{52, Tokyo,

Japan, May 1995.

[91] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts, 1996.

[92] Tom Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis, Computer Science Depart-

ment, Stanford University, Stanford, California, 1978.

[93] Angel Fernando Kuri Morales. Personal Communication, 1999.

[94] Angel Kuri Morales and Carlos Villegas Quezada. A Univeral Eclectic Genetic Algorithm for Constrained

Optimization. In Proceedings 6th European Congress on Intelligent Techniques & Soft Computing, EUFIT'98,

pages 518{522, Aachen, Germany, September 1998. Verlag Mainz.

[95] Heinz M�uhlenbein. Parallel Genetic Algorithms in Combinatorial Optimization. In O. Balci, R. Sharda, and

S. Zenios, editors, Computer Science and Operations Research, pages 441{456. Pergamon Press, New York,

1992.

[96] H. Myung and J.-H. Kim. Evolian: Evolutionary optimization based on Lagrangian with constraint scaling.

In P.J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart, editors, Proceedings of the Sixth Anual

Conference on Evolutionary Programming, pages 177{188, Indianapolis, April 1997. Springer-Verlag.

[97] H. Myung and J.-H. Kim. Hybrid Interior-Lagrangian Penalty Based Evolutionary Optimization. In V. W.

Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors, Proceedings of the Seventh Anual Conference on

Evolutionary Programming, pages 85{94. Springer-Verlag, 1998.

[98] H. Myung, J.-H. Kim, and D. B. Fogel. Preliminary investigation into a two-stage method of evolutionary

optimization on constrained problems. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors,

Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 449{463, Cambridge,

Massachusetts, 1995. MIT Press.

[99] Ryohei Nakano. Conventional Genetic Algorithm for Job Shop Problems. In R. K. Belew and L. B. Booker,

editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 474{479, San Ma-

teo, California, 1991. Morgan Kaufmann Publishers.

[100] A. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer Journal, 7:308{313, 1965.

[101] Bryan A. Normal and Alice E. Smith. Random Keys Genetic Algorithm with Adaptive Penalty Function for

Optimization of Constrained Facility Layout Problems. In Thomas B�ack, Zbigniew Michalewicz, and Xin

Yao, editors, Proceedings of the 1997 International Conference on Evolutionary Computation, pages 407{411,

Indianapolis, Indiana, 1997. IEEE.

[102] A. L. Olsen. Penalty Functions for the Knapsack Problem. In Proceedings of the First IEEE Conference on

Evolutionary Computation, pages 554{558. IEEE Press, 1994.

[103] David Orvosh and Lawrence Davis. Shall We Repair? Genetic Algorithms, Combinatorial Optimization and

Feasibility Constraints. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, page 650. Morgan Kau�man Publishers, San Mateo, California, July 1993.

[104] David Orvosh and Lawrence Davis. Using a Genetic Algorithm to Optimize Problems with Feasibility

Contraints. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 548{553.

IEEE Press, 1994.

30

[105] Charles C. Palmer and Aaron Kershenbaum. Representing Trees in Genetic Algorithms. In Z. Michalewicz,

J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the First IEEE Conference

on Evolutionary Computation, pages 379{384, Piscataway, New Jersey, 1994. IEEE Press.

[106] J. Paredis. Co-evolutionary Constraint Satisfaction. In Proceedings of the 3rd Conference on Parallel Problem

Solving from Nature, pages 46{55, New York, 1994. Springer Verlag.

[107] I. C. Parmee and G. Purchase. The development of a directed genetic search technique for heavily constrained

design spaces. In I. C. Parmee, editor, Adaptive Computing in Engineering Design and Control-'94, pages

97{102, Plymouth, UK, 1994. University of Plymouth, University of Plymouth.

[108] Ian Parmee, editor. The Integration of Evolutionary and Adaptive Computing Technologies with Prod-

uct/System Design and Realisation. Springer-Verlag, Plymouth, United Kingdom, 1998.

[109] V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors. Evolutionary Programming VII: Proceedings

of the Seventh Annual Conference on Evolutionary Programming, volume 1447 of Lecture Notes in Computer

Science. Springer-Verlag, San Diego, California, March 1998.

[110] David Powell and Michael M. Skolnick. Using genetic algorithms in engineering design optimization with non-

linear constraints. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic

Algorithms, pages 424{431, San Mateo, California, jul 1993. University of Illinois at Urbana-Champaign,

Morgan Kaufmann Publishers.

[111] Nicholas J. Radcli�e. Equivalence class analysis of genetic algorithms. Complex Systems, 5:183{220, 1991.

[112] A. C. Renfrew. Dynamic Modeling in Archaeology: What, When, and Where? In S. E. van der Leeuw,

editor, Dynamical Modeling and the Study of Change in Archaelogy. Edinburgh University Press, Edinburgh,

Scotland, 1994.

[113] Robert G. Reynolds. An Introduction to Cultural Algorithms. In A. V. Sebald, , and L. J. Fogel, editors,

Proceedings of the Third Annual Conference on Evolutionary Programming, pages 131{139. World Scienti�c,

River Edge, New Jersey, 1994.

[114] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Using cultural algorithms for constraint han-

dling in GENOCOP. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the Fourth

Annual Conference on Evolutionary Programming, pages 298{305. MIT Press, Cambridge, Massachusetts,

1995.

[115] Jon T. Richardson, Mark R. Palmer, Gunar Liepins, andMike Hilliard. Some guidelines for genetic algorithms

with penalty functions. In J. David Scha�er, editor, Proceedings of the Third International Conference on

Genetic Algorithms, pages 191{197, George Mason University, 1989. Morgan Kaufmann Publishers.

[116] Rodolphe G. Le Riche and Raphael T. Haftka. Optimization of Laminate Stacking Sequence for Buckling

Load Maximization by Genetic Algorithm. AIAA Journal, 31(5):951{970, 1993.

[117] Rodolphe G. Le Riche and Raphael T. Haftka. Improved Genetic Algorithm for Minimum Thickness Com-

posite Laminate Design. Composites Engineering, 3(1):121{139, 1994.

[118] Rodolphe G. Le Riche, Catherine Knopf-Lenoir, and Raphael T. Haftka. A Segregated Genetic Algorithm for

Constrained Structural Optimization. In Larry J. Eshelman, editor, Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 558{565, SanMateo, California, July 1995. University of Pittsburgh,

Morgan Kaufmann Publishers.

[119] J. David Scha�er. Multiple objective optimization with vector evaluated genetic algorithms. In Genetic

Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms,

pages 93{100. Lawrence Erlbaum, 1985.

31

[120] Marc Schoenauer and Zbigniew Michalewicz. Evolutionary Computation at the Edge of Feasibility. In H.-

M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the Fourth Conference on

Parallel Problem Solving from Nature, pages 245{254. Springer-Verlag, Berlin, September 1996.

[121] Marc Schoenauer and Zbigniew Michalewicz. Sphere Operators and Their Applicability for Constrained

Parameter Optimization Problems. In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors,

Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming,

volume 1447 of Lecture Notes in Computer Science, pages 241{250. Springer-Verlag, San Diego, California,

March 1998.

[122] Marc Schoenauer and Spyros Xanthakis. Constrained GA Optimization. In Stephanie Forrest, editor, Pro-

ceedings of the Fifth International Conference on Genetic Algorithms, pages 573{580. Morgan Kau�man

Publishers, San Mateo, California, July 1993.

[123] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Great Britain, 1981.

[124] Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.

[125] W. Siedlecki and J. Sklanski. Constrained Genetic Optimization via Dynamic Reward-Penalty Balancing and

Its Use in Pattern Recognition. In J. David Scha�er, editor, Proceedings of the Third International Conference

on Genetic Algorithms, pages 141{150, San Mateo, California, jun 1989. George Mason University, Morgan

Kaufmann Publishers.

[126] Susan Carlson Skalak, Ron Shonkwiler, Sani Babar, and M. Aral. Annealing a Genetic Algorithm over Con-

straints. Available at http://vlead.mech.virginia.edu/publications/shenkpaper/shenkpaper.html.

[127] Alice E. Smith and David W. Coit. Constraint Handling Techniques|Penalty Functions. In Thomas B�ack,

David B. Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, chapter C 5.2.

Oxford University Press and Institute of Physics Publishing, 1997.

[128] Alice E. Smith and David M. Tate. Genetic Optimization Using a Penalty Function. In Stephanie Forrest,

editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 499{503, San Mateo,

California, July 1993. University of Illinois at Urbana-Champaign, Morgan Kaufmann Publishers.

[129] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. Searching for diverse, cooperative populations

with genetic algorithms. Technical Report TCGA No. 92002, University of Alabama, Tuscaloosa, Alabama,

1992.

[130] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. Population Diversity in an Immune SystemModel:

Implications for Genetic Search. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms 2, pages

153{165. Morgan Kaufmann Publishers, San Mateo, California, 1993.

[131] J. Sobieszanski-Sobieski. A Technique for Locating Function Roots and for Satisfying Equality Constraints

in Optimization. Structural Optimization, 4(3{4):241{243, 1992.

[132] Patrick D. Surry, Nicholas J. Radcli�e, and Ian D. Boyd. A Multi-Objective Approach to Constrained

Optimisation of Gas Supply Networks : The COMOGA Method. In Terence C. Fogarty, editor, Evolutionary

Computing. AISB Workshop. Selected Papers, Lecture Notes in Computer Science, pages 166{180. Springer-

Verlag, She�eld, U.K., 1995.

[133] Gilbert Syswerda. Uniform Crossover in Genetic Algorithms. In J. David Scha�er, editor, Proceedings of the

Third International Conference on Genetic Algorithms, pages 2{9, San Mateo, California, jun 1989. George

Mason University, Morgan Kaufmann Publishers.

[134] Gilbert Syswerda. Schedule Optimization Using Genetic Algorithms. In Lawrence Davis, editor, Handbook

of Genetic Algorithms, chapter 21, pages 332{349. Van Nostrand Reinhold, New York, New York, 1991.

32

[135] David M. Tate and Alice E. Smith. A Genetic Approach to the Quadratic Assignment Problem. Computers

and Operations Reseach, 22(1):73{78, 1995.

[136] Sam R. Thangiah. An Adaptive Clustering Method using a Geometric Shape for Vehicle Routing Problems

with Time Windows. In Larry J. Eshelman, editor, Proceedings of the Sixth International Conference on

Genetic Algorithms, pages 536{543, San Mateo, California, July 1995. University of Pittsburgh, Morgan

Kaufmann Publishers.

[137] M. Wodrich and G. Bilchev. Cooperative Distributed Search: The Ant's Way. Control and Cybernetics,

26(3):413{446, 1997.

[138] Jing Xiao, Zbigniew Michalewicz, and Krzysztof Trojanowski. Adaptive Evolutionary Planner/Navigator for

Mobile Robots. IEEE Transactions on Evolutionary Computation, 1(1):18{28, 1997.

[139] Jing Xiao, Zbigniew Michalewicz, and Lixin Zhang. Evolutionary Planner/Navigator: Operator Performance

and Self-Tuning. In Proceedings of the 3rd IEEE International Conference on Evolutionary Computation,

Nagoya, Japan, May 1996. IEEE Press.

[140] T. Yokota, M. Gen, K. Ida, and T. Taguchi. Optimal Design of System Reliability by an Improved Genetic

Algorithm. Transactions of Institute of Electronics, Information and Computer Engineering, J78-A(6):702{

709, 1995. (In Japanese).

33

