
The use of a multiobjective optimization

technique to handle constraints

Carlos A. Coello Coello

a

a

Laboratorio Nacional de Inform�atica Avanzada

R�ebsamen 80, Xalapa, Veracruz 91090, M�exico

E-mail: ccoello@xalapa.lania.mx

This paper presents a new approach to handle constraints using evolutionary algorithms. The new technique treats

constraints as objectives, and uses a multiobjective optimization approach to solve the re-stated single-objective opti-

mization problem. The new approach is compared against other numerical and evolutionary optimization techniques in

several engineering optimization problems with di�erent kinds of constraints. The results obtained show that the new

approach can consistently outperform the other techniques without a signi�cant sacri�ce in terms of performance.

Keywords: genetic algorithms, constraint handling, evolutionary optimization.

1. Introduction

Despite the well-documented success of genetic al-

gorithms (GAs) in a wide range of applications, their

use in constrained optimization problem still raises

several issues to which a considerable amount of re-

search has been devoted in the last few years. From

these, the key issue is how to incorporate constraints

of any sort (linear, non-linear, equality or inequality)

into the �tness function as to guide the search prop-

erly.

For several years, practitioners have used penalty

functions to incorporate (mainly inequality) con-

straints into the �tness function, and there have been

a lot of successful applications of this approach in all

engineering �elds. However, penalty functions have

some well-known limitations [2], from which the most

remarkable is the di�culty to de�ne good penalty fac-

tors. These penalty factors are normally generated by

trial and error, although their de�nition may severely

a�ect the results produced by the GA [2].

In this paper, a new constraint-handling approach

is proposed that does not require the use of a penalty

function to handle equality and inequality constraints.

This technique is based on a multiobjective optimiza-

tion approach, and it is very suitable for paralleliza-

tion.

The remainder of this paper is organized as follows:

�rst, the new approach will be introduced, then two

engineering optimization problems will be presented,

and solved using the new approach. After that, the

results produced by other (GA-based and mathemat-

ical programming) techniques will be compared with

those obtained with the new method, and �nally there

will be some discussion of the results obtained and the

expected paths of future research.

2. Description of the new approach

The main idea behind the approach proposed in this

paper is to use a population-based multiobjective op-

timization technique such as VEGA [4] to handle each

of the constraints as an objective in the way indicated

before. The technique may be better illustrated by

Figure 1. At each generation, the population is split

intom+1 sub-populations, wherem refers to the num-

ber of constraints of the problem (we have to add one

to consider also the objective function). Although the

size of each sub-population may be variable, it was

f(x)

g (x)

g (x)

g (x)

1

f(x)

g (x)

g (x)

1

22

Sub-populations
Old

Sub-populations
New

m+1

3

1

2

1

2

3

m+1

genetic
operators

Apply

g (x)
mm

Figure 1. Graphical representation of the approach introduced in this paper.

decided to allocate the same size to each of them in

the experiments reported in this paper, but the use of

di�erent sizes remains as an open issue that requires

further research.

Using this scheme, a fraction of the population will

be selected using the (unconstrained) objective func-

tion as its �tness; another fraction will use the �rst

constraint as its �tness and so on. However, it is not

completely obvious how to guide each of these sub-

populations during the search.

For the sub-population guided by the objective

function, the evaluation of such objective function for a

given vectorX (decoded from the chromosome) is used

directly as the �tness function (probably multiplied by

(-1) if it is a minimization problem), with no penalties

of any sort. For all the other sub-populations, the al-

gorithm used was the following:

if g

j

(X) < 0:0 then �tness = g

j

(X)

else if v 6= 0 then �tness = �v

else �tness = f

where g

j

(X) refers to the constraint corresponding

to sub-population j+1 (this is assuming that the �rst

sub-population is assigned to the objective function

f), and v refers to the number of constraints that are

violated (� m). Finally, if the solution encoded is

feasible, then this individual will be `merged' with the

�rst sub-population, since it will be evaluated with the

same �tness function (i.e., the objective function).

There are a few interesting things that can be ob-

served from this procedure. First, each sub-population

associated with a constraint will try to reduce the

amount in which that constraint is violated. If the

solution evaluated does not violate the constraint cor-

responding to that sub-population, but it is infeasible,

then the sub-population will try to minimize the to-

tal number of violations, joining then the other sub-

populations in the e�ort of driving the GA to the fea-

sible region. This aims at combining the distance from

feasibility with information about the number of vio-

lated constraints, which is the same heuristic normally

used with penalty functions. However, traditionally

it is necessary to de�ne in advance either an static

penalty value or a dynamic penalty function that es-

timates this distance from feasibility, whereas in the

current approach such distance is estimated automat-

ically by the above algorithm using the constraint vi-

olation information derived from the GA run.

It is important to clarify that the current approach

does not use dominance to impose an order on the

constraints based on their violation (like in the case of

COMOGA [3]) which is a more expensive process (in

terms of CPU time) that also requires additional pa-

rameters. In fact, the current approach does not rank

individuals, but it uses instead di�erent �tness func-

tions for each of the sub-population allocated (whose

number depends on the number of constraints) de-

pending on the feasibility of the individuals contained

within each of them. This is easier to implement, does

not require special operators to preserve feasiblity (like

in the case of Parmee and Purchase's approach [5]),

makes unnecessary the use of a sharing function to

preserve diversity (like with traditional multiobjective

optimization techniques), and does not require extra

parameters to control the mixture of feasible and in-

feasible individuals (like in the case of COMOGA [3]).

It is interesting to notice that the use of the un-

constrained objective function in one of the sub-

populations may assign good �tness values to infeasi-

ble individuals. However, because the number of con-

straints will normally be greater than one, the other

sub-populations will drive the GA to the feasible re-

gion. In fact, the sub-population evaluated with the

objective function will be useful to keep diversity in

the population, making then unnecessary the use of

sharing techniques. The behavior expected under this

scheme is to have few feasible individuals at the begin-

ning, and then gradually produce solutions that may

be feasible with respect to some constraints but not

with respect to others. Over time, the building blocks

of these sub-populations will combine to produce in-

dividuals that are feasible, but not necessarily opti-

mum. At that point the direct use of the objective

function will help the GA to approach the optimum,

but since some infeasible solutions will still be present

in the population, those individuals will be responsible

to keep the diversity required to avoid stagnation.

The new approach has been tested with several

functions of di�erent degrees of di�culty, and has been

able to deal properly with both inequality and equality

constraints. However, due to space limitations, only 2

examples will be shown. The interested reader may

consult [6] for further information.

3. Examples

3.1. Example 1 : Design of a hydrostatic thrust

bearing

In this problem we want to minimize the power loss

during the operation of a hydrostatic thrust bearing

(see Figure 2) which has to withstand a speci�ed load

while providing an axial support. Four design vari-

ables are considered: R (bearing step radius), R

0

(re-

cess radius), � (viscosity), and Q (ow rate). The

optimization problem can be stated as follows:

h

R

R 0

P0

Lubricant
in

Thrust load
W

P1

Lubricant
out

Figure 2. The hydrostatic thrust bearing used for the �rst ex-

ample.

Minimize :

F (X) =

QP

0

0:7

+E

f

(1)

Subject to :

g

1

(X) =

�P

0

2

R

2

�R

2

0

ln(R=R

0

)

�W

s

� 0 (2)

g

2

(X) = P

max

� P

0

� 0 (3)

g

3

(X) = �T

max

��T � 0 (4)

g

4

(X) = h� h

min

� 0 (5)

g

5

(X) = R � R

0

� 0 (6)

g

6

(X) = 0:001�

gP

0

�

Q

2�Rh

�

� 0 (7)

g

7

(X) = 5000�

W

�(R

2

�R

2

0

)

� 0 (8)

where the inlet pressure P

0

is de�ned as

P

0

=

6�Q

�h

3

ln

R

R

0

(9)

and the power loss due to friction is

E

f

= 9336:0QC�T (10)

where = 0:0307 lb/in

3

(849.5755 kg/m

3

) is the

weight density of oil and C = 0:5 Btu/lb

�

F (0.5 cal/g

�

C) is the speci�c heat of oil. The temperature rise

�T can be calculated from �T = 2P

2

, where

P

2

= 10

P

3

� 560 (11)

and

P

3

=

log

10

log

10

(8:122� 10

6

� + 0:8)�C

1

n

(12)

C

1

and n are constants for a given oil. For the

purposes of this example, we will use SAE 20 grade

oil, with C

1

= �3:55 and n = 10:04. After calculating

the value of E

f

, we can calculate the �lm thickness h

from the following equation:

h =

�

2�N

60

�

2

2��

E

f

�

R

4

4

�

R

4

0

4

�

(13)

Other parameters required are: W

s

= 101000 lb

(45804.99 Kg), P

max

= 1000 psi (6.89655�10

6

Pa),

�T

max

= 50

�

F (10

�

C), h

min

= 0:001 in (0.00254 cm),

g = 386:4 in/seg

2

(981.456 cm/seg

2

), and N = 750.

3.2. Example 2 : Himmelblau's Nonlinear

Optimization Problem

This problem was originally proposed by Himmel-

blau [7], and it was chosen to try the new approach

because it has been used before as a benchmark for

GA-based techniques that use penalties. In this prob-

lem, there are 5 design variables (x

1

; x

2

; x

3

; x

4

; x

5

), 6

nonlinear inequality constraints and 10 boundary con-

ditions. The problem can be stated as follows:

Min f(X) = 5:3578547x

2

3

+ 0:8356891x

1

x

5

(14)

Subject to:

g

1

(X) = 85:334407+ 0:0056858x

2

x

5

+

0:00026x

1

x

4

� 0:0022053x

3

x

5

(15)

g

2

(X) = 80:51249 + 0:0071317x

2

x

5

+

0:0029955x

1

x

2

+ 0:0021813x

2

3

(16)

g

3

(X) = 9:300961 + 0:0047026x

3

x

5

+

0:0012547x

1

x

3

+ 0:0019085x

3

x

4

(17)

0 � g

1

(X) � 92 (18)

90 � g

2

(X) � 110 (19)

20 � g

3

(X) � 25 (20)

78 � x

1

� 102 (21)

33 � x

2

� 45 (22)

27 � x

3

� 45 (23)

27 � x

4

� 45 (24)

27 � x

5

� 45 (25)

4. Comparison of Results

4.1. Example 1

This problem was solved before by Deb and Goyal

[8] using GeneAS (Genetic Adaptive Search, which is a

real-coded GA) and a traditional (binary) genetic algo-

rithm (both approaches used a penalty function), and

by Siddall [9] using ADRANS (Gall's adaptive random

search with a penalty function). Their results were

compared against those produced by the approach pro-

posed in this paper, and are shown in Table 1. Notice

that the solution reported by Siddall [10] is infeasible

(it violates the �rst constraint). The solution shown

for the technique proposed here is the best produced

after 81 runs in which the crossover and mutation rates

were iterated from 0:1 to 0:9 (at increments of 0.1) in

a nested loop in which the mutation rate was iterated

�rst while the crossover rate remained �xed. For ex-

ample, given an initial crossover rate of 0.1, the nine

values from 0.1 to 0.9 were used for the mutation rate,

running a GA for each pair of parameters (crossover

and mutation rates). Once the loop for the mutation

rate �nished, the crossover rate was incremented by

0.1 and the loop for the mutation rate was run again

from 0.1 to 0.9. The process was repeated until the

crossover rate reached 0.9. The following ranges were

used for the design variables: 1:000 � x

1

� 16:000,

1:000 � x

2

� 16:000, 1:0 � 10

�6

� x

3

� 16:0 � 10

�6

,

1:000 � x

4

� 16:000. The values of all variables were

considered with a 3-decimal precision (the values of x

3

were considered as multiples of 1:0� 10

�6

). The total

population size used was 160 (20 individuals for each

of the 8 sub-populations) and the maximum number

of generations was 100.

4.2. Example 2

This problem was originally proposed by Himmel-

blau [7] and solved using the Generalized Reduced

Gradient method (GRG). Gen and Cheng [12] solved

this problem using a genetic algorithm based on both

local and global reference. The result shown in Table 2

is the best of the two reported by Gen and Cheng [12].

Homaifar, Qi, and Lai [11] solved this problem using

Design Best solution found

Variables This paper GeneAS BGA Siddall

x

1

(R) 6.271 6.778 7.077 7.155

x

2

(R

0

) 12.901 6.234 6.549 6.689

x

3

(�)� 10

�6

5.605 6.096 6.619 8.321

x

4

(Q) 2.938 3.809 4.849 9.168

g

1

(X) 2126.86734 8329.7681 1440.6013 -11086.7430

g

2

(X) 68.0396 177.3527 297.1495 402.4493

g

3

(X) 3.705191 10.684543 17.353800 35.057196

g

4

(X) 0.000559 0.000652 0.000891 0.001542

g

5

(X) 0.666000 0.544000 0.528000 0.466000

g

6

(X) 0.000805 0.000717 0.000624 0.000144

g

7

(X) 849.718683 83.618221 467.686527 563.644401

f(X) 1950:2860 2161:4215 2296:2119 2288:2268

Table 1

Comparison of results for the �rst example (design of a hydrostatic thrust bearing).

a genetic algorithm with a population size of 400, and

their results were the best previously reported in the

literature for this problem (see Table 2). The solu-

tion shown for the technique proposed here is the best

produced after 81 runs in which the crossover and mu-

tation rates were iterated from 0:1 to 0:9 in a nested

loop, and the following ranges were used for the design

variables: 78:0000 � x

1

� 102:0000, 33:0000 � x

2

�

45:0000, 27:0000 � x

3

� 45:0000, 27:0000 � x

4

�

45:0000, and 27:0000 � x

5

� 45:0000. The values

for all the variables were considered with a 4-decimal

precision. The total population size used was 160 (40

individuals for each of the 4 sub-populations) and the

maximum number of generations was 100.

5. Discussion

In the examples presented before, the new ap-

proach found better solutions than those previously

reported in the literature by using relatively small sub-

population sizes. However, the selection of an appro-

priate sub-population size (assuming that they are all

the same) remains an issue as when using a GA with a

single population. Determining the maximum number

of generations presents a similar problem, although in

this case it is possible to monitor the population so

that the GA is stopped when there is not enough di-

versity anymore (e.g., when the �tness of the best in-

dividual is very close to the mean �tness of the popu-

lation). The main drawback of the new technique may

be the number of sub-populations that may be needed

in larger problems, since they will increase linearly

with the number of constraints. However, it is possible

to deal with that problem in two di�erent ways: �rst,

some constraints could be tied; that means that two

or more constraints could be assigned to the same sub-

population. That would signi�cantly reduce the num-

ber of sub-populations in highly constrained problems.

Second, we could parallelize the approach, in which

case a high number of sub-populations will not be a

serious drawback, since they could be processed con-

currently. The current algorithm would however need

modi�cations as to decide the sort of interactions be-

tween a master process (responsible for actually opti-

mizing the whole problem) and the slave sub-processes

(all the sub-populations responsible for the constraints

of the problem). That is in fact the area of research

currently being pursued by the author.

6. Conclusions and Future Work

This paper has introduced a new GA-based ap-

proach that uses a multiobjective optimization tech-

nique to handle constraints, instead of using the more

traditional penalty approach. The new approach

worked well in some test problems that had been pre-

Design Best solution found

Variables This paper Gen Homaifar GRG

x

1

78.5958 81.4900 78.0000 78.6200

x

2

33.0100 34.0900 33.0000 33.4400

x

3

27.6460 31.2400 29.9950 31.0700

x

4

45.0000 42.2000 45.0000 44.1800

x

5

45.0000 34.3700 36.7760 35.2200

g

1

(X) 91.956402 90.522543 90.714681 90.520761

g

2

(X) 100.545111 99.318806 98.840511 98.892933

g

3

(X) 20.251919 20.060410 19.999935 20.131578

f(X) �30810:359 �30183:576 �30665:609 �30373:949

Table 2

Comparison of results for the fourth example (Himmelblau's function).

viously solved using GA-based and mathematical pro-

gramming techniques, producing results better than

those previously reported in the literature. The tech-

nique was able to achieve such good results with rel-

atively small sub-populations, and without the need

to use any extra parameters for the GA, although the

issue of selecting the most appropriate sub-population

size as well as the maximum number of generations,

remains open as in the case of the simple GA [1].

The �rst extension of this work will be to develop a

parallel implementation of the algorithm. Some in-

teresting issues that a parallel version of this algo-

rithm arise are for example the migration policies re-

quired to exchange information, the consequences of

restricting crossover, the e�ect of the topology used by

the parallel architecture on the overall performance of

the GA, the signi�cance of the evolution of the small

sub-populations responsible for the constraints concur-

rently with the evolution of a main population contain-

ing a mixed of feasible and infeasible solutions.

7. Acknowledgments

The author acknowledges support from CONACyT

through project number I � 29870A.

References

[1] Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-

timization and Machine Learning . Addison-Wesley Pub-

lishing Co., Reading, Massachusetts.

[2] Richardson, J. T., Palmer, M. R., Liepins, G., and Hilliard,

M. (1989). Some guidelines for genetic algorithms with

penalty functions. In J. D. Scha�er, editor, Proceed-

ings of the Third International Conference on Genetic

Algorithms , pp. 191{197. Morgan Kaufmann Publishers,

George Mason University.

[3] Surry, P. D., Radcli�e, N. J., and Boyd, I. D. (1995). A

Multi-Objective Approach to Constrained Optimisation of

Gas Supply Networks : The COMOGA Method. In T. C.

Fogarty, editor, Evolutionary Computing. AISB Workshop.

Selected Papers , Lecture Notes in Computer Science, pp.

166{180. Springer-Verlag, She�eld, U.K.

[4] Scha�er, J. D. (1985). Multiple objective optimization

with vector evaluated genetic algorithms. In Genetic Al-

gorithms and their Applications: Proceedings of the First

International Conference on Genetic Algorithms , pp. 93{

100. Lawrence Erlbaum.

[5] Parmee, I. C. and Purchase, G. (1994). The development of

a directed genetic search technique for heavily constrained

design spaces. In I. C. Parmee, editor, Adaptive Comput-

ing in Engineering Design and Control-'94 , pp. 97{102.

University of Plymouth, UK.

[6] Coello, Carlos A. (1999). Treating constraints as objectives

for single-objective optimization. Computers in Industry,

(accepted for publication).

[7] Himmelblau, D. M. (1972). Applied Nonlinear Program-

ming . McGraw-Hill, New York.

[8] Deb, K. and Goyal, M. (July 1995). Optimizing Engineer-

ing Designs Using a Combined Genetic Search. In L. J.

Eshelman, editor, Proceedings of the Sixth International

Conference on Genetic Algorithms , pp. 521{528. Morgan

Kau�man Publishers, San Mateo, California.

[9] Siddall, J. N. (1982). Optimal Engineering Design. Prin-

ciples and Applications . Marcel Dekker, New York.

[10] Siddall, J. N. (1972). Analytical Design-Making in Engi-

neering Design . Prentice-Hall.

[11] Homaifar, A., Lai, S. H. Y., and Qi, X. (1994). Con-

strained Optimization via Genetic Algorithms. Simulation ,

62(4):242{254.

[12] Gen, M. and Cheng, R. (1997). Genetic Algorithms &

Engineering Design . John Wiley & Sons, Inc, New York.

