
A Cultural Algorithm with Operator Parameters

Control for Solving Timetabling Problems ⋆

Carlos Soza Canales1, Ricardo Landa Becerra2

Maŕıa Cristina Riff1, and Carlos Coello Coello2

1 Universidad Federico Santa Maŕıa
Departamento de Informática

Av. España No. 1680, Valparáıso, Chile
{csoza,mcriff}@inf.utfsm.cl

2 CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Ingenieŕıa Eléctrica, Sección de Computación

Av. IPN No. 2508 Col. San Pedro Zacatenco, México D.F. 07300, Mexico
{rlanda,ccoello}@cs.cinvestav.mx

Abstract. A cultural algorithm, together with a set of new operators
for the timetabling problem, is proposed in this paper. The new op-
erators extract information about the problem during the evolutionary
process, and they are combined with some previously proposed opera-
tors, in order to improve the performance of the algorithm. The proposed
algorithm is tested with a benchmark of 20 instances, and compared with
respect to three other algorithms: two evolutionary algorithms and a sim-
ulated annealing algorithm which won an international competition on
this problem.

1 Introduction

The timetabling problem is a combinatorial problem that can be viewed as an op-
timzation task. It consists of assigning schedules to several workers or students,
which also require some resources. In order to make a feasible timetable, a set of
hard constraints must be satisfied (most of them technical constraints); more-
over, a good timetable must satisfy some soft constraints (frequently, comfort-
related constraints), and if all soft constraints are met, we can consider the
solution as optimal. From this point of view, the timetabling problem can be
considered as an optimization problem, when trying to minimize the violations
of the existing soft constraints.

This NP-hard problem presents several variants, such as the employee, exam
and university timetabling problems. In 2002, the Metaheuristics Network or-
ganized a competition on the University Course Timetabling Problem (UCTP),
and published a set of instances of the problem, in order to make easier the com-
parisons of different algorithms. However, in that competition no evolutionary

⋆ Partially supported by CONACYT/CONICYT Collaboration Project México-Chile
No. J110.331/2005

algorithms were proposed, even when evolutionary algorithms have shown to be
very effective techniques when solving combinatorial problems.

Cultural algorithms [1] are a particular class of evolutionary algorithm that
use domain knowledge extracted during the evolutionary process in order to
improve the performance of the search engine (i.e. the evolutionary algorithm)
adopted. What we explore in this paper is the use of a combination of knowledge
extracted during the evolutionary search with some knowledge that is inserted
a priori because it is normally known to be useful when solving combinatorial
problems. The main hypothesis in this regard was that the incorporation of
knowledge into an evolutionary algorithm would increase its performance as to
make it competitive with other approaches whose computational cost is signifi-
cantly higher.

Several heuristics have been used for different types of timetabling problems:
evolutionary algorithms ([2]), memetic algorithms ([3]) tabu search ([4]), simu-
lated annealing ([5]), the ant system ([6]), and hybrid algorithms ([7–9]), among
others.

Note however, that this paper presents the first attempt (to the authors’ best
knowledge) to use cultural algorithms to solve timetabling problems.

The proposed approach is compared with respect to an evolutionary algo-
rithm with specialized crossover operators [2], a recently published memetic al-
gorithm [3], and a simulated annealing approach [5] that won the competition of
the Metaheuristics Network, in all the test cases proposed for that competition.
The obtained results indicate that the proposed approach is a viable alternative
for solving, efficiently, timetabling problems.

The remainder of this paper is organized as follows: in Section 2 a brief
description of the statement of the problem is provided. Section 3 contains an
introduction to cultural algorithms which includes a description of their main
components and the main motivation to use them. Section 4 contains the details
of the proposed approach to solve university course timetabling problems using
a cultural algorithm. As part of this section, a description of the representation
of solutions adopted in this work is included, as well as the mechanisms im-
plemented to add domain knowledge to the evolutionary algorithm both before
and during the search process. Section 5 provides a comparative study. Finally,
Section 6 presents the general conclusions and some possible paths for future
research.

2 Problem Statement

The variant of the problem tackled here was proposed by Ben Paechter for the
International Timetabling Competition organized by the Metaheuristics Network
[10]. It is referred to in the following as the University Course Timetabling
Problem (UCTP). Lecture must be scheduled in 45 timeslots (5 days of 9 hours
each) and a number of rooms, with varying facilities and student capacities, so
that the following hard constraints are satisfied:

– H1 : lectures having students in common cannot take place at the same time;

– H2 : lectures must take place in a room suitable for them in terms of facilities
and student capacity; and

– H3 : no two lectures can take place at the same time in the same room.

We consider as well the following soft constraints:

– S1 : students should not have to attend lectures in the last timeslot of the
day;

– S2 : they should not attend more than two lectures in a row; and
– S3 : they should not have a single lecture in any given day.

A timetable in which all lectures have been assigned to a timeslot and a room
so that no hard constraints are violated, is said to be feasible. The aim of the
problem is to find a feasible solution with minimal soft constraint violations.

2.1 Model

Parameters The parameters of the problem:

– R: Set of Rooms
– E: Set of Events
– F : Set of Features
– S: Set of Students
– T : 45 timeslots (5 days of 9 slots per day).

Variables Let: a, indicate students attendance:

a(si,ej)

{

1 if student si attends event ej

0 otherwise

g, indicate wich rooms are suitable for which events (i.e. the room provides
all the features that the event requires and has the right size) ej :

g(rl,ej)

{

1 if room ri is suitable for the event ej

0 otherwise

p, indicate the placement of events:

p(ej ,tk,rl)

{

1 if event ej is placed in timeslot tk and room rl

0 otherwise

Hard Constraints

– Lectures having students in common cannot take place at the same time.

H1 : ∀s∈S∀t∈T

|E|
∑

j=0

|R|
∑

t=0

a(s,ej) ∗ p(ej ,t,rl) ≤ 1 (1)

– Lectures must take place in a room suitable for them in terms of facilities
and student capacity.

H2 : ∀e∈E

|T |
∑

k=0

|R|
∑

t=0

p(e,tk,rl) ∗ g(rl,e) = 1 (2)

– No two lectures can take place at the same time in the same room.

H3 : ∀t∈T∀r∈R

|E|
∑

j=0

p(ej ,t,r) ≤ 1 (3)

Soft Constraints

– Students should not have to attend lectures in the last timeslot of the day.

S1 :

4
∑

d=0

|R|
∑

l=0

|E|
∑

j=0

|S|
∑

i=0

p(ej ,t9d+8,rl) ∗ a(s,ej) (4)

– They should not attend more than two lectures in row.

S2 :

4
∑

d=0

|S|
∑

i=0

9d+7
∑

k=9d

h(), (5)

h() =

{

1 si
∑2

n=0

∑|R
t=0

∑|E|
j=0 p(ej ,tk,rl) ∗ a(si,ej) = 3

0 e.o.c.

– They should not have an only lecture in any given day.

S3 :

4
∑

d=0

|S|
∑

i=0

q(), (6)

q() =

{

1 si
∑9d+9

k=9d

∑|R
t=0

∑|E|
j=0 p(ej ,tk,rl) ∗ a(si,ej) = 1

0 e.o.c.

Objective Function

MINIMIZE { S1 + S2 +S3 } (7)

The goal of solving the problem formulated in such a way is to minimize the
number of soft constraint violations.

3 Cultural Algorithms

Cultural algorithms were developed by Reynolds [1] as a complement to the
metaphor used by evolutionary algorithms ([11]), which had focused mainly on
genetic and natural selection concepts.

Cultural algorithms are based on some theories originated in sociology and
archaeology which try to model cultural evolution (see for example [12]). Such
theories indicate that cultural evolution can be seen as an inheritance process op-
erating at two levels: (1) a micro-evolutionary level, which consists of the genetic
material that an offspring inherits from its parents, and (2) a macro-evolutionary
level, which consists of the knowledge acquired by individuals through genera-
tions. This knowledge, once encoded and stored, is used to guide the behavior
of the individuals that belong to a certain population.

Culture can be seen as a set of ideological phenomena shared by a population
[13]. Through these phenomena, an individual can interpret its experiences and
decide its behavior. In these models, it can be clearly appreciated the part of the
system that is shared by the population: the knowledge, acquired by members
of a society, but encoded in such a way that such knowledge can be accessed
by every other member of the society. And then there is an individual part,
which consists of the interpretation of such knowledge encoded in the form of
symbols. This interpretation will produce new behaviors as a consequence of
the assimilation of the corresponding knowledge acquired, combined with the
information encoded in the ancestors’ genes.

Reynolds [1] attempts to capture this double inheritance phenomenon through
his proposal of cultural algorithms. The main goal of such algorithms is to in-
crease the learning or convergence rates of an evolutionary algorithm such that
the system can respond better to a wide variety of problems [14].

Cultural algorithms operate in two spaces. First, there is the population
space, which consists of (as in all evolutionary algorithms) a set of individuals.
Each individual has a set of independent features that are used to determine
its fitness. Through time, such individuals can be replaced by some of their
descendants, which are obtained through the application of a set of operators
from the population.

The second space is the belief space, which is where the knowledge, acquired
by individuals through generations, is stored. The information contained in this
space must be accessible to each individual, so that they can use it to modify
their behavior. In order to join the two spaces, it is necessary to provide a
communication link, which dictates the rules regarding the type of information
that must be exchanged between the two spaces.

Algortihm 1 shows the pseudo-code of a cultural algorithm.

Most of the steps of a cultural algorithm correspond with the steps of a
traditional evolutionary algorithm. It can be clearly seen that the main difference
lies in the fact that cultural algorithms use a belief space. In the main loop of
algorithm, the belief space must be updated. It is at this point in which the
belief space incorporates the individual experiences of a select group of members

Algorithm 1 Pseudo-code of a cultural algorithm

Generate the initial population
Initialize the belief space
Evaluate the initial population
repeat

Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the belief space)
Evaluate each child
Perform selection

until the end condition is satisfied

of the population. Such a group is obtained with the function accept, which is
applied to the entire population.

On the other hand, the variation operators (such as recombination or muta-
tion) are modified by the function influence. This function applies some pressure
such that the children resulting from the variation operators can exhibit behav-
iors closer to the desirable ones and farther away from the undesirable ones,
according to the information stored in the belief space.

These two functions (accept and influence) constitute the communication
link between the population space and the belief space. Such interactions can be
appreciated in Figure 1 [15]. The implementation details for these functions in
the current proposal are given in the next section.

In [1], it is proposed the use of genetic algorithms [16] to model the micro-
evolutionary process, and Version Spaces [17] to model the macro-evolutionary
process of a cultural algorithm. This sort of algorithm was called the Version

Space guided Genetic Algorithm (VGA). The main idea behind this approach is
to preserve beliefs that are socially accepted and discard (or prune) unacceptable
beliefs. Therefore, if a cultural algorithm for global optimization is applied, the
acceptable beliefs can be seen as constraints that direct the population at the
micro-evolutionary level [18].

In genetic algorithms’ theory, there is an expression, called schema theorem

[19] that represents a bound on the speed at which the best schemata of the
population are propagated. Reynolds[1] provided a brief discussion regarding
how the belief space could affect the schema theorem. His conclusion was that,
by adding a belief space to an evolutionary algorithm, the performance of such
algorithm can be improved by increasing its convergence rate. That constitutes
the main motivation to use cultural algorithms. Despite the lack of a formal
mathematical proof of this efficiency improvement, there is empirical evidence
of such performance gains reported in the literature (see for example [20, 21]).

4 Proposed Approach

The approach proposed in this paper uses, in its population space, a population
based on the evolutionary algorithm originally proposed in [2]. A pseudo-code
with the main steps of the proposed cultural algorithm is shown in Algorithm 2.

Influence

Selection
Performance

Variation

Function

Acceptance

Adjust

Beliefs

Population

Fig. 1. Spaces of a Cultural Algorithm

In our algorithm, we have considered three types of knowledge: situational,
normative and domain knowledge. Also, we are using five variation operators:
two of them use the cultural knowledge (cultural mutation and repair) while
the other three are designed to add the exploration component of the algorithm
(interchange, sequencing and simple mutation). It is worth mentioning that only
one of the exploration operators is applied to each individual.

4.1 Representation

The representation adopted to encode the solutions plays a very important role
when applying an evolutionary computation technique [22, 23]. In this case, a
matrix representation was adopted, where columns represent slots of time, and
rows represent rooms for the events.

This encoding was chosen because it can represent any feasible timetable,
and is easier to analyze the violation of some hard constraints, considering only
one column at a time.

4.2 Exploration Operators

The exploration operators are those that allow to maintain diversity of the pop-
ulation. They are listed next.

The sequencing operator is similar to the one in [5], and its intention is to
generate a large change in the individual since it interchanges two timeslots (this
operator is the most destructive one used here).

The interchange operator of [2], interchanges two events, and its purpose is
to modify the individuals when the problems have in their feasible solutions the
same number of places available and events to assign.

The simple mutation operator changes the place of an event, and it is useful
when the problems have more places availabe in their feasible solutions (without
considering the last periods of the day) than events to assign. The last two op-
erators make use of the matching algorithm [24] to increase their rate of success.

Algorithm 2 Pseudo-code of the cultural algorithm adopted

Generate s random schedules (initial population)
Compute the fitness of each individual in the initial population
Initialize the belief space (copying the best individual to the situational belief space
and create the normative matrix)
repeat

for each individual in current population do

Apply cultural mutation operator
switch (operator)

case Interchange:
Apply Interchange Operator

case Sequencing:
Apply Sequencing Operator

case SimpleMutation:
Apply Simple Mutation Operator

end switch

Apply repair operator (with domain knowledge)
end for

Selection proccess
Update the belief space (with the individuals accepted)

until the end condition is satisfied

Parameter Control for the Application of Exploration Operators The
parameter control is a process, concurrent to the search of solutions, that allows
values of the parameters to change during this process [25]. We use a mechanism
of parameter control in order to select the exploration operator (interchange,
sequencing or simple mutation) to apply during the mutation process, using a
roulette wheel and based on the success rate of each operator.

This mechanism consists of updating the probability of each operator to be
applied, following some simple rules.

If the application of the operator number i results on an improvement of the
fitness of the generated individual (with respect to his parent) (fcur < fprev),
the update of the probabilities is made as follows:

operator[i] = operator[i] + ∆variation

where operator[] is the array that contains the probabilities of the operators to

be applied, ∆variation =
fprev−fcur

fprev+fcur
, and ∀j ∈ {1, . . . , NumOper} and i 6= j,

operator[j] = operator[j]− ∆variation
NumOper−1 , with NumOper = 3 in this case, because

we have three operators.
This technique to update the operator rates was taken from the techniques

to adapt the population size proposed by Eiben [26] and Michalewicz [27].
When an operator i is applied and the present solution gets worse (fcur >

fprev); the updating of the probabilities is made as follows:

operator[i] = operator[i] − ∆variation ∗ α

where α = PresentT ime
TotalT ime

, and ∀j ∈ {1, . . . , NumOper} and i 6= j, operator[j] =

operator[j] + ∆variation∗α
NumOper−1 .

The goal of incorporating the α factor is to mantain controlled the level of
decrement, with the objective of not dusturbing those operators whose decreasing
ranks are much greater, like the sequencing operator.

Initially, the 3 operators in competition start with the same probability of
being chosen: ∀i ∈ {1, . . . , NumOper}, operator[i] = 1/CantOper. In order to
assure that all operators always have a probability 6= 0 of being chosen, all values
in operator[] remain between MinProb = 0.1 and MaxProb = 0.8.

4.3 Mutation Operators with Cultural Influence

The operator begins selecting an event E and a position (r, t) to move it. This
is done through different types of cultural influence.

Situational Influence With the situational influence each individual tries to
follow a leader. Such a leader is the best individual found, and is stored in
the situational belief space. The key idea is that the individual to be mutated
becomes more similar to the leader after the mutation process. The mutation
operator randomly selects an event E from the leader, and tries to inherit its
position (r, t) to the individual.

The situational belief space is updated at each generation. If the best indi-
vidual of the current generation is better than the leader in the situational belief
space, then the leader is replaced by that individual.

Normative Influence This type of influence is more complex. At each gen-
eration, the above average individuals are selected. The idea is to influence the
individual to be mutated to inherit some of their characteristics. Before describ-
ing the procedure, we need the following definitions:

Definition 41 We define a ranking of events as the set of all the events ordered

by the number of events with shared students among them. Thus, the event most

connected with other events is the first in the ranking.

Definition 42 Given a population P (g) of the generation g and the set Sg com-

posed by the best s individuals of the generation g, we define M = Matrix(event, individual),
where each element Mij is the timeslot assigned to the event i in the individual

j which belongs to Sg.

The operator proceeds as follows. The room r is fixed. The event is chosen
from the ranking of events using a roulette wheel procedure which is biased to the
most interconnected events. The new timeslot in the same room r is randomly
selected from the matrix M , thus the most common timeslot t of the event E
in M has the biggest probability of being selected. The hardest event to be
assigned, from the constraints point of view, is the event that shares students
with the largest number of events.

The matrix M is updated at each generation g, after the selection of the set
Sg (the above average individuals).

Once an event E and the position (r, t) have been selected (by any of the
cultural influences mentioned), the process of mutation continues as shown in
Algorithm 3. First of all, the operator identifies the current position (rE , tE) of
the event E in the individual to be mutated. If the new position selected (r, t) is
empty and if it is feasible to place E there (from the hard constraints point of
view), the current position of event E is modified to (r, t). In case another event
Em is in (r, t), the operator makes swapping moves to change Em to another
position, in order to release (r, t).

Algorithm 3 mutation(E, (r, t)) procedure, which implements mutation after
the influence of cultural selection
1: mutation finished = FALSE

2: identify the position (rE, tE) of the event E in the chromosome
3: while mutation finished 6= TRUE or maxtries < 1000 do

4: if the position (r, t) of the chromosome is empty then

5: try to move the event E from the position (rE, tE) to (r, t), satisfying the hard
constraints

6: else

7: try a swapping move of the event Em in (r, t)
8: end if

9: if the position of E was changed then

10: mutation finished = TRUE

11: end if

12: end while

4.4 Domain Knowledge

Our algorithm makes a post-processing procedure which uses the domain knowl-
edge to modify individuals. In the timetabling problem, it is known that the
best solution does not include events in the last timeslots of each day, thus the

purpose of the repair operator is to try to move the events located in the last
timeslots to the earliest ones, always satisfying the hard constraints.

5 Comparison of Results

The Cultural Algorithm (CA) is compared with respect to 3 different approaches:
a Simulated Annealing (SA) that was the winner of the competition [5], a recent
version of a Memetic Algorithm (MA) [3] and the Evolutionary Algorithm (EA)
in which this work is based [2]. These references were chosen because they are
representative of the state-of-the-art and very competitive on the timetabling
problem. The comparison with another EA shows the improvement obtained
with the incorporation of culture. The SA approach still presents the best results,
but we compare results with it even when it is not an evolutionary algorithm.

The benchmark adopted to make the tests and comparisons are the 20 in-
stances of UCTP from the timetabling competition [10]. Those problems are
characterized for being of varied difficulty, they consider the individual satisfac-
tion of the students (which allows to consider them individually, not in classes
nor groups), and have at least one solution that fulfills both types of restrictions.

The proposed approach was implemented in the C++ programming language
and was compiled using the GNU g++ compiler in the operating system Debian
3.1. Also, the matching algorithm found in the LEDA library [24] was used.

The cultural algorithm was executed 360 s, as was indicated for the bech-
marking program of the competition, for our system configuration.

5.1 Cultural Algorithm and Evolutionary Algorithm

The graphs of Figure 2 show the best and the worst case of improvement of CA
with respect to EA, in the 20 instances considered. The worst case (Figure 2(a))
and the best behavior (Figure 2(b)) consider a significant improvement in the
first stages which is reflected directly in the final result, in which the cultural
algorithm has better results. These graphs show that the incorporation of culture
tends to accelerate the convergence of the algorithm and to improve the results.

5.2 Cultural Algorithm and Other Algorithms

Table 1 shows the results obtained by each algorithm in the 20 instances. Table 2
shows a comparison of distances of the cultural algorithm with respect to the
other 3 algorithms. Table 3 shows a summary of the obtained results emphasizing
that the CA improves all the results of EA. The results of the CA are very close
in quality from those of MA. Finally, SA is still the most robust approach to
solve timetabling problems.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 30 60 90 120 150 180 210 240 270 300 330 360

 F
it

n
es

s

 Time

 Fitness v/s Time

Evolutionary Algorithm
Cultural Algorithm

(a) Worst case: Instance 02

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 30 60 90 120 150 180 210 240 270 300 330 360

 F
it

n
es

s

 Time

 Fitness v/s Time

Evolutionary Algorithm
Cultural Algorithm

(b) Best case: Instance 06

Fig. 2. Comparison in time

Instance AE ACCP MA SA

1 288 140 104 45

2 260 123 91 25

3 322 149 126 65

4 679 330 189 115

5 557 306 212 102

6 532 171 90 13

7 430 159 127 44

8 305 133 94 29

9 283 101 78 17

10 311 147 113 61

11 328 120 90 44

12 350 187 138 107

13 420 233 185 78

14 469 267 187 52

15 400 204 120 24

16 302 102 74 22

17 521 311 182 86

18 254 100 75 31

19 550 296 224 44

20 424 159 60 7
Table 1. Comparison of results

Instance AE - ACCP MA - ACCP SA - ACCP

1 148 -36 -95

2 137 -32 -98

3 173 -23 -84

4 349 -141 -215

5 251 -94 -204

6 361 -81 -158

7 271 -32 -115

8 172 -39 -104

9 182 -23 -84

10 164 -34 -86

11 208 -30 -76

12 163 -49 -80

13 187 -48 -155

14 202 -80 -215

15 196 -84 -180

16 200 -28 -80

17 210 -129 -225

18 154 -25 -69

19 254 -72 -252

20 265 -99 -152
Table 2. Improvement of the results of CA compared with the three other approaches

Algorithm Average Standard Deviation

AE 399,25 119,46

ACCP 186,9 76,58

MA 127,95 50,72

SA 50,55 32,39
Table 3. Summary of results for all instances

5.3 Adaptation on Operators Application Rate

The incorporation of a mechanism to control the parameters of the cultural al-
gorithm, during the selection of the operator to use, resulted on an improvement
on the performance of every instance of the benchmark. The graphs of Figure 3
show two representative instances of UCTP. One of them is the instance number
20 (Figure 3(a)) where 350 events in 400 places are considered; in such a case
the simple mutation operator resulted useful because an important factor was
the number of free places to assign events. On the other hand, instance number
09 (Figure 3(b)) has less options to schedule an event, while it has 440 events
and just 440 places; in this case, the interchange operator was more useful.

6 Conclusions and Future Work

In this paper, we propose the use of domain knowledge, both a priori and ex-
tracted during the search, to improve the performance of an evolutionary algo-
rithm when solving timetabling problems. The executed experiments provided
very encouraging results.

As a future work it would be very interesting to analyze the mechanisms of
the simulated annealing method, in order to incorporate them in an evolutionary
algorithm or a cultural algorithm. Also, the development of a classification of
instances, is a very interesting topic to research, mainly to better understand
the performance of different algorithms on different instances.

Acknowledgments

The second author acknowledges support from CONACyT through a scholarship
to pursue graduate studies at CINVESTAV-IPN. The fourth author acknowl-
edges support from CONACyT through project number 45683-Y.

References

1. Reynolds, R.G.: An Introduction to Cultural Algorithms. In Sebald, A.V., Fogel,
L.J., eds.: Proceedings of the Third Annual Conference on Evolutionary Program-
ming. World Scientific, River Edge, New Jersey (1994) 131–139

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500

 O
p

er
at

o
rs

 r
at

e

 Generations

 Operator Rate v/s Generations

Simple Mutation
Sequencing
Interchange

Fitness

(a) Instance 20, with more places than events

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500

 O
p

er
at

o
rs

 r
at

e

 Generations

 Operator Rate v/s Generations

Simple Mutation
Sequencing
Interchange

Fitness

(b) Instance 09, with the same number of
places and events

Fig. 3. Operators’ rate of application

2. Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary
algorithms. In: 5th International Conference on Recent Advances in Soft Comput-
ing (RASC 2004). Volume 5 of Lecture Notes in Computer Science., Nottingham,
UK (2004) 189–195

3. Rossi-Doria, O., Paechter, B.: A memetic algorithm for university course
timetabling. In: Proceedings of Combinatorial Optimisation (CO’2004), School
of Computing, Napier University, Scotland (2004)

4. Cordeau, J.F., Jaumard, B., Morales, R.: Efficient timetabling solution with
tabu search. International Timetabling Competition (2003) http://www.idsia.

ch/Files/ttcomp2002/jaumard.pdf, last access: December 2006.
5. Kostuch, P.: Timetabling competition - sa-based heuristic. International

Timetabling Competition (2003) http://www.idsia.ch/Files/ttcomp2002/

kostuch.pdf, last access: December 2006.
6. Socha, K., Sampels, M., Manfrin, M.: Ant algorithms for the university course

timetabling problem with regard to the state-of-the-art. In: Proceedings of Evo-
COP 2003 – 3rd European Workshop on Evolutionary Computation in Combina-
torial Optimization. Volume 2611 of LNCS., Springer-Verlag (April 2003) 334–345

7. Gaspero, L.D., Schaerf, A.: Timetabling competition ttcomp 2002: Solver descrip-
tion. International Timetabling Competition (2003) http://www.idsia.ch/Files/
ttcomp2002/schaerf.pdf, last access: December 2006.

8. Chiarandini, M., Socha, K., Birattari, M., Rossi-Doria, O.: International
timetabling competition. A hybrid approach. Technical Report AIDA-03-04, Intel-
lectics Group, Computer Science Department, Darmstadt University of Technology,
Darmstadt, Germany (March 2003)

9. Arntzen, H., Løkketangen, A.: A local search heuristic for a university timetabling
problem. International Timetabling Competition (2003) http://www.idsia.ch/

Files/ttcomp2002/arntzen.pdf, last access: December 2006.
10. Metaheuristics Network: International timetabling competition. http://www.

idsia.ch/Files/ttcomp2002/ (2003) Last access: December 2006.
11. Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine

Intelligence. The Institute of Electrical and Electronic Engineers, New York (1995)
12. Durham, W.H.: Co-evolution: Genes, Culture, and Human Diversity. Stanford

University Press, Stanford, California (1994)
13. Richerson, P.J., Boyd, R.: Not By Genes Alone: How Culture Transformed Human

Evolution. University Of Chicago Press (December 2004)
14. Franklin, B., Bergerman, M.: Cultural algorithms: Concepts and experiments. In:

Proceedings of the 2000 Congress on Evolutionary Computation, Piscataway, New
Jersey, IEEE Service Center (2000) 1245–1251

15. Reynolds, R.G.: Cultural algorithms: Theory and applications. In Corne, D.,
Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, London,
UK (1999) 367–377

16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Reading, Massachusetts (1989)

17. Mitchell, T.: Version Spaces: An Approach to Concept Learning. PhD thesis,
Computer Science Department, Stanford University, Stanford, California (1978)

18. Michalewicz, Z.: A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods. In McDonnell, J.R., Reynolds, R.G., Fogel, D.B., eds.:
Proceedings of the 4th Annual Conference on Evolutionary Programming. The
MIT Press, Cambridge, Massachusetts (1995) 135–155

19. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, Michigan (1975)

20. Chung, C.J., Reynolds, R.G.: CAEP: An Evolution-based Tool for Real-Valued
Function Optimization using Cultural Algorithms. Journal on Artificial Intelli-
gence Tools 7(3) (1998) 239–292

21. Coello Coello, C.A., Landa Becerra, R.: Adding Knowledge and Efficient Data
Structures to Evolutionary Programming: A Cultural Algorithm for Constrained
Optimization. In Langdon, W., et al., eds.: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’2002), San Francisco, California, Mor-
gan Kaufmann Publishers (July 2002) 201–209

22. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Physica-
Verlag, New York (2002)

23. Ronald, S.: Robust encodings in genetic algorithms. In Dasgupta, D., Michalewicz,
Z., eds.: Evolutionaty Algorithms in Engineering Applications. Springer-Verlag
(1997) 30–44

24. GmbH, A.S.S.: Leda 5.1. http://www.algorithmic-solutions.com/index.htm

(2006)
25. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary

Algorithms. IEEE Transactions on Evolutionary Computation 3(2) (July 2000)
124–141

26. Eiben, A., Marchiori, E., Valko, V.: Evolutionary Algorithms with on-the-fly Pop-
ulation Size Adjustment. In: Parallel Problem Solving from Nature, PPSN VIII.
Volume 3242. (2004) 41–50

27. Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS-A Genetic Algorithm with
Varying Population Size. In: Proceedings of the 1st IEEE Conference on Evolution-
ary Computation (ICEC’94). Volume 1., Orlando, Florida, IEEE Service Center
(1994) 73–78

