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Abstract. In this paper, we propose an algorithm based on an artificial immune
system to solve job shop scheduling problems. The approach uses clonal selec-
tion, hypermutations and a library of antibodies to construct solutions. It also uses
a local selection mechanism that tries to eliminate gaps between jobs in order to
improve solutions produced by the search mechanism of the algorithm. The pro-
posed approach is compared with respect to GRASP (an enumerative approach)
in several test problems taken from the specialized literature. Our results indicate
that the proposed algorithm is highly competitive, being able to produce better
solutions than GRASP in several cases, at a fraction of its computational cost.


1 Introduction


Scheduling problems arise in all areas. The purpose of scheduling is to allocate a set of
(limited) resources to tasks over time [26]. Scheduling has been a very active research
area during several years, both in the operations research and in the computer science
literature [2, 1, 18]. Research on scheduling basically focuses on finding ways of as-
signing tasks (or jobs) to machines (i.e., the resources) such that certain criteria are met
and certain objective (or objectives) function is optimized.


Several heuristics have been used for different types of scheduling problems (e.g.,
job shop, flowshop, production, etc.): evolutionary algorithms [8, 9], tabu search [4],
and simulated annealing [7], among others. Note, however, that the use of artificial
immune systems for the solution of scheduling problems of any type has been scarce
(see for example [15, 14, 10]).


This paper introduces a new approach, which is based on an artificial immune sys-
tem and the use of antibody libraries and is applied for optimizing job shop scheduling
problems. The proposed approach is compared with respect to GRASP (Greedy Ran-
domized Adaptive Search Procedure) in several test problems taken from the special-
ized literature. Our results indicate that the proposed approach is a viable alternative for
solving efficiently job shop scheduling problems.







2 Statement of the Problem


In this paper, we will be dealing with the Job Shop Scheduling Problem (JSSP), in
which the general objective is to minimize the time taken to finish the last job avail-
able (makespan). In other words, the goal is to find a schedule that has the minimum
duration required to complete all the jobs [2]. More formally, we can say that in the
JSSP, we have a set of � jobs


�������	��
��
��
, that have to be processed by a set of � ma-


chines
�	�����	��
���
��


. Each job has a sequence that depends on the existing precedence
constraints. The processing of a job


���
in a machine


���
is called operation � ��� . The


operation � � � requires the exclusive use of
� �


for an uninterrupted period of time � � �
(this is the processing time). A schedule is then a set of duration times for each op-
eration


��� � ��� ��
��
��! �"
���
��
that satisfies the previously indicated conditions. The total


duration time required to complete all the jobs (makespan) will be called # . The goal is
then to minimize # .


Garey and Johnson [19] showed that the JSSP is an NP-hard problem and within its
class it is one of the least tractable problems [1]. To exemplify this statement is sufficient
to mention that a $�%'&($�% problem proposed in [21] remained without solution for over
20 years. Several enumerative algorithms based on Branch & Bound have been applied
to JSSP. However, due to the high computation cost of these enumerative algorithms,
some approximation approaches have also been developed. The most popular practical
algorithm to date is the one based on priority rules and active schedule generation [17].
However, other algorithms, such as an approach called shifting bottleneck (SB) have
been found to be very effective in practice [3]. Furthermore, a number of heuristics have
also been used in the JSSP (e.g., genetic algorithms, tabu search, simulated annealing,
etc.).


The only other attempt to solve the JSSP using an artificial immune system that we
have found in the literature is the proposal of [14, 15]. In this case, the authors use an
artificial immune system (adopting a traditional permutation representation) in which
an antibody indirectly represents a schedule, and an antigen describes a set of expected
arrival dates for each job in the shop. The schedules are considered to be dynamic in the
sense that sudden changes in the environment require the generation of new schedules.
The proposed approach compared favorably with respect to a genetic algorithm using
problems taken from [20]. However, the authors do not provide enough information as
to replicate their results (the problems and results obtained are not included in their
papers).


3 Description of our Approach


Our approach is based on two artificial immune system mechanisms:


1. The way in which the molecules called antibodies are created. An antibody is en-
coded in multiple gene segments distributed along a chromosome of the genome.
These segments must be placed together to make one antibody. In order to make
such a molecule (i.e., an antibody), the gene segments are concatenated (see Fig-
ure 1). Note that other authors have used this sort of encoding of the antibodies in
their corresponding computational models (e.g., [16, 25, 24]).
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Fig. 1. Building antibody molecules from gene libraries (taken from [11]).


2. The clonal selection principle.


The approach proposed in this paper is a variation of CLONALG, which is an ar-
tificial immune system based on the clonal selection principle that has been used for
optimization [23]. CLONALG uses two populations: one of antigens and another one
of antibodies. When used for optimization, the main idea of CLONALG is to reproduce
individuals with a high affinity, then apply mutation (or blind variation) and select the
improved maturated progenies produced. Note that “affinity” in this case, is defined in
terms of better objective function values rather than in terms of genotypic similarities
(as, for example, in pattern recognition tasks), and the number of clones is the same for
each antibody. This implies that CLONALG does not really use antigens when solving
optimization problems, but, instead, the closeness of each antibody to the global opti-
mum (measured in relative terms with respect to the set of solutions produced so far)
defines the rate of hypermutation to be used. It is also worth noting that CLONALG
does not use libraries to build antibodies as in our approach.


In order to apply an artificial immune system (or any other heuristic for that sake) to
the JSSP, it is necessary to use a special representation. In our case, each element of the
library represents the sequence of jobs processed by each of the machines. An antibody
is then a chain with the job sequence processed by each of the machines (of length
� & � ). An antigen is represented in the same way as an antibody. The representation
adopted in this work is the so-called permutations with repetitions proposed in [27].


To illustrate this representation, we will consider the � &�� problem (6 jobs and 4
machines) shown in Table 1.


Input data include the information regarding the machine in which each job must be
processed and the duration of this job in each machine. Gantt diagrams are a convenient
tool to visualize the solutions obtained for a JSSP. An example of a Gantt diagram
representing a solution to the � &�� problem previously indicated is shown in Step 1 of
Figure 2. Figure 2 also requires some further explanation:







job machine (time)
1 1(2) 2(2) 3(2) 4(2)
2 4(2) 3(2) 2(2) 1(2)
3 2(2) 1(2) 4(2) 3(2)
4 3(2) 4(2) 1(2) 2(2)
5 1(2) 2(2) 3(4) 4(1)
6 4(3) 2(3) 1(1) 3(1)


Table 1. A problem of size �����


– The string at the bottom of Figure 2 corresponds to the solution that we are going
to decode.


– Step 1: This shows the decoding before reaching the second operation of job 2.
– Step 2: This shows the way in which job 2 would be placed if a normal decoding


was adopted. Note that job 2 (
���


) is shown to the extreme right of machine 3 (
���


).
– Step 3: Our approach performs a local search to try to find gaps in the currrent


schedule. Such gaps should comply with the precedence constraints imposed by
the problem. In this case, the figure shows job 2 placed on one of these gaps for
machine 3.


– Step 4: In this case, we apply the same local search procedure (i.e., finding avail-
able gaps) for the other machines. This step shows the optimum solution for this
scheduling problem.


Our approach extends the algorithm (based on clonal selection theory) proposed
in [22] using a local search mechanism that consists of placing jobs in each of the
machines using the available time slots. Obviously, this mechanism has to be careful of
not violating the constraints of the problem.


Our approach is described in Algorithm 1. First, we randomly generate an antibody
library. Such a library is really a set of strings that encode different job sequences for
each machine. Then, we generate (also randomly) an antigen, which is a possible solu-
tion (i.e., a jobs sequence) to the problem. After that, we generate a single antibody by
combining different segments taken from the library. The antibody is decoded and a lo-
cal search algorithm is used to try to improve it by eliminating the larger gaps between
jobs. At this point, the solution encoded by the antibody is compared to the solution
encoded by the antigen. If the antibody encodes a better solution, then it replaces the
antigen. So, the antigen will be keeping the best solution found along the process. In
the following step, we generate 	 clones of the antibody ( 	 is a parameter defined by
the user) and we mutate each of them. From these mutated solutions, we select the best
segments produced (i.e., the best jobs sequence for each machine) and we use them to
update the library. Comparisons at this point are again made with respect to the antigen,
but instead of comparing the entire solution, we only compare job sequences for each
machine. Note that we do not select based on the complete solution which minimizes
total makespan (such a solution is always located in the antigen), but we look for the
best partial solutions to the problem to try to recombine them when building a new an-
tibody. In order to define 	 (number of clones), we used an incremental approach: we
started with 100,000 evaluations and we increased this value only if we considered that







Fig. 2. The graphical representation of a solution to the ��� � problem shown in Table 1 using a
Gantt diagram. The string at the bottom of the figure indicates the antibody that we are going to
decode. See text for an explanation of the different steps included.







Algorithm 1 Our AIS for job shop scheduling
Require: Input file (in the format adopted in [5]).


Input parameters: #antigens, #libraries, mutation rate, random seed (optional)
� - number of iterations�


- counter
Generate (randomly) an antibody library.
Generate (randomly) an antigen (i.e., a sequence of jobs) and encode it.
repeat


Generate an antibody using components from the library.
Decode the antibody and apply local search to improve it.
if the antibody is better than the antigen then


Make the antigen the same as the antibody
end if
Generate � clones of the antibody
Mutate each of the clones generated
Select the best segments produced to update the library


until
��� �


Report the best solution found


the results obtained were not too good. In the number of evaluations reported below for
our algorithm, we do not include the cost of fine-tuning the parameter 	 .


Note that no affinity measure is used. This is mainly due to the representation
adopted which allows repetitions. This makes it difficult to define a measure of similary
between two sequences of jobs and therefore our choice of not adopting an affinity mea-
sure. Thus, we use instead the values of the objective function (minimize makespan) as
the affinity measure in order to determine what solutions should be adopted to produce
new ones.


4 Comparison of Results


We compared our AIS with respect to the GRASP approach proposed in [6]. We chose
this reference for two main reasons: (1) it provides enough information (e.g., numerical
results) as to allow a comparison, (2) GRASP is an enumerative approach which has
traditionally been found to be very powerful in combinatorial optimization problems
such as the job shop scheduling problem studied in this paper [13].


Table 2 shows a comparison of results between our AIS and GRASP, using several
test problems taken from the OR-Library [5]. We chose a set of problems that we found
to be difficult both for GRASP and for our approach. Note however that better results
than those presented here are available in the literature (see for example [27, 12]). How-
ever, we decided to compare our approach with respect to [6], because in this reference,
we found a more exhaustive table of results (i.e., a larger set of problems was studied
by the authors).


All our tests were performed on a PC with an AMD Duron processor running at 1
GHz with 128 MB of RAM and using Red Hat Linux 7.3. Our approach was imple-
mented in C++ and was compiled using the GNU g++ compiler.







The parameters of our approach are the following:


– Number of libraries: We adopted between 4 and 8. Note that each library is of the
same length as the antibodies and the antigens.


– Number of antigens: We used only one antigen in the experiments reported in this
paper. However, we experimented with different values (up to 8) and no significant
differences were detected in the performance of our approach.


– Mutation rate: This value is a function of the antibodies length and it is defined
such that 3 mutations take place for each string (i.e., antibody). We used exchange
mutation. Thus, we perform a ����� ����� �
	 (the function ����� ����� 	


returns true � per-
cent of the times that it is invoked) for each position along the string ( � � is the
mutation rate) and if the result is true, then we exchange the current value with
another one (randomly chosen) from the same string.


– Number of clones: We adopted values between 100 and 1000 depending on the
complexity of the problem (these values were empirically found for each problem).


Results are summarized in Table 2. We report the following information:


– problem: Name of the problem (as given in the OR-Library [5]).
– size: Size of the problem in the format: � & � ( � = number of machines,


�
=


number of jobs).
– BKS: Best known solution for each problem.
– AIS: Best solution obtained by our AIS (we performed 20 runs per problem).
– GRASP: Best solution obtained using GRASP, as reported in [6]. Note that in [6]


no statistical values are available for GRASP.
– AIS err(%): Percentage of error (with respect to the best known solution) of our


approach.
– mean AIS: Mean result of ALL the solutions produced by our approach on the 20


runs performed per problem.
– sd AIS: Standard deviation of ALL the solutions produced by our approach on the


20 runs performed per problem.
– evaluations AIS: Number of evaluations performed by our approach (expressed in


millions).
– iterations GRASP: Number of iterations performed by GRASP, as reported in [6].


Note, however, that at each iteration, GRASP builds a valid solution, performs local
search and updates the best current solution. This implies multiple evaluations for
each iteration. In contrast, what we report for our approach is the total number of
evaluations (rather than iterations) performed.


4.1 Discussion of Results


The first important aspect to discuss is the computational cost of the two approaches
compared. In Table 2, we can clearly see that in all cases, our AIS performed less
evaluations than GRASP. We attribute this lower computational cost of our AIS to the
representation adopted, because the permutations with repetitions always generate fea-
sible solutions, whereas GRASP uses an encoding based on graphs. In some cases, the
differences in computational cost are remarkable. For example (keep in mind that an
iteration of GRASP requires more than one evaluation as defined in our AIS):







problem size BKS AIS GRASP AIS
err(%)


GRASP
err(%)


mean AIS sd AIS evaluations
AIS


iterations
GRASP


abz5 ��� ����� 1234 1238 1238 0.3 0.3 1469.7 86.0 5.0 20.1
abz7 ��� ����� 667 707 723 6.0 8.4 839.3 33.3 6.4 20.1
abz8 ��� ����� 670 743 729 10.9 8.8 858.5 31.1 5.0 20.1
abz9 ��� ����� 691 750 758 8.5 9.7 883.5 30.82 5.0 20.1
ft10 ��� ����� 930 941 938 1.2 0.9 1141.4 80.6 20.0 90.1
la01 ��� ��� 666 666 666 0.0 0.0 775.6 57.3 0.01 0.1
la02 ��� ��� 655 655 655 0.0 0.0 775.1 58.0 0.01 0.1
la03 ��� ��� 597 597 604 0.0 1.2 700.1 50.0 10.0 50.1
la04 ��� ��� 590 590 590 0.0 0.0 705.9 62.2 0.01 0.1
la05 ��� ��� 593 593 593 0.0 0.0 616.5 30.7 0.01 0.1
la06 ��� ��� 926 926 926 0.0 0.0 961.3 35.1 0.01 0.1
la07 ��� ��� 890 890 890 0.0 0.0 961.1 44.2 0.01 0.1
la08 ��� ��� 863 863 863 0.0 0.0 964.9 49.5 0.01 0.1
la09 ��� ��� 951 951 951 0.0 0.0 1018.7 43.7 0.01 0.1
la10 ��� ��� 958 958 958 0.0 0.0 981.9 34.3 2.0 50.1
la16 ��� ����� 945 945 946 0.0 0.1 1100.2 67.5 2.0 20.1
la17 ��� ����� 784 785 784 0.1 0.0 911.8 60.0 2.0 20.1
la18 ��� ����� 848 848 848 0.0 0.0 1013.3 68.9 2.0 10.1
la19 ��� ����� 842 848 842 0.7 0.0 1030.8 64.6 10.0 50.1
la20 ��� ����� 902 907 907 0.6 0.6 1072.1 63.3 5.0 10.1
la25 ��� ����� 902 1022 1028 4.6 5.2 1234.9 71.5 5.0 10.1
la28 ��� ����� 1216 1277 1293 5.0 6.3 1554.7 66.6 5.0 10.1
la29 ��� ����� 1195 1248 1293 4.4 8.2 1463.0 55.0 6.4 10.1
la35 	
� ����� 1888 1903 1888 0.8 0.0 2179.4 72.6 5.0 10.1
la36 ��� ����� 1268 1323 1334 4.3 5.2 1560.5 71.22 6.4 11.2
la38 ��� ����� 1217 1274 1267 4.7 4.1 1548.4 61.6 6.4 11.2
la39 ��� ����� 1233 1270 1290 3.0 4.6 1548.3 73.4 6.4 11.2
la40 ��� ����� 1222 1258 1259 2.9 3.0 1537.4 69.3 6.4 11.2
orb02 ��� ����� 888 894 889 0.7 0.1 1069.5 72.75 5.0 40.1
orb03 ��� ����� 1005 1042 1021 3.7 1.6 1275.5 91.6 5.0 40.1
orb04 ��� ����� 1005 1028 1031 2.3 2.6 1220.82 80.1 5.0 40.1


Table 2. Comparison of Results between AIS and GRASP. Note that in all problems we are min-
imizing makespan. AIS = Artificial Immune System, GRASP = Greedy Randomized Adaptive
Search Procedure. The number of evaluations of our AIS and the number of iterations of GRASP
are expressed in millions.







– In problem la03 ( $�% &�� ), our AIS reaches the best known solution 75% of the time
performing 5,000,000 evaluations of the objective function. In contrast, GRASP
performs 50,000,000 iterations (ten times more than our AIS).


– In problem la29 ( � % & $�% ), the best known solution has a makespan of 1195. In this
case, our AIS finds a solution with a makespan of 1248 performing 6.4 millions
of evaluations, whereas GRASP finds a solution with a makespan of 1293 after
performing 10.1 millions of iterations.


– In problem abz7 ( $�� &�$�% ), our AIS finds a better solution than GRASP (707 vs.
723) performing 6.4 millions of evaluations. GRASP required in this case 20.1
millions of iterations.


In general terms, we can see that our AIS was able to find the best known solution
in 38.7% of the problems, whereas GRASP was able to converge to the best known
solution only in 35.4% of the problems. It is also interesting to note that both approaches
have a similar performance for problems in which 5 machines are used regardless of the
number of jobs. However, for larger problems, AIS finds better solutions than GRASP
with a lower number of evaluations. Despite the noticeable differences in computational
costs of the two algorithms, their percentages of error are very similar. AIS has an
average percentage of error of 2.2%, whereas GRASP presents a 2.3%.


All of the previous led us to conclude that our approach is a viable alternative for
solving job shop scheduling problems. Our results are not only competitive in terms
of the makespan, but were obtained at a fraction of the computational cost required by
GRASP.


5 Conclusions and Future Work


We have introduced a new approach based on an artificial immune system to solve job
shop scheduling problems. The approach uses concepts from clonal selection theory
(extending ideas from CLONALG [23]), and adopts a permutation representation that
allows repetitions. The approach also incorporates a library of antibodies that is used
to build new solutions to the problem. The comparison of results indicated that the
proposed approach is highly competitive with respect to GRASP, even improving on its
results some times.


As part of our future work, we plan to improve our procedure to initialize the anti-
body library by using an additional heuristic (e.g., a genetic algorithm). We also intend
to add a mechanism that avoids the generation of duplicates (something that we do
not have in the current version of our algorithm). It is also desirable to find a set of
parameters that can be fixed for a larger family of problems as to eliminate the empir-
ical fine-tuning that we currently perform. Additionally, we plan to define an affinity
measure that can work with our encoding.


Finally, we also plan to work on a multiobjective version of job shop scheduling
in which 3 objectives would be considered [1]: 1) makespan, 2) mean flowtime and 3)
mean tardiness. This would allow us to generate trade-offs that the user could evaluate
in order to decide what solution to choose.
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